
Automated Lossless Hyper-Minimization for Morphological Analyzers

Senka Drobac and Miikka Silfverberg and Krister Lindén
Department of Modern Languages

PO Box 24
00014 University of Helsinki

{senka.drobac, miikka.silfverberg, krister.linden}@helsinki.fi

Abstract

This paper presents a fully automated loss-
less hyper-minimization method for finite-
state morphological analyzers in Xerox
lexc formalism. The method utilizes
flag diacritics to preserve the structure
of the original lexc description in the
finite-state analyzer, which results in re-
duced size of the analyzer. We compare
our method against an earlier solution by
Drobac et al. (2014) which requires man-
ual selection of flag diacritics and results
in slow lookup. We show that our method
gives similar size reductions while main-
taining fast lookup without requiring any
manual input.

1 Introduction

Morphological analyzers are commonly imple-
mented as finite state machines (FSM) because
finite-state technology enables both fast process-
ing of large amounts of input and manipulation of
the analyzer using finite-state algebra. Sometimes
finite-state analyzers may, however, become quite
large. This can be a problem e.g. when analyz-
ers are used on mobile devices where a moderate
memory footprint is required.

The usual way to reduce the size of FSMs is
to use a minimization algorithm (Hopcroft, 1971).
Minimization can have a substantial effect on the
size of the FSM but, as it is only able to combine
suffix-equivalent states, there may still be residual
redundancy in the state space of the machine.

Further size reduction can be accomplished by
introducing a limited form of context-free struc-
ture into the finite-state graph using special sym-
bols called flag diacritics (Beesley, 1998). Using
flag diacritics, it is possible to combine sub-graphs
which are equivalent, i.e. accept the same strings,
but which are not necessarily suffix-equivalent.

Flag diacritics are used to couple entrance points
of the sub-graphs with appropriate exit points.
During lookup, paths whose flag diacritics do not
match are filtered out. Thus, the original language
of the machine is preserved.

Traditionally, the lexicon writer manually in-
serts flag diacritics into the lexicon of the mor-
phological analyzer. There are two major prob-
lems with this approach: (1) In practice, manu-
ally inserted flag diacritics often do not result in
great size reduction because many lexicon writ-
ers have poor understanding of the structure of the
finite-state networks built from lexicographical-
morphological descriptions; (2) The addition of
flag diacritics to these descriptions makes them
unreadable and unmanageable since the amount of
non-linguistic data in the linguistic description in-
creases.

This paper introduces an automated method for
inducing flag diacritics into finite-state morpho-
logical analyzers based on the Xerox lexc for-
malism. We refine an earlier approach by Drobac
et al. (2014), which requires manual selection of
flag diacritics, to obtain substantial size reduction.
We show that our approach achieves similar reduc-
tions in size, but with a fully automated process.
Moreover, the approach presented in this paper
is conceptually simpler and faster because, unlike
Drobac et al. (2014), we do not need additional
processing after applying phonological rules. Ad-
ditionally, our approach results in substantially im-
proved lookup speed compared to Drobac et al.
(2014) due to an operation which we call path con-
densation.

We apply our approach to morphological an-
alyzers for three morphologically complex lan-
guages: Greenlandic, North Saami, and Finnish.
Compared to Drobac et al. (2014), our approach
results in near equal size reduction for these lan-
guages without requiring any manual intervention.
Furthermore, due to path condensation introduced

in Section 3.3, lookup time is reduced for all three
languages and because of the new lexc approach,
compilation time is reduced for all languages.

2 Background

Finite state morphology (Beesley and Karttunen,
2003) is the state-of-the-art in writing morpho-
logical analysers for natural languages of the
whole range of typologically varying morpholog-
ical features. The finite-state approach is built
around two practical concepts: constructing lex-
icographical descriptions of a language by using
a grammar formalism called lexc and express-
ing morphophonological variations as regular ex-
pression rules. In this paper, we study lossless
hyper-minimization of finite-state machines de-
rived from lexicographic descriptions in the lexc
formalism.

In this paper, we use the term hyper-
minimization of minimal deterministic finite-state
machines to refer to procedures which produce an
even smaller finite-state machine, that preserves
some of the qualities of the original determinis-
tic minimal machine. This definition of hyper-
minimization is broad enough to encompass a
number of different approaches. The generally
used definition of hyper-minimization, introduced
by Badr et al. (2009) and further developed by for
example Maletti and Quarnheim (2011), is more
restricted.

The hyper-minimization algorithms investi-
gated by Badr et al. (2009) and by Maletti and
Quarnheim (2011) introduce a limited amount of
changes to the language accepted by the origi-
nal machine. This makes the machine suscepti-
ble to further size reduction using conventional
minimization algorithms. We call this kind of
hyper-minimization lossy hyper-minimization be-
cause the resulting finite-state machine does not
accept the same language as the original machine.
Lossy hyper-minimization results in a determinis-
tic machine which allows fast lookup.

In contrast to lossy hyper-minimization, the ap-
proach presented in this paper is lossless. We in-
troduce a limited amount of non-determinism into
the finite-state machine using labeled epsilon sym-
bols (flag diacritics). This allows us to achieve a
size reduction, while at the same time preserving
the original language accepted by the finite-state
machine. The non-determinism introduced by
the algorithm results in some reduction in lookup

LEXICON Root
0 N ;
0 Adj ;

LEXICON N
cat+N:cat Num ;

LEXICON Adj
small+A:small Deg ;

LEXICON Num
+Sg:0 # ;
+Pl:s # ;

LEXICON Deg
+Pos:0 # ;
+Comp:er # ;
+Sup:est # ;

Figure 1: A lexc lexicon

speed, which is not prohibitive in practice.
Finding the smallest non-deterministic finite-

state machine equivalent to a given machine is
PSPACE complete (Jiang and Ravikumar, 1993)
for general finite-state machines and therefore in-
tractable. Nevertheless, using a linguistic descrip-
tion rather than a compiled finite-state machine as
the starting point, it is possible to achieve substan-
tial reduction in the size of the machine without
penalties in compilation time.

3 Methods

In this section, we describe our lossless hyper-
minimization algorithm of morphological lexi-
cons. The algorithm is applicable on finite-state
lexicons formulated as regular grammars. An ex-
ample of this kind of formalism is the Xerox lexc
formalism (Beesley and Karttunen, 2003). Sec-
tions 3.1 and 3.2 closely follow Drobac et al.
(2014) but path condensation presented in Section
3.3 represents new work.

In the lexc formalism, lexicons are formulated
as right branching regular grammars of morpheme
continuation classes as demonstrated in Figure 1.
Each path through the grammar defines one word
form and its analysis.
lexc lexicons are compiled into finite-state

transducers, which accept exactly the set of cor-
respondences between word forms (e.g. cats)
and analyses (cat+N+Pl) defined by the regular
grammar using well known methods (Hopcroft et
al., 2006).

Our method is not based on transforming the
grammar into a finite-state machine directly. In-
stead we utilize so called lexicon joiners intro-

duced by (Lindén et al., 2009). Joiners are spe-
cialized labels (e.g. N and Deg) that are ap-
pended to each entry in the lexicon. They iden-
tify the sub-lexicon of the entry and its continua-
tion class. Together with a set of finite-state con-
straints, this completely encodes the structure of
the original grammar.

All regular expressions and regular rewrite rules
in this paper use Xerox xfst formalism.

3.1 Compiling lexicons using joiners
Compiling a lexicon using joiners starts with ap-
pending appropriate joiners to each lexicon en-
try. E.g. the entry cat+N:cat with con-
tinuation class Num in sub-lexicon N becomes
Ncat+NNum:NcatNum. We then
compile all the modified lexicon entries into one
trie T and form its Kleene closure T*.

The closure T* accepts arbitrary combinations
of morphs from the original lexicon. In order to
restrict it to valid combinations produced by the
original lexc lexicon, we

• append root and end joiners to T* and get a
language $Root$ T* $#$, and

• apply one finite-state constraint CJ for each
joiner J type, which requires that each
J has to occur next to another identical
joiner J. E.g.

CJ = NOJ* [J J NOJ*]*

where NOJ = [?* - J].

These constraints encode the structure of the
original lexicon. After composing the language
$Root$ T* $#$ and the joiner constraints, the
resulting lexicon transducer L accepts exactly the
word forms and analyses defined by the original
regular grammar, though interspersed with joiner
symbols. In a final processing state, the joiners
are removed and the lexicon is determinized and
minimized.

3.2 Hyperminimization using Flag Diacritics
When compiling lexicons using joiners, it is often
the case that the lexicon is small before the join-
ers are removed and the lexicon is determinized
and minimized but grows in size after this final
processing stage. This may seem surprising, as
the transducers essentially encode the same strings
notwithstanding joiner symbols. However, joiner

symbols seem to add useful structure into the lex-
icon which helps to maintain a smaller size.

By transforming each joiner J into a flag
diacritic @P.J.ON@1, we can maintain the use-
ful structure while at the same time allowing for
lookup of word forms and further processing such
as application of rules and minimization. Note,
that there is no actual flag diacritic functionality
involved apart from the fact that the symbols are
treated as labeled epsilon symbols. We use flag
diacritics instead of custom made labeled epsilon
symbols because flag diacritics are supported by a
number of different finite-state toolkits.

3.3 Path Condensation

Although using joiners results in a smaller lexicon,
it also slows down transducer lookup. Sometimes
the slowdown can be rather drastic, even around
70% (Drobac et al., 2014). Our initial experiments
showed that this happens mainly because of empty
lexicon entries, which can result in long sequences
of joiner symbols when chained together. During
regular compilation, the chains of joiners vanish
when all joiners are removed. In our case, how-
ever, the chains are unfortunately preserved.

In order to speed up lookup, we apply a final op-
timization stage before converting joiners into flag
diacritics. In this stage we apply a parallel rewrite
rule which transforms all sequences of joiner sym-
bols into a single joiner symbol, i.e. “condenses”
consecutive joiners into one joiner. Let JOINER
be the set of of joiner symbols [$J1$| ... |
JN], then the rule (in Xerox xfst notation) is

JOINER -> 0 || _ JOINER ;

The rule and its inverse are composed with the out-
put and input side of lexicon, respectively. Finally,
the lexicon is determinized and minimized.

It is easy to see that path condensation preserves
the original language encoded by the lexc lexi-
con disregarding joiner symbols.

4 Experiments

We performed experiments using three full scale
open-source morphological analyzers distributed
by the Giellatekno project2. We used the analyzers
for Finnish (fin), Greenlandic (kal) and Northern
Sami (sme) available from the Giellatakno repos-

1The flag diacritic @P.J.ON@ sets the value ON for fea-
ture J.

2http://giellatekno.uit.no/

itory3. For compilation we use the Helsinki Fi-
nite State Transducer (HFST) library and tools4

(Lindén et al., 2011).
We compile the morphological analyzers in

three different ways

• Basic compilation without joiner symbols.

• Compilation using hyper-minimization.

• Compilation using hyper-minimization and
path condensation.

For each compilation method, we report results
on

• Compilation time.

• Size of the final morphological analyzer.

• Lookup speed of the final morphological an-
alyzer.

Lookup speed is tested using continuous text
spanning tens of thousands of words for each lan-
guage. All experiments were performed on an In-
tel Core i5-4300U laptop with a dual core 1.90
GHz processor and 16 GB of RAM.

5 Results

The results of experiments are shown in Table 1.
Compilation time using hyper-minimization

and path condensation does not seem to be pro-
hibitive for any of the analyzers. In fact compila-
tion time for both Greenlandic and Northern Sami
is reduced by over 60% compared to compila-
tion without hyper-minimization. The compilation
time for Finnish, however, increases compared
with compilation without hyper-minimization.

Hyper-minimization together with path conden-
sation decreases the size of the Greenlandic lexi-
con by over 90% from 140 MB to 13 MB. The size
of the Northern Sami transducer also decreases by
approximately 7% but hyper-minimization does
not seem to have an appreciable effect on the
Finnish analyzer. These results are almost as good
as the results obtained by Drobac et al. (2014) who
report size reduction of 90% for Greenlandic, 17%
for Northern Sami and 6% for Finnish.

Lookup speeds for hyper-minimized transduc-
ers with path condensation are greatly improved

3svn co -r 109628
https://victorio.uit.no/langtech/trunk
main

4hfst.sf.net

to at least 77 % of the original lookup speed
from around 30 % of the original speed using
only hyper-minimization without path condensa-
tion. These are much better than the lookup
speeds reported by Drobac et al. (2014), where the
lookup speeds for hyper-minimized Finnish and
Nortern Sami dropped to below 40 % of the origi-
nal lookup speeds.

FINNISH

None H-M H-M + PC
Compile (min) 1 6 5
Size (MB) 18 17 18
Lookup (kw/s) 103 31 79
Speed of orig. 100% 30% 77%

GREENLANDIC

None H-M H-M + PC
Compile (min) 6 2 2
Size (MB) 140 12 13
Lookup (kw/s) 2 2 2
Speed of orig. 100% 100% 100%

NORTHERN SAMI

None H-M H-M + PC
Compile (min) 7 1 1
Size (MB) 14 13 13
Lookup (kw/s) 39 13 31
Speed of orig. 100% 33% 79%

Table 1: Results of experiments. The columns de-
note (1) compilation without hyper-minimization
(None), (2) with hyper-minimization (H-M) and
(3) hyper-minimization together with path con-
densation (H-M + PC). The rows denote (1) com-
pilation time, (2) fst binary size, (3) fst lookup
speed (as thousands of words per second) and (4)
lookup speed compared with the original compiled
transducer.

6 Discussion and Conclusions

Although comparison between our method and
(Drobac et al., 2014) is not entirely fair, because
our method is fully automatic, and their method
allows manual selection of joiner flags, it is clear
that our results are similar with regard to size of
the analyzers. Lookup speed, however, is greatly
improved because of path condensation.

Removal of some manually selected flag diacrit-
ics following Drobac et al. (2014) would probably

give us an even smaller binary size while main-
taining high lookup speed.

7 Acknowledgements

We want to thank the anonymous reviewers for
their useful comments and suggestions.

References
Andrew Badr, Viliam Geffert, and Ian Shipman. 2009.

Hyper-minimizing minimized deterministic finite
state automata. RAIRO-Theoretical Informatics and
Applications, 43(01):69–94.

Kenneth R Beesley and Lauri Karttunen. 2003. Fi-
nite state morphology, volume 18. CSLI publica-
tions Stanford.

Kenneth R Beesley. 1998. Constraining separated
morphotactic dependencies in finite-state grammars.
In Proceedings of the International Workshop on Fi-
nite State Methods in Natural Language Processing,
pages 118–127. Association for Computational Lin-
guistics.

Senka Drobac, Krister Lindén, Tommi A Pirinen,
and Miikka Silfverberg. 2014. Heuristic hyper-
minimization of finite state lexicons. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), Reyk-
javik, Iceland, May.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2006. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

John Hopcroft. 1971. An n log n algorithm for mini-
mizing states in a finite automaton. Technical report,
DTIC Document.

Tao Jiang and B. Ravikumar. 1993. Minimal nfa prob-
lems are hard. SIAM J. Comput., 22(6):1117–1141,
December.

Krister Lindén, Miikka Silfverberg, and Tommi Piri-
nen. 2009. Hfst tools for morphology an efficient
open-source package for construction of morpho-
logical analyzers. In Cerstin Mahlow and Michael
Piotrowski, editors, State of the Art in Computa-
tional Morphology, volume 41 of Communications
in Computer and Information Science, pages 28–47.
Springer Berlin Heidelberg.

Krister Lindén, Erik Axelson, Sam Hardwick,
Tommi A Pirinen, and Miikka Silfverberg. 2011.
HFSTFramework for Compiling and Applying Mor-
phologies. In Cerstin Mahlow and Michael Pi-
otrowski, editors, Systems and Frameworks for
Computational Morphology, volume 100 of Com-
munications in Computer and Information Science,
pages 67–85. Springer Berlin Heidelberg.

Andreas Maletti and Daniel Quernheim. 2011. Op-
timal hyper-minimization. Int. J. Found. Comput.
Sci., 22(8):1877–1891.

