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Abstract

We prove a Chomsky-Schiitzenberger rep-
resentation theorem for weighted multiple
context-free languages.

1 Introduction

Mildly context-sensitive languages receive much
attention in the natural language processing com-
munity (Kallmeyer, 2010). Many classes of mildly
context-sensitive languages are subsumed by the
multiple context-free languages, e.g. the languages
of head grammars, linear context-free rewriting
systems (Seki et al., 1991)), combinatory catego-
rial grammars (Vijay-Shanker et al., 1986; |Weir
and Joshi, 1988)), linear indexed grammars (Vijay+
Shanker, 1987)), minimalist grammars, (Michaelis|
2001a}; |[Michaelis, 2001b)), and finite-copying lexi-
cal functional grammars (Seki et al., 1993).

The Chomsky-Schiitzenberger (CS) represen-
tation for context-free languages (Chomsky and
Schiitzenberger, 1963} Prop. 2) has recently been
generalised to quantitative context-free languages
(Droste and Vogler, 2013) and to (unweighted)
multiple context-free languages (Yoshinaka et al.!
2010). In order to obtain a CS representation for
multiple context-free languages, |Yoshinaka et al|
(2010) introduce multiple Dyck languages.

We give a more algebraic definition of multi-
ple Dyck languages using congruence relations to-
gether with a decision algorithm for membership
that is strongly related to these congruence relations
(Sec.[3). We then provide a CS representation for
weighted multiple context-free languages (Sec. H).

2 Preliminaries

In this section we briefly recall formalisms used in
this paper and fix some notation.

We denote by N the set of natural numbers (in-
cluding zero). For every n € N we abbreviate
{1,...,n} by [n]. Let A be a set. The power set

of A is denoted by P(A). Let B be a finite set. A
partitioning of B is a set 3 C P(B) where the el-
ements of 3 are non-empty, pairwise disjoint, and
Upep b = B

Let S be a countable set (of sorts) and s € S.
An S-sorted set is a tuple (B, sort) where B is a
set and sort is a function from B to S. We denote
the preimage of s under sort by B and abbreviate
(B, sort) by B; sort will always be clear from the
context. An S-ranked set is an (S* x S)-sorted set.

Let A and B be sets. The set of functions from A
to B is denoted by BA. Let f and g be functions.
The domain and range of f are denoted by dom( f)
and rng( f), respectively. We denote the function
obtained by applying g after f by go f. Let F' be
a set of functions and B C (. dom(f). The
set {f(B) | f € F} C P(rng(f)) is denoted by
F(B). Let G and H be sets of functions. The set
{hog|he€ H,g € G} of functions is denoted by
HoG.

We use the notion of nondeterministic finite au-
tomata with extended transition function (short:
FSA) from Hopcroft and Ullman (1979, Sec. 2.3).

2.1 Weight algebras

A monoid is an algebra (A, -, 1) where - is associa-
tive and 1 is neutral with respect to -. A bimonoid
is an algebra (A, +,-,0,1) where (A, +,0) and
(A, -, 1) are monoids. We call a bimonoid strong
if (A, +,0) is commutative and for every a € A
we have 0 - @ = 0 = a - 0. Intuitively, a strong
bimonoid is a semiring without distributivity. A
strong bimonoid is called commutative if (A, -, 1)
is commutative. A commutative strong bimonoid
is complete if there is an infinitary sum operation
> that maps every indexed family of elements of
A to A, extends +, and satisfies infinitary asso-
ciativity and commutativity laws; cf. |Droste and
Vogler (2013| Sec. 2). For the rest of this paper
let (A, +,-,0,1), abbreviated by A, be a complete
commutative strong bimonoid.
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Example 1. We provide a list of complete com-

mutative strong bimonoids (cf. |[Droste et al. (2010,

Ex. 1)) some of which are relevant for natural lan-

guage processing:

e Any complete commutative semiring, e.g. the
Boolean semiring B = ({O, 1}V, A, 0, 1), the
probability semiring Pr = (Rzo, +,-,0, 1), the
Viterbi semiring ([0, 1], max, -, 0, 1), the tropi-
cal semiring (]R U {oo}, min, +, 0o, 0),

e any complete lattice,
o the tropical bimonoid
(R>p U {00}, +, min, 0, 00), and

e the algebra ([0, 1],4,-,0,1) with & being de-
fined for every a,b € [0, 1] as either a ® b =
a+b—a-bora®b=min{a+0b,1},

where R and R denote the set of reals and the set

of non-negative reals, respectively, and +, -, max,

min, A, V denote the usual operations. O

An A-weighted language (over A) is a func-
tion L: A* — A. The support of L, denoted
by supp(L), is {w € A* | L(w) # 0}. If
|supp(L)| < 1, we call L a monomial. We
write p.w for L if L(w) = p and for every
w' € A*\ {w} we have L(w') = 0.

2.2 Weighted string homomorphisms

Let A and I” be alphabets and g: A — A’ such
that g(d) is a monomial for every 6 € A. We
define g: A* — A" where for every k € N,
wi,...,wg € A, and u € I'"* we have

S Lot (w).

UL yee U €1 1=1
u=uq Uk

gwr - wp)(u) =

We call g an A-weighted (string) homomorphism.
An A-weighted homomorphism h: A* — A" is
alphabetic if there is a function h/: A — AV}
with b = I

Now assume that A = B and for every § € A we
have |supp(g(d))| = 1. Then g can be construed
as a function from A to I"™* and g can be construed
as a function from A* to I'*. In this case we call
g a (string) homomorphism. If moreover, g is a
function from A to I' U {e}, we call g alphabetic.

The sets of all A-weighted homomorphisms,
A-weighted alphabetic homomorphisms, homo-
morphisms, and alphabetic homomorphisms are
denoted by HOM(A), aHOM(.A), HOM, and
aHOM, respectively.

2.3 Weighted multiple context-free languages

We fix a set X = {xf | i,j € N} of variables.
Variables serve as placeholders for strings. The
set of string functions over A is the N-ranked
set F'o where for every ¢, s1,...,s5s,8 € N we
have that (Fa)(s,...s,,s) i the set of functions
f(A") 1 x-- - x (A*)% — (A*)? that are defined
by some equation of the form f(ml, . ,xg) =
(u1,...,us) where z; = (z},..., ;") for every
ie |0, Xy = {z] | i € [£],j € [s]}, and
U, ..., us € (AU Xyp)"

In this situation, we define the rank of f, de-
noted by rank(f), and the fan-out of f, denoted by
fan-out(f), as £ and s, respectively. The string
function f is called linear if in u; ---ug every
element of X; occurs at most once, f is called
non-deleting if in uy - - - us every element of Xy
occurs at least once, and f is called terminal-free
if ug,...,us € X}*. If f is non-deleting, it is
uniquely determined by the string [u1, ..., us]. We
may therefore write [u1, ..., us] for f.

Note that for every s’ € N* x N, the set of linear
terminal-free string functions of sort s’ is finite.

Definition 2. A multiple context-free gram-
mar (MCFG) is a tuple (N,A,I, P) where
N is a finite N-sorted set (non-terminals),
I C Nj (initial non-terminals), and P Cg,
{(A, f,A1---Ag) € N x Fa x N* | sort(f) =
(sort(Ay) - - -sort(Ay),sort(A)), f is linear, ¢ €
N} (productions). We construe P as an N-ranked
set where for every p = (A, f, A1 --- Ay) € P we
have sort(p) = sort(f). O

Let G = (N,A,I,P) be an MCFG and
w € A*. A production (A, f,A;---Ay) €
P is usually written as A — f(A,...,Ap);
it inherits rank and fan-out from f. Also,
rank(G) = max,cprank(p) and fan-out(G) =
max,¢ p fan-out(p). MCFGs of fan-out at most &
are called k-MCFGs. The productions of G form a
context-free grammar G’ with the elements of Fz
and ‘(’, ©)’, and ‘.’ as terminal symbols, N as the
set of non-terminals, and I as the set of initial non-
terminals. A word in the language of G’ is a term
over F'4 and can be evaluated to a word in A*. The
set of derivations of w in G, denoted by D¢ (w),
is the set of abstract syntax trees in G’ whose cor-
responding words are evaluated to w. The lan-
guage of G is L(G) = {w € A* | Dg(w) # 0}.
A language L is multiple context-free if there is
an MCFG G with L = L(G). The set of multi-
ple context-free languages (for which a k-MCFG



exists) is denoted by MCFL (k-MCFL, respec-
tively).

Let £ € N. The class k-MCFL is a substitution-
closed full abstract family of languages (Seki et
al., 1991, Thm. 3.9). In particular, k-MCFL is
closed under intersection with regular languages
and under homomorphisms.

Definition 3. An A-weighted MCFG is a tuple
(N,A,I, P,iu) where (N, A, I, P)is an MCFG
and p: P — A (weight function). O

Let G = (N,A,I,P,u) be an A-weighted
MCFG and w € A*. The set of derivations of w
in G is the set of derivations of w in (N, A, I, P).
G inherits fan-out from (N, A, I, P); A-weighted
MCEFGs of fan-out at most & are called A-weighted
k-MCFGs. We apply p to derivations by applying
it at every position (of the derivation) and then mul-
tiplying the resulting values (in any order, since -
1S commutative).

The A-weighted language induced by G is the
function [G]: A* — A where for every w € A*
we have [G](w) = > 4epw) #(d). Two (A-
weighted) MCFGs are equivalent if they induce
the same (A-weighted) language. An A-weighted
language L is multiple context-free and of fan-out
k if there is an A-weighted k-MCFG G such that

= [G]; k-MCFL(.A) denotes the set of multiple
context-free A-weighted languages of fan-out k.

Example 4. Consider the Pr-weighted MCFG
= ({S,A, B}, A, {S},{p1,-...ps5}, 1) where

= {a,b,c,d}, sort(S) = 1, sort(A) =
sort( ) = 2, and
— [z1agaia3) (A, B)  u(pr) =1
pa: A= [azy, caf](A) u(p2) =1/2
p3: B = [bry, dzi](B) pu(ps) =1/3
pa: A= [e,€]() p(ps) =1/2
ps: B — [e,¢€]() 1(ps) =2/3

We observe that supp([G]) {a™b™c™d" |
m,n € N} and for every m,n € N we have

[Gl(a™b"emd™) = p(p1) - (u(p2))™ - plpa) -
(1(p3))™ - pu(ps) = 1/(2™-3"F1). The only deriva-
tion of a?bc?d in G is shown in Fig. O

Non-deleting normal form An (A4-weighted)
MCEFG is called non-deleting if the string func-
tion in every production is linear and non-deleting.
Seki et al. (1991, Lem. 2.2) proved that for ev-
ery k-MCFG there is an equivalent non-deleting k-
MCFG. We generalise this to A-weighted MCFGs.

S — [zixdz22d)(A, B)
/ N
A — [az},cx?](A) B — [bri,dx?)(B)
| |
A — Jaxl, cx?](A) B — [g,¢]()
|
A = [g,¢]()

Figure 1: Only derivation of a?bc?d in G (Ex. .

Lemma 5. For every A-weighted k-MCFG there is
an equivalent non-deleting .A-weighted k-MCFG.

Proof. Let G = (N,A,I,P,jn). When exam-
ining the proof of Seki et al. (1991, Lem. 2.2),
we notice that only step 2 of Procedure 1 deals
with non-deletion. We construct N” and P’ from
(N, A, I, P) by step 2 of Procedure 1, but drop the
restriction that ¥ # [sort(A)][ Let g: P — P
assign to every p/ € P’ the production in G
it has been constructed from. Furthermore, let
I'={A[0] | A€ I}and ' = pog. Since the con-
struction preserves the structure of derivations, we
have for every w € A* that g gives rise to a bijec-
tion g between D¢ (w) and D¢ (w) with p/ = pog.
Hence [G] = [(N', A, I', P’, 1//)]). The fan-out is
not increased by this construction. |

3 Multiple Dyck languages

According to |[Kanazawa (2014, Sec. 1) there is
no definition of multiple Dyck languages using
congruence relations. We close this gap by giving
such a definition (Def. [7).

3.1 The definition

We recall the definition of multiple Dyck languages
(Yoshinaka et al., 2010, Def. 1): Let A be a finite
N-sorted set () be a bijection between A and
some alphabet A, k = maxge 4 sort(8), and 7 > k.
The multiple Dyck grammar with respect to A is
the k-MCFG Ga = ({A1,..., Ax}, A, {41}, P)
where A = {611 5l | 6 € A,i € [sort(d)]},
sort(A;) =i for every i € [k], and P is the small-
est set such that
(i) for every linear non-deletingE] terminal-free
string function f € (Fa) y with £ €

(81°++84,8

'This construction may therefore create productions of
fan-out 0.

’In [Yoshinaka et al. (2010), N-sorted sets are called in-
dexed sets and sort is denoted as dim.

3We add the restriction “non-deleting” in comparison to
the original definition since in|Yoshinaka et al. (2010, Proof
of Lem. 1) only non-deleting rules are used.



[r], s1,...,8,, s € [k] we have A; —
f(As, ..., Ag) € P,

(ii) for every 6 € A with sort s we have A, —
G150 slslge5)(A,) € P, and

(iii) for every s € [k] we have A, —
[ul,...,us](As) € P where u; €
{xi, z; o0 sl | € Al} for every
i€ ls].

The multiple Dyck language with respect to

A, denoted by mD(A), is L(Ga). We call

maxge A sort(d) the dimension of mD(A). The

set of multiple Dyck languages of dimension at

most k is denoted by k-mDYCK.

For the rest of this section let ' be an alphabet.
Also let X be a set (disjoint from X)) and U be a
bijection between X and X. Intuitively X and ¥
are sets of opening and closing parentheses and (-)
matches an opening to its closing parenthesis.

We define =y as the smallest congruence rela-
tion on the free monoid (X U X)* where for ev-
ery o € X the cancellation rule 06 =yx ¢ holds.
The Dyck language with respect to X', denoted by
D(X), is [e]=,. The set of Dyck languages is de-
noted by DYCK.

Example 6. Let &' = {(, (, [, [}. We abbreviate (,
{, [, and [ by ), ), ], and ], respectively. Then we
have for example [O)]()() == [[() == [] =5 ¢
and (D100 == (D10 == (D] #z & 2

Let 3 be a partitioning of . We define =5 o
as the smallest congruence relation on the free
monoid (X U X)* such that if vy -+~ v =g q €
with vy, ..., v, € D(X), then the cancellation rule

UQO1V101UL =+ OgUp0pUy =553 U * * * Uy

holds for every {o1,...,0¢} € P and uy,...,
ug € D(X). Intuitively, every element of P de-
notes a set of /inked opening parentheses, i.e. paren-
theses that must be consumed simultaneously by
Ez7m .

Definition 7. The congruence multiple Dyck lan-

guage with respect to X and ‘3, denoted by

mD¢(X,P), is [5];27‘13. O

Example 8. Let ¥ = {(, (, [, [} and B = {p1, p2}
where p; = {(, (} and p2 = {[, [}. We abbreviate
(,(, [, and [ by ), ), ], and ], respectively. Then
we have for example [()][()] =sp € since pp =
(LD eB 00 =opeanduy =u =uy =e
But [()]([]) Zxx € since when instantiating the
cancellation rule with any of the two elements of

P, we can not reduce [()]([]):

(i) If we choose {01,002} = {[, [} then we would
need to set u; = ( and ug =), but they are not
in D(X), also () Zxp €;

(i) If we choose {01, 02} = {(, (} then we would
need to set ug = [ and u; =], but they are not
in D(X), also [| Zxxp €.

Hence [O[0], () € mDc(2,%) and [O)]([]) ¢
mD.(X,B). U

Observation 9. From the definition of =y g
it is easy to see that for every wui,...,u; €
D(X) and vy,...,up € D(X) we have that
Uy U, v vy € mD(X,B) implies that
every permutation of uy, ..., ug, v1,...,Vp is in
mD¢(X,P). |

The dimension of mD.(X,B) is maxycp|p|.
The set of congruence multiple Dyck languages
(of at most dimension k) is denoted by mDY CK,
(k-mDYCK_, respectively).

Note that the dimension of B is 1 if and only
it P = {{o} | ¢ € X}. In this situation we
have =y = =y gy and therefore also D(Y) =
mD¢(X,B). Hence DYCK = 1-mDYCK..

Proposition 10. k-mDYCK C k-mDYCK_

Idea of the proof. We show the property (x) that
implies our claim. The “=-" we prove by induction
on the structure of derivations in G 4. For “<” we
construct derivations in G 4 by induction on the
number of applications of the cancellation rule.

Proof. Let mD € k-mDYCK. Then there is an
N-sorted set A such that mD = mD(A) and
k > maxgsea sort(5). We define ps = {67 | i €
[sort(d)]} for every 0 € A, X = [Jscq ps, and
B = {ps | 0 € A}. Clearly maxpeq|p| < k. Thus
mD(X,B) € k-mDYCK. Let Tup(Ga, A) de-
note the set of tuples generated in G o when starting
with non-terminal A where A is not necessarily ini-
tial. In the following we show that for every m €

[maxsec A sort(d)] and wy, . .., wy, € (XU X)*:
(w1, ...,wy) € Tup(Ga, Am)
< wi--wy € mD(X)P) (*)

AW,y ..., Wy € D(X) .

We show the “=" by induction on the struc-
ture of derivations in Ga: From the definitions
of Tup and Ga we have that (wy,...,wy,) €
Tup(G a, Ay,) implies that there are a rule A,,, —
f(Amy,...,Ap,) in Gao and a tuple u; =
(ul,...,u") € Tup(Ga, Ap,) for every i € [{]



such that f(i1,...,d;) = (wi,...,wy). By ap-
plying the induction hypothesis ¢ times, we also
have that u},...,u{",...,u},...,u)"* € D(X)
and uj - --uf™, .. up o uy € mD(X,B). W
distinguish three cases (each corresponding to one
type of rule in Ga):

(1) f is linear, non-deleting, and terminal-free.
Then we have for every ¢ € [m] that w; €
{ui, ..., uf™, ... u},...,u;""}* and there-
fore also w; € D(X). Furthermore, by ap-
plying Obs. [9] (¢ — 1) times, we have that
wy - Wiy € mD(X,B).

(i) f = [Malolt] ... stmlzmsiml); then ¢ = 1,
mi = m, and for every i € [m] we have
w; = 6uidl and since u} € D(E) also
w; € D(Z) Furthermore, wy---w,, =
Syl stmlynsltml € mD, (Z B) due
to the cancellation rule.

i) f = [w,...,uy] where for every i €
[m]: u; € {a:i, z; o0 s, | 0 €
Al}, then £ = 1, m; = m, and w; €
{u}, zlollgll sllstzl | 6 € Ar}. Since
=y is a congruence relation, we have that
wi, ..., wn, € D(X). By applying Obs.[9|m
times, we have that w; - - - w,, € mD.(X,P).

We show the “<" by induction on the number of
applications of the cancellation rule (including the
number of applications to reduce the word vy - - - vy
from the definition on the cancellation rule to €): If
the cancellation rule is applied zero times in order
to reduce wy - --w,, toethenwy = ... = w,, =

e. The rule A,, — [e,...,¢|() clearly derives

(w1, ..., wy). If the cancellation rule is applied

1 4+ 1 times in order to reduce w; - - - w,y, to € then

w1 - - - Wy, has the form ugoiviaiuy - - - opvpo Uy

for some uo, ...,us € D(X), v1,...,v0 € D(X),

and {o1,...,00} € P with v1-- vy =x g €.

Then we need to apply the cancellation rule at most

1 times to reduce vy - - - vy to €, hence, by induction

hypothesis, there is some d € D¢, that derives

(v1,...,vp). We use an appropriate rule p of type

(ii) such that p(d) derives (o1v107, ..., 00vi07).

Also, we need to apply the cancellation rule at

most ¢ times in order to reduce ug---uy to &,

hence, by induction hypothesis, there are deriva-
tions dy, ..., d, that derive tuples containing ex-

actly ug, ..., uy as components. Then there is a

rule p’ such that p'(p(d),d1,...,d,) € Dg, de-

rives the tuple (w1, ..., wn).

From with m = 1 and the fact “w; €

D (¥,B) implies w; € D(X)” we get that
De(E,9) = mD. n

Lemma 11. k-mDYCK. C k-MCFL

Proof idea. For any congruence multiple Dyck lan-
guage we construct a multiple Dyck grammar that
is equivalent up to a homomorphism. We then use
the closure of k-MCFL under homomorphisms.

Proof. Let L € k-mDYCK_.. Then there are an
alphabet X' and a partitioning B of X' such that
mD.(X,B) = L. Consider B as an N-sorted set
where the sort of an element is its cardinality. Then
A = {pf5 | p € P,i  [|p]}}. For every
p € P assume some fixed enumeration of the ele-
ments of p. We define a bijection g: AsXUux
such that every plil (for some p and 7) is assigned
the i-th element of p and g(p/)) = g(pli]). Then
g9(L(Gy)) = L, where Gy is the multiple Dyck
grammar with respect to 3. Since k-MCFLs are
closed under homomorphisms (Seki et al., 1991},
Thm. 3.9), L € k-MCFL[ [

Observation 12. Examining the definition of mul-
tiple Dyck grammars, we observe that some pro-
duction in item [(i1)| has fan-out k for at least one
0 € A. Then, using [Seki et al. (1991, Thm. 3.4),
we have for every k& > 1 that (k + 1)-mDYCK,_ \
k-MCFL # §. |

Proposition 13.
1-mDYCK, € 2-mDYCK, C ...

Proof. We get ‘C’ from the definition of
k-mDYCK, and ‘#’ from Obs. |

3.2 Membership in a congruence multiple
Dyck language

We provide a recursive algorithm (Alg.[I) to decide
whether a word w is in a given congruence multi-
ple Dyck language mD. (X, B). This amounts to
checking whether w =5 5 €, and it suffices to only
apply the cancellation rule from left to right.

Outline of Alg.[1] We check that w is in D(Y),
e.g. with the context-free grammar in (7.6) in|Sa}
lomaa (1973). If w is not in D (X)), it is also not in
mD¢(X, ) and we return 0. Otherwise, we split
w into shortest strings u1,...,uy € D(X) \ {¢}
such that w = uq - - - uy (in line 5) with the function
SPLIT. Then every u; (fori € [¢]) necessarily starts

“This construction shows that Def.is equivalent to Def. 1
in|Yoshinaka et al. (2010) modulo the application of g.



Algorithm 1 Membership in mD (X, )

Input: ¥,B,andw € (XU X)*
Output: 1if w € mD (X,B), 0 otherwise

1: function MAIN(Y, B3, w)

2. ifw¢ D(X) then

3 return 0

4:  endif

5t (u1,...,up) < SPLIT(X, w)

6 Rel < ()

7. fori € [(] do

8 let u} s.t. u; = oulo for some o € X
9: P« {p € dom(Rel) | p> o}

10: if P # () then

11: p < a minimal element of P

12: {I} «{I'| (p,I') € Rel}

13: Rel < Rel\ {(p,I)}

14: Rel <~ RelU{(p\ {o}, TU{i})}
15: else

16: P} {pePloeyp}

17: Rel < RelU{(p\ {c}, {i})}

18: end if

19:  end for
202 if U(@,J)GREZ J # [f] then

21: return 0

22:  endif

23: for {j1,...,jk} € {J | (0,J) € Rel} do
24: if MAIN(X, B, uj uj, -~ uf ) = 0 then
25: return 0

26: end if

27:  end for
28: return 1
29: end function

30: function SPLIT(X', w)

31 (uq,...,uy) < sequence of shortest words
ul,...,up € D(X)\ {e} withw = uy ---uy

32:  return (ug,...,up)

33: end function

with some symbol o € X and ends with 7; we use
this property on line 8. Note that SPLIT is bijec-
tive (the inverse function is concatenation). We
therefore say that w and (uq, ..., us) correspond
to each other, and for every operation on either
of them there is a corresponding operation on the
other. In particular the empty string corresponds to
the empty tuple.

In lines 6-19 we find sets of indices {41,. .., i}
such that the set of first symbols of u;, , ..., u;, has
cardinality k£ and is an element of 3. In order to
do this, we use a relation Rel C P(X) x P([(])

Table 1: Run of Alg. |l|on the word [()][()], cf.

Exs. @and@

line variable assignment

500 (w1, up) = (II()]]?[O])
18: i=1 Rel: ({[},{1})
18: i=2 Rel: (0,{1,2})

23: u/1 = ()7 U/Q = <>

5: (ul,...,'lM): (()7<>)
18: i=1 Rel: ({(}7{1})
18: =2 Rel: (0,{1,2})

23: uj=e, uf=¢

5: (ul,...

that is initially empty (line 6). We modify Rel
while traversing the list uq, . . . , uy from left to right.
Intuitively every element (I,7) € Rel stands for
an element p € ‘P where there is some previous
(with respect to the traversal of uy, ..., uy) u; that
starts with some symbol o € p; [ is the set of
elements of p we have not yet seen in some pre-
vious u;; and 7 is the set of indices ¢’ such that
some previous u; starts with an element of p. Rel
is constructed in lines 7-19. Since in every itera-
tion of the for-loop (lines 7-19) we add the cur-
rent ¢ to the set on the right side of some tuple
in Rel, we have that (., yepeJ = [¢]. Now
since the left side of a tuple in Rel signifies the
elements of p we have not yet seen, a tuple of
the form (0, {j1,...,jx}) € Rel means that we
can reduce the outer parentheses of w;,,...,u;,
with one step of the cancellation rule. In order to
reduce the whole string w, every element of [/]
has to appear in the right side of (exactly) one
tuple of the form (0, J) € Rel; we check this
property in line 20 and return O (line 21) if it is
not satisfied. If it is satisfied, we remove the first
and last symbol from all w;,, ..., u;, (obtaining
wj ... uj ) where (0, {j1,...,jr}) € Rel and
call MAIN recursively with the string u’; ---u,
(lines 23-27); this corresponds to the condition that
vy -+ v =5 € in the definition of =y .

Example 14 (Ex. [§| continued). Tab. [I] shows a
run of Alg.|ljon the word [[()][()] where we report
a subset of the variable assignment whenever we
reach the end of lines 5, 18, or 23. Different calls
to MAIN are separated by horizontal lines. O



Proof of termination for Alg.[I} If w is not in
D(X), the algorithm terminates at line 3. If w
is the empty string, then ¢ = 0, therefore the in-
dex set of the for-loop on lines 7-19 is empty, the
condition on line 20 is false, the index set of the
for-loop on lines 23-27 is empty, there are no re-
cursive calls to MAIN, and the algorithm terminates
on line 28. If w is in D(X') and w # ¢ then there
remain two possible situations:

(i) There is some i € [¢] that does not occur in
the right side of any tuple in Rel. Then the
algorithm terminates on line 21.

(ii) Every i € [¢] occurs in the right side of some
tuple in Rel. Then the combined length of the
third arguments of all recursive calls in the for-
loop on lines 23-27 is strictly smaller then |w|
since the outermost parentheses are removed
from uj,...,up. Since w has finitely many
symbols, this process can only be repeated
finitely often and the algorithm eventually ter-
minates. L

In light of the close link between Alg. [l|and the
relation =y ¢z we omit the proof of correctness.

4 CS theorem for weighted MCFLs

In this section we generalise the CS representation
of (unweighted) MCFLs (Yoshinaka et al., 2010,
Thm. 3) to the weighted case. We prove that an
A-weighted MCFL L can be decomposed into an
A-weighted alphabetic homomorphism h, a regu-
lar language R and a congruence multiple Dyck
language mD, such that L = h(R N mD.).

To show this, we use the proof idea from |Droste
and Vogler (2013). The outline of our proof is as
follows:

(i) We separate the weights from L (Lem.[I3)), ob-
taining an MCFL L’ and a weighted alphabetic
homomorphism.

(i) We use a corollary of the CS representation of
(unweighted) MCFLs (Cor.[I6) to obtain a CS
representation of L'.

(iii) Using the two previous points and an ob-
servation for the composition of weighted
and unweighted alphabetic homomorphisms
(Lem. [I8)), we obtain a CS representation of L
(Thm.[19).

Lemma 15.

k-MCFL(A) = aHOM(A) (k-MCFL)

Proof. (C) Let L € k-MCFL(A). By Lem.
there is a non-deleting A-weighted k-MCFG G =
(N, A, I, P,p) such that [G] = L. We define a
non-deleting k--MCFG G’ = (N, A’ I, P") where
A= AU{p"| p € P,i € [fan-out(p)]} and P’ is
the smallest set such that for every production p =
A — [ug,...,us](A1,..., Ap) € P there is a
production A — [puy, ..., p*us](A1,..., An) €
P’. We define an A-weighted alphabetic homo-
morphism h: (A')* — A4" where h(5) = 1.6
for every 6 € A, h(p') = pu(p).c for every
p € P, and h(p') = 1l.c for every p € P and
i € {2,...,fan-out(p)}. Since 1 is neutral in
multiplication, - is commutative, and G’ is non-
deleting, we have L = h(L(G")).

(D) Let L € k-MCFL and h: I'* — A4
an A-weighted alphabetic homomorphism. By
Seki et al. (1991, Lem. 2.2) there is a non-
deleting k-MCFG G = (N, I I,P) such that
L(G) = L. We construct the A-weighted k--MCFG
G' = (N, A, I, P, p) as follows: We extend h to
B (DU X)* — AAYX" where B/ (z) = la
for every x € X and h/(7y) = h(v) for every
~ € I'. We define P’ as the smallest set such that
forevery p = A — [uy,...,us)](A1,..., Ap) €

/

and (u},...,u)) € supp(h/(u1)) x

P(51~--sm,s) » Y

. x supp(h/(us)) we have that P’ contains the
production p' = A — [u],...,u}](A1,..., An)
and p(p') = B/ (uy)(uy) - ... - W' (us)(u}). Since -
is commutative and GG non-deleting, we have that
[6'] = h(IGD) f] u

By setting &£ = 1 in the above lemma we reobtain
the equivalence of 1 and 3 in Thm. 2 of [Droste and
Vogler (2013)) for complete commutative strong
bimonoids.

The following is a corollary to Yoshinaka et al|
(2010, Thm. 3) where the homomorphism is re-
placed by an alphabetic homomorphism and the
multiple Dyck language is replaced by a congru-
ence multiple Dyck language.

Corollary 16. Let L be a language and k£ € N.
Then the following are equivalent:

(i) L € k-MCFL

(ii) there are an alphabetic homomorphism h, a
regular language R, and a congruence multiple
Dyck language mD, of at most dimension k
with L = h(R N mD.).

>The same two constructions also work to show that
k-MCFL(A) = HOM(A) (k-MCFL).



5 [[PQ]]PQ [[a]] [[P27

start

1 1
[[pl]]pl [[m, EM] [[pi]]pi]][Pj

{]]P12 pl]’ ,02,1 P25 ﬂp271 P2

gl Al
O

bzl 200

1 2
o o)

SLalalelel

Al Ry

(1] (2] 0]

p3,1 p'i? Hp5,1 ,03}

HPLI[[PL

T 2,2 Lalal

(1]
Pl, [[91,

I:I

[[pg Al P3 1[o]s [[ps,

Figure 2: Automaton R obtained from G’ (cf. Exs. and by Lem. [15|and Cor.

Proof. The construction of h in [Yoshinaka et al|
(2010, Sec. 3.2) already satisfies the definition
of an alphabetic homomorphism. We may use
a congruence multiple Dyck language instead of
a multiple Dyck language since, for (i) = (ii),
k-mDYCK C k-mDYCK; and, for (ii)) = (i),
k-mDYCK, C k-MCFL and k-MCFL is closed
under intersection with regular languages and un-
der homomorphisms. ]

We give an example to show how Lem. [I5]and
Yoshinaka et al. (2010, Sec. 3.2) can be employed
to construct a regular language for the CS represen-
tation of weighted MCFLs. The regular language
is represented by an FSA.

Example 17 (Ex. 4| continued). We construct an
MCFG G’ from G as described in the proof of (C)
in Lem. [T5] Fig.[2]shows the FSA R obtained from
G’ by the construction in [Yoshinaka et al. (2010,
Sec. 3.2). An edge labelled with a set L of words
denotes a set of transitions each reading a word in
L. Note that the language of R is not finite. O

Lemma 18.

aHOM(A) o aHOM = cHOM(A)

Proof. (C) Let hy: A* — A" € aHOM(A)
and hy: X* — A* € oHOM. By the defini-
tions of «HOM(.A) and «HOM there must exist
Ry: A — APV} and BY: X — AU {e} such
that E = hy and @ = hg. Since hy(rng(hl)) C
ATVEe} there is some h € aHOM(A) such that
h = hy o ha; hence hy o hy € aHOM(A).

(D) Follows from the fact that « HOM contains
the identity. n

Theorem 19. Let L be an A-weighted language
and k£ € N. The following are equivalent:

(i) L € k-MCFL(A)

(ii) there are an A-weighted alphabetic homomor-
phism h, a regular language R, and a congru-
ence multiple Dyck language mD. of dimen-
sion at most k with L = h(R N mD.).

Proof. For (i) = (ii): There are some L' €
k-MCFL, h,h; € aHOM(A), ha € aHOM,
mD. € k-mDYCK_, and R € REG such that

L =hy(L) (by Lem.[T5))
= hi(h2(RNmD,)) (by Cor. [16)
= h(RN mD,) (by Lem.[18))

For (ii) = (i): We use Lems. [[T]and[13] and the
closure of k-MCFG under intersection with regular
languages and application of homomorphisms. W

5 Conclusion and outlook

We defined multiple Dyck languages using con-
gruence relations (Def. [7), gave an algorithm to
decide whether a word is in a given multiple Dyck
language (Alg. [I), and established that multiple
Dyck languages with increasing maximal dimen-
sion form a hierarchy (Prop. [13).

We obtained a weighted version of the CS rep-
resentation of MCFLs for complete commutative
strong bimonoids (Thm. [I9) by separating the
weights from the weighted MCFG and using | Yoshit
naka et al. (2010, Thm. 3) for the unweighted part.

Thm. [I9 may be used to develop a parsing algo-
rithm for weighted multiple context-free grammars
in the spirit of [Hulden (2011)).
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A Supplemental definitions

Let G be an MCFG and A a non-terminal in G.

A subderivation in G is a derivation in the un-
derlying context-free grammar of G that does not
necessarily start with an initial non-terminal.

The set of subderivations in G from A, denoted
by D¢(A), is the set of subderivations in G that
start with the non-terminal A.

B Supplementals to the proof of Lem.

Observation 20. g, obtained by position-wise ap-
plication of g, is a tree homomorphism. |

Claim 21. g is a bijection.

Proof. We show that g is bijective by induction on
the structure of subderivations:

Induction hypothesis: For every A € N and
v € M(A): g is a bijection between D¢ (A[¥])
and Dg(A).

Induction step: Let ¥ € M(A) and
d = p(dy,...,d;) € Dg(A) with d; €
Dg(A1),...,d,, € Dg(Ag). The construction
defines V3 € M(Ay),...,¥, € M(Ag) and a
production p’ which is unique for every p and
¥. By the induction hypothesis, we know that
there are derivations d, . . ., dj. which are unique
for (d1,¥1), ..., (dk, ¥), respectively. Therefore,
d = p(dj,...,d}) is unique for d and ¥. Hence
for every ¥: g induces a bijection on D¢ (A[¥])
and D¢ (A). By construction, all elements of I’
have the form A[()] for some A € I; hence for
every element of Dj, we set ¥ = () and by the
induction hypothesis we obtain CI. 21] [ |

Claim 22. i/ = poyg

Proof. Since g is a tree homomorphism (cf.
Obs. 20), it preserves the tree structure. By the
definition of 1/ we obtain Cl. n

C Supplementals to the proof of Lem. [I1]
Claim 23. ¢(L(Gy)) = L.

Proof. Let Tup,(Gsp) be the set of tuples that are
obtained by interpreting the terms corresponding
to every subderivation in Gy and then applying
g to every component. We show the following

equivalence by induction:

w € mD(P)
— V¢ e N, ug,.. .,we € D(X)

with w = upwiuy - - - Wy :

-, Up, W1, -

(u()ywlaula e 7w£7u@) S Tupg(Gm>

(IH)
Note that in the following the indices in p =

{o1,...,0¢} are chosen such that for every i €
[4]: g(p") = 0;. We derive

w € mD(P)
<Vl eNug,...,upv1,...,00 € D(X),
p={o1,...,00} €P with

W = UQT1V101U] * * - OpUp0ly:
w1y -+ - veuy € mD(P)
(by def. of mD(R))
<~ VY € N,ug,.. v € D(X),
p={o1,...,00} € P with
W = UQO1VI01U] * * * OgUgOgUp

-, Ug, V1, - -

(u(]vvlvulv e ,UZ,U@) € Tupg(Gm)
(by (TH))
=Yl eNug,...,up,v1,...,0p € D(E),
p= {0'1,...,0'4} € P with

W = UGO1V101UT - " OpUpOpUy -
(uo, 0101071, U1, - - ., 0veTg, ug) € Tup, (Gp)

(by def. of G)

<~ ¥ € N,ug,..
with

..,ngD(Z)

W = UgWiuy - - - Wyly :

-, Ug, W1, -

(u(Ja w1, Ug, - - -, W, Ug) € Tng(G‘.B)

(using permuting productions in Gi)
Cl. 23 follows by instantiating for ¢ = 0
and discovering that {t | (t) € Tup,(Gyp)} =
9(L(Gp))- u

D Supplementals to Alg.

Alg.[2]implements SPLIT from Alg. [I] (lines 30-33)
in an explicit manner.

For this purpose we define a data structure push-
down as a string over some alphabet and two func-
tions with side-effects on pushdowns. Let I" be an
alphabet, v € I', and pd C I'* be a pushdown.

e pop(pd) returns the left-most symbol of pd and
removes it from pd.

e push(pd,~) prepends v to pd.



Note that pop() is only a partial function, it is
undefined for pd = . But since the input word
w is in D(X), the expression on line 8 is always
defined.

Algorithm 2 Algorithm to split a word in D(X)
into shortest non-empty strings from D (X')
Input: alphabet X, w € D(X)

Output: sequence (uq, ..., uy) of shortest words
U, ... up € D(X)\ {e} withw = uy -~ uy

function SPLIT’ (X, w)

1:

2: pd<—¢

30 g+1

4: Uj < €

5: for0<i<|w|do

6 Uj < U;W;

7 if w; € X then

8 pop(pd)

9 if pd = ¢ then
10: jj+1
11: Uj <= €
12: end if
13: else
14: push(pd, w;)
15: end if

16:  end for
17 return (uq,..
18: end function

S U—1)

E Supplementals to the proof of Lem.

Claim 24. There are bijections f: Dg — D¢
and g: D(;/ — L(G,)

Proof. Let f be the function that is obtained by
applying the construction position-wise to a deriva-
tion in Dg. The function f only inserts symbols
into the functions in the productions; by removing
these elements, we get the original function, hence
f is bijective.

Let g: Dgr — L(G’) be the function that as-
signs for every derivation d € D¢ the word
in L(G") obtained by interpreting the term cor-
responding to d. For every w € L(G') we can
calculate the corresponding derivation (as a tree
with domain dom(¢) and labelling function t) us-
ing Alg.[3] hence g is bijective. ]

Claim 25. Forevery d € Dg and w € A*:

p(d) ifd € Dg(w),
0 otherwise.

(hogo f)(d)(w) = {

Algorithm 3 Algorithm to calculate for every word
in L(G") the corresponding derivation in D¢ (cf.
Cl.[24)

Input: w € (A')*

Output: ¢: N* — P

1: procedure MAIN(w € (A’)*)
2:  lett be the empty function
3: DESCEND(g, 1)

4 return ¢

5: end procedure

6: procedure DESCEND(m € N*, j € N)
7. p’u < w where p € P and u € (A')*
8

9

t(m) «p

L w+u
10: A= [ug,...,ug|(Ag, ..., Ag) < p
11:  for every symbol ¢’ in u; do
12: if 9 € A then
13: remove ¢’ from the beginning of w
14: else
15: 2!« &' for some i and j'
16: DESCEND(71, j')
17: end if
18:  end for

19: end procedure

Proof. Follows directly from the definitions of f,
g, and h. |

Claim 26. [G] = h(L(G")).
Proof. For every w € A*:
L(w) = [G](w)

= ZdeDG(w) p(d)
= 4epg(hogo f)(d)(w) (by CL[25)
= > deDeuer(a) h(u)(w)

u=(gof)(d)
= > uernc Muw)(w) (by CL.24)
= h(L(G"))(w) u
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