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Abstract

As dialog systems are getting more and more
ubiquitous, there is an increasing number of
application domains for natural language gen-
eration, and generation objectives are getting
more diverse (e.g., generating information-
ally dense vs. less complex utterances, as a
function of target user and usage situation).
Flexible generation is difficult and labour-
intensive with traditional template-based gen-
eration systems, while fully data-driven ap-
proaches may lead to less grammatical output,
particularly if the measures used for genera-
tion objectives are correlated with measures of
grammaticality. We here explore the combina-
tion of a data-driven approach with two very
simple automatic grammar induction methods,
basing its implementation on OpenCCG.

1 Introduction & Related Work

As language-operated interactive devices become in-
creasingly ubiquitous, there is an increasing need for
not only generating utterances that are comprehensible
and convey the intended meaning, but language that is
adaptive to different users as well as situations (see also
(Dethlefs, 2014) for an overview). Adaptation can hap-
pen at different levels, concerning content as well as
the formulation of generated sentences. We here focus
only on sentence formulation with the goal of being
able to automatically generate a large variety of dif-
ferent realisations of a given semantic representation.
Our study explores the combination of a data-driven
approach (Mairesse et al., 2010) with a grammar-based
approach using OpenCCG (White et al., 2007).
The use of templates is a common and well-performing
approach to natural language generation. Usually, ei-
ther the generation process consists of selecting ap-
propriate fillers for manually-built patterns, or the se-
mantic specification constrains the allowable surface
constructions so strongly that it effectively constitutes
a form of template as well. While such approaches
do guarantee grammaticality when templates (or gram-
mars, respectively) are well-designed, the amount of
formulation variation that can be generated based on
templates is either very low, or requires a huge manual

effort in template creation.
One relevant objective in adapting to a user and a sit-
uation is utterance complexity. (Demberg et al., 2011)
show that a dialog system that generates more concise
(but also more complex) utterances is preferred in a set-
ting where the user can fully concentrate on the inter-
action, while a system that generates less complex ut-
terances is preferred in a dual tasking setting while the
user has to steer a car (in a simulator) at the same time.
But how do we know which utterance is a “complex”
one? We can draw on psycholinguistic models of hu-
man sentence processing difficulty, such as dependency
locality theory (measuring dependency lengths within
the sentence; longer dependencies are more difficult),
information density (measuring surprisal – the amount
of information conveyed in a certain time unit; a higher
rate of information per time unit is more difficult) or
words-per-concept (how many words are used to con-
vey a concept).
In this paper, we focus on the measure of information
density, which uses the information-theoretic measure
of surprisal (Hale, 2001; Levy, 2008), as well as the
ratio of concepts per words. Our aim is to flexibly gen-
erate utterances that differ in information density, pro-
ducing high-density and low-density formulations for
the same underlying semantic representation. We eval-
uate different parametrisations of our approach by eval-
uating how many different high vs. low density utter-
ances can be generated. We additionally present judg-
ments from human evaluators rating both grammatical-
ity and meaningfulness.
We collect a small corpus of utterances from the target
domain and have them annotated by naive participants
with a very shallow notion of semantics, inspired by
(Mairesse et al., 2010). We then parse the sentences
and automatically create typed templates. During gen-
eration, these typed templates are then combined into
new unseen sentences, covering also previously unob-
served semantic combinations. Generation flexibility
in this approach depends entirely on the crowd-sourced
domain corpus. Our approach is related to (DeVault et
al., 2008), who automatically induce a tree-adjoining-
grammar for the Doctor Perez domain.
Our system is realised using OpenCCG. Currently, we
disallow cross composition and type raising and thus
employ Categorial Grammar as the underlying model.
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2 Data

Our data consists of 247 German-language utterances
informing about movie screenings. Each utterance may
inform about the aspects: movie title, director, actor,
genre, screen date and time, cinema, ticket price, and
the screened version. They were collected from na-
tive speakers of German via crowd-sourcing. For this,
we generated random semantic requests and elicited
realisations for them from native speakers. The ob-
tained surfaces were then annotated by different per-
sons. Annotation follows (Mairesse et al., 2010)’s se-
mantic stack scheme with a slight modification: instead
of allowing multiple instances of one semantic value
stack, we explicitly mark alternatives as shown.

Am 4. und am 5. Juli wird
07-05-2015

07-04-2015 alternative alternative
date date date date

inform inform inform inform inform

Titanic mit Leonardo DiCaprio gezeigt .
titanic Leonardo DiCaprio
title actor actor

inform inform inform inform

Figure 1: Data example from our domain.

We focus on the 117 unique requests with only posi-
tive (”inform”) stacks, disregarding negative (”reject”)
data for now. We have a total of 158 sentences real-
ising these 117 entries. We use 75% of our data as
training set and 25% as development set. As test set,
we construct 200 additional requests for which we do
not elicit example sentences. All sets contain roughly
equal amounts of each semantic aspect.

3 Our Approach

Based on the annotated sentences, our goal is to auto-
matically populate a lexicon of multi-word units such
that these units express a specific attribute from our
domain and can be combined with other lexicon en-
tries into a grammatically correct structure. We can-
not solely rely on shallow language models for gram-
maticality (as Mairesse does) as the language model
scores may be correlated with output from other ob-
jective measures. Specifically, one of our measures of
grammatical complexity, surprisal, is often estimated
based on n-gram models. Hence, when seeking to opti-
mise for short utterances with high surprisal, we might
end up only selecting highly ungrammatical utterances.
To avoid issues, we decided to explore whether
the data-driven approach can be combined with a
grammar-based approach. We automatically parse all
training data with a dependency parser (we use the
dependency parser from the mate-tools toolkit, based
on (Bohnet, 2010)), and build a categorial grammar
based on these parses. The resulting automatically-
learned domain-specific lexicon can then be used for
generation with OpenCCG. Our approach can hence be
thought of as a very naive way of grammar induction.
The dependency parse gives us information about

heads and their dependents, which allows us to con-
struct categorial grammar categories. However, we do
not know from the automatic parse which dependents
are arguments vs. modifiers. We here explore two sim-
ple approaches:
In the all-arguments (arg) style, we build a CG type
that produces exactly the encountered configuration
of immediate dominance and linear precedence. This
means that we assume all dependents to be arguments
of their governing head. We arbitrarily choose to con-
sume the arguments on the right of heads first, followed
by those on the left.
In the all-modifiers (mod) style, we treat all depen-
dents D as modifiers of their head H . Thus, we con-
struct a CG type modifying H’s type from each pair
(H, d) where d ∈ D.
For both flavours, we use part-of-speech tags as basic
types. For now, we forego any additional constraints.
Clearly this means that our grammars overgenerate.
Our goal here in this paper is to explore the extent to
which we are able to generate a large amount of lin-
guistic variants and the extent to which these are con-
sidered “good” by human comprehenders.
The modifier-only approach is less constrained than the
argument-only variant, which should lead to more va-
riety and lower grammaticality.

3.1 Request Semantics

In our approach, each word is considered to be either
semantically informative or semantically void. It is se-
mantically informative if it is a word or placeholder
for a certain information type. For instance, “ACTOR”
is the placeholder for an actor’s name, and the noun
“Originalversion” indicates that a movie is shown in its
original version. All other words are considered to be
semantically void and called padding.
In this setting, a request specifies only the semantic
stacks to be conveyed plus the amount of padding to
use. Note that using more padding biases the genera-
tion process towards more verbose formulations.
Additionally we assign a special semantic representa-
tion (”VERB”) to verb types. This is done to focus the
search on full sentences instead of accepting arbitrarily
complex noun phrases as complete answers to requests.

3.2 Sub-Tree Merging

As our requests are structure-agnostic, the search space
always contains all words potentially usable for a re-
quest irrespective of compatibility with each other.
In order to alleviate the arising problem of search space
size, we merge words that often co-occur into larger
entries in the lexicon. We do this as follows: ad-
jacent heads and dependents are merged if they do
not both contain semantic information. As an ex-
ample, a semantically informative adjective (such as
“untertitelte”=“subtitled”) cannot merge with a noun
head if the latter contains semantic information it-
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self (as “Abenteuerfilm”=“adventure movie” does).
However, if the head is semantically void (such as
“Film”=“movie”), the two words are combined into
one lexicon entry “untertitelte Film” with the seman-
tic assignment “version=subtitled”. This reduces the
search space and speeds up search greatly.
We implement two slightly different versions of this. In
the first, verbs are exempt from merging. In the second,
verbs may be merged with padding words, resulting in
longer “VERB” chunks. One may expect this to result
in slightly increased grammaticality.

4 Experimental Setup

We build four grammars from data: two argument-only
(A1, A2) and two modifier-only grammars (M1, M2).
In A1 and M1, verbs are exempt from merging, in A2
and M2, verbs are merged with surrounding padding
words as described in 3.2.

4.1 Manually-Constructed Grammar

Additionally, we construct a small grammar G manu-
ally. In G, we also do not make use of type raising nor
cross composition, but we employ features to enforce
both congruence on linguistic features and thematic fit
between e.g. verbs and nouns (e.g. only a price or a
movie may be assigned a cost, but not a director). G
models the most common structures used in the original
data and contains most of the vocabulary used therein.

4.2 Search Timeout

We determine the search timeout to use in each genera-
tion request from the development set. Figure 2 shows
achieved development set coverages in dependency of
OpenCCG search timeouts. In this experiment, we use
a padding of 5, as this is the maximal padding encoun-
tered in data. Our search is thus calibrated on the most
complex utterance(s) in the data.
After roughly three hours, most of the grammars have
achieved saturation satisfactorily well. We set the time-
out to three and a half hours for our main experiments.
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Figure 2: Dev. set coverage vs. search timeout in hours.

4.3 Language Model for Perplexity Evaluation

We train a simple Kneser-Ney smoothed trigram on our
training data, which we use in order to pre-select can-
didates for further evaluation.

4.4 Main Generation Experiment

After training and timeout selection, we automatically
generated 200 semantic requests, each consisting of
2 to 8 semantic stacks, and generated realisations for
each semantic request by each of our grammars. We do
this six times in total, varying the number of padding
semantics P between 0 and 5.
We then select one short and one long sentence per se-
mantic request from each grammar’s output. We pick
the sentence with the lowest language model perplex-
ity from the 25% longest and 25% shortest sentences,
respectively, selecting 1540 sentences.

5 Results

5.1 Test Set Coverage

Table 1 below shows the number of test semantics that
each grammar is able to produce results for, grouped
by the padding they contain (cf. 4.4).
Every other row indicates cumulative coverages, i.e.,
the number of covered semantics when using up to that
many padding words, giving an impression of the cov-
erage increments when using more padding words.

P 0 1 2 3 4 5
A1 89% 0% 84% 71% 51% 18%∑

A1 90% 90% 90% 90% 90% 90%
A2 89% 0% 78% 52% 26% 12%∑

A2 89% 89% 89% 89% 89% 89%
M1 44% 13% 73% 67% 52% 14%∑

M1 44% 57% 76% 77% 79% 79%
M2 44% 14% 77% 75% 68% 78%∑

M2 44% 58% 78% 79% 81% 81%
G 11% 25% 45% 44% 44% 44%∑

G 11% 36% 45% 45% 45% 45%

Table 1: Test set coverage depending on request
padding amount P. A1: arg/POS/verbmerge, A2:
arg/POS/fullmerge, M1, M2: mod grammars. G:
manually-created CCG. Coverages listed with padding
= P and padding ≤ P (

∑
). Best indiv. cov. in bold.

The argument-only grammars achieve highest over-
all coverage, while the manual grammar achieves the
worst coverage. In the arg grammars, using more
padding deteriorates coverage. This is likely due to
search space size increasing. The mod grammars fail
to piece together short sentences.

5.2 Grammar Evaluation

In Table 2 we report language model perplexities (PP),
parse scores from Stanford Parser, percentages of se-
lected sentences parseable by the German Grammar
HPSG, and average human ratings (1=worst, 5=best)
of grammaticality and meaningfulness. Annotators
agreed exactly in 44%, and differed by no more than
1 in 75.8% of cases. PCFG scores are inconclusive.
G performs best except for in perplexity, which we be-
lieve is due to G overrepresenting unusual formulations

107



misc grammat. meaning.
PP PCFG HP mean std mean std

A1 12.69 -113.57 0.36 3.62 1.24 3.52 1.38
A2 15.00 -128.11 0.45 3.14 1.38 3.11 1.48
M1 19.57 -111.74 0.07 1.97 0.94 2.04 1.03
M2 25.78 -113.99 0.02 1.80 0.91 2.03 1.13
G 51.79 -124.17 0.66 4.34 0.87 4.30 1.03

Table 2: Average values rounded to two decimal points.
”S”: avg. sentence surprisal. ”PCFG”: mean PCFG
parse score. ”HP”: fraction parseable with HPSG.

as well as the fact that correct use of long-range depen-
dencies leads to local increases in perplexity when the
trigram horizon fails to adequately capture the depen-
dency. G has consistently high output quality as evi-
denced by its small standard deviation of human rat-
ings. The modifier-only grammars consistently per-
form worst. Both their fraction of HPSG-parseable sen-
tences and human-perceived grammaticality are very
low. The argument-only grammars perform fairly well,
but do not quite reach up to the manually-written gram-
mar. Their high standard deviation points towards a
mix of high-quality and low-quality outputs. Notet that
higher HPSG parseability does not necessarily imply
higher human ratings. We believe this is due to correct,
but confusing or unnatural stacking of attributions.

5.3 Information Density Variation

We plot the distributions of trigram perplexity at sen-
tence level and those of the concepts-per-words ID
measure. On both metrics, G is the most variable gram-
mar. We positively note that A1 and A2’s CPW range
is comparable to that of G. The mod grammars con-
struct more verbose, less informative formulations as
evidenced by their lower CPW mean. Perplexity-wise,
the arg grammars and mod grammars are very simi-
lar. The mod grammars have slightly higher mean per-
plexities, which – as the CPW plot evidences – does
not necessarily indicate a lower ID variability. Rather,
we believe this to be a simple reflection of lower local
coherence which also diminishes the mod grammars’
human ratings. G’s extreme perplexity range can be
explained by a tendency to overrepresent unlikely for-
mulations. Given the human ratings of the grammars,
we interpret the discrepancy between the arg grammars
and G to point to a slightly narrower range of correct
formulations in A1 and A2.
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Figure 3: Perplexity distributions for grammars.
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Figure 4: Concepts-per-words distributions for gram-
mars.

6 Conclusion & Future Work

We have presented a simple, effective approach to
grammar-based generation using Categorial Grammar
as underlying formalism. The argument grammars in
particular are able to reproduce the hand-written gram-
mar’s range of output variability well while achieving
drastically better coverage.
Further work should concentrate on search efficiency,
improving the quality of output, and further broaden-
ing the coverage of the induced grammars. The first
point might be addressed by applying search heuristics
which e.g. include the compatibility of elements with
each other. We expect coverage, correctness, and vari-
ability to greatly benefit from constructing both argu-
ment and modifier types within the same grammar.
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