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Abstract

We present a method for automati-
cally generating descriptions of biological
events encoded in the KB BIO 101 Knowl-
edge base. We evaluate our approach on
a corpus of 336 event descriptions, pro-
vide a qualitative and quantitative analysis
of the results obtained and discuss possible
directions for further work.

1 Introduction

While earlier work on data-to-text generation
heavily relied on handcrafted linguistic resources,
more recent data-driven approaches have focused
on learning a generation system from parallel cor-
pora of data and text. Thus, (Angeli et al., 2010;
Chen and Mooney, 2008; Wong and Mooney,
2007; Konstas and Lapata, 2012b; Konstas and
Lapata, 2012a) trained and developed data-to-text
generators on datasets from various domains in-
cluding the air travel domain (Dahl et al., 1994),
weather forecasts (Liang et al., 2009; Belz, 2008)
and sportscasting (Chen and Mooney, 2008). In
both cases, considerable time and expertise must
be spent on developing the required linguistic re-
sources. In the handcrafted, symbolic approach,
appropriate grammars and lexicons must be speci-
fied while in the parallel corpus based learning ap-
proach, an aligned data-text corpus must be built
for each new domain. Here, we explore an al-
ternative approach using non-parallel corpora for
surface realisation from knowledge bases that can
be used for any knowledge base for which there
exists large textual corpora.

A more specific, linguistic issue which has re-
ceived relatively little attention is the unsupervised
verbalisation of n-ary relations and the task of ap-
propriately mapping KB roles to syntactic func-
tions. In recent work on verbalising RDF triples,
relations are restricted to binary relations (called

“property” in the RDF language) and the issue is
therefore intrinsically simpler. In symbolic ap-
proaches dealing with n-ary relations, the map-
ping between syntactic and semantic arguments is
determined by the lexicon and must be manually
specified. In data-driven approaches, the mapping
is learned from the alignment between text and
data and is restricted by cases seen in the train-
ing data. Instead, we learn a probabilistic model
designed to select the most probable mapping. In
this way, we provide a domain independent, fully
automatic, means of verbalising n-ary relations.

The paper is structured as follows. In Section 2,
we discuss related work. In Section 3, we present
the method used to verbalise KB events and their
participants. In Section 4, we evaluate our ap-
proach on a corpus of 336 test cases, provide a
qualitative and quantitative analysis of the results
obtained and discuss possible directions for fur-
ther work. Section 5 concludes.

2 Related Work

There has been much research in recent years on
developing natural language generation systems
which support verbalisation from knowledge and
data bases.

Many of the existing KB Verbalising tools rely
on generating so-called Controlled Natural Lan-
guages (CNL) i.e., a language engineered to be
read and written almost like a natural language but
whose syntax and lexicon is restricted to prevent
ambiguity. For instance, the OWL verbaliser in-
tegrated in the Protégé tool is a CNL based gen-
eration tool, (Kaljurand and Fuchs, 2007) which
provides a verbalisation of every axiom present
in the ontology under consideration. Similarly,
(Wilcock, 2003) describes an ontology verbaliser
using XML-based generation. Finally, recent
work by the SWAT project1 has focused on pro-

1http://crc.open.ac.uk/Projects/SWAT
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ducing descriptions of ontologies that are both co-
herent and efficient (Williams and Power, 2010).
In these approaches, the mapping between rela-
tions and verbs is determined either manually or
through string matching and KB relations are as-
sumed to map to binary verbs.

More complex NLG systems have also been de-
veloped to generate text (rather than simple sen-
tences) from knowledge bases. Thus, the MI-
AKT project (Bontcheva and Wilks., 2004) and
the ONTOGENERATION project (Aguado et al.,
1998) use symbolic NLG techniques to produce
textual descriptions from some semantic informa-
tion contained in a knowledge base. Both systems
require some manual input (lexicons and domain
schemas). More sophisticated NLG systems such
as TAILOR (Paris, 1988), MIGRAINE (Mittal et
al., 1994), and STOP (Reiter et al., 2003) offer tai-
lored output based on user/patient models. While
offering more flexibility and expressiveness, these
systems are difficult to adapt by non-NLG experts
because they require the user to understand the
architecture of the NLG systems (Bontcheva and
Wilks., 2004). Similarly, the NaturalOWL system
(Galanis et al., 2009) has been proposed to gen-
erate fluent descriptions of museum exhibits from
an OWL ontology. These approaches however rely
on extensive manual annotation of the input data.

Related to the work discussed in this paper is
the task of learning subcategorization information
from textual corpora. Automatic methods for sub-
categorization frame acquisition have been pro-
posed from general text corpora, e.g., (Briscoe and
Carroll, 1997), (Korhonen, 2002), (Sarkar and Ze-
man, 2000) and specific biomedical domain cor-
pora as well (Rimell et al., 2013). Such works are
limited to the extraction of syntactic frames rep-
resenting subcategorization information. Instead,
we focus on relating the syntactic and semantic
frame and, in particular, on the linking between
syntactic and semantic arguments.

Another trend of work relevant to this paper is
generation from databases using parallel corpora
of data and text. (Angeli et al., 2010) train a se-
quence of discriminative models to predict data
selection, ordering and realisation. (Wong and
Mooney, 2007) uses techniques from statistical
machine translation to model the generation task
and (Konstas and Lapata, 2012b; Konstas and La-
pata, 2012a) learns a probabilistic Context-Free
Grammar modelling the structure of the database

and of the associated text. Various systems from
the KBGEN shared task (Banik et al., 2013) – (But-
ler et al., 2013), (Gyawali and Gardent, 2013) and
(Zarrieβ and Richardson, 2013) perform genera-
tion from the same input data source as ours’ and
use parallel text for supervision. Our approach dif-
fers from all these approaches in that it does not
require parallel text/data corpora. Also in contrast
to the template extraction approaches described in
(Kondadadi et al., 2013), (Ell and Harth, 2014)
and (Duma and Klein, 2013), we do not succeed in
directly matching the input data to surface text in
the sentences obtained from non-parallel biomed-
ical texts. Instead, we must extract the subcate-
gorization frame and learn the linking between se-
mantic and syntactic arguments.

3 Methodology

Our goal is to automatically generate natural lan-
guage verbalisations of the biological event de-
scriptions encoded in KB BIO 101 (Chaudhri et
al., 2013) whereby an event description is as-
sumed to consist of an event, its arguments and
the roles relating each argument to the event. In
the KB BIO 101 knowledge base, events are con-
cepts of type EVENT (e.g., RELEASE), arguments
are concepts of type ENTITY (e.g., GATED-CHANNEL,

VASCULAR-TISSUE, IRON) and roles are relations be-
tween events and entities (e.g., AGENT, PATIENT,

PATH, INSTRUMENT).
We propose a probabilistic method which ex-

tracts possible verbalisation frames from large bi-
ology specific domain corpora and uses probabili-
ties both to select an appropriate frame given an
event description and to determine the mapping
between syntactic and semantic arguments. That
is, probabilities are used to determine which event
argument fills which syntactic function (e.g., sub-
ject, object) in the produced verbalisation.

We start by giving a brief overview of the con-
tent and the structure of KB BIO 101(Section 3.1).
We then describe the steps involved in building our
generation system.

3.1 KB Bio 101

The foundational component of the KB is the
Component Library (CLIB), an upper ontology
which is linguistically motivated and designed to
support the representation of knowledge for au-
tomated reasoning (Gunning et al., 2010). CLIB
adopts four simple top level distinctions: (1) enti-
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SubClassOf ( : Hydrophobic−Compound : E n t i t y )
SubClassOf ( : Plasma−Membrane : E n t i t y )
SubClassOf ( : Block

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : Plasma−Membrane )
ObjectSomeValuesFrom ( : o b j e c t : Hydrophobic−Compound ) ) )

Figure 1: Example Event Representation in KB
BIO 101

ties (things that are); (2) events (things that hap-
pen); (3) relations (associations between things);
and (4) roles (ways in which entities participate in
events).

Figure 1 shows an example representation for
a blocking event between a plasma membrane
and hydrophobic compounds which could be ver-
balised as The plasma membrane blocks hydrophobic com-

pounds. In this representation, Block is a subclass
of the event class. Plasma-Menbrane and Hydrophobic-

Compound are subclasses of the entity class. The
Plasma-Menbrane and the Hydrophobic-Compound con-
cepts stand respectively in an instrument and in an
object role relation with the Block event.

KB BIO 101 is organized into a set of concept
maps, where each concept map corresponds to a
biological entity or process. It was encoded by
biology teachers and contains around 5,000 con-
cept maps. KB BIO 101 is available for download
for academic purposes in various formats includ-
ing OWL2 .

To test and evaluate our approach, we focus on
the subpart of KB BIO 101 isolated for the KBGEN

surface realisation shared task by (Banik et al.,
2013). In this dataset, content units were semi-
automatically selected from KB BIO 101 in such a
way that (i) the set of relations in each content unit
forms a connected graph; (ii) each content unit can
be verbalised by a single, possibly complex sen-
tence which is grammatical and meaningful and
(iii) the set of content units contain as many dif-
ferent relations and concepts of different semantic
types (events, entities, properties, etc) as possible.

That is, the KB content extracted for KBGEN iso-
late event descriptions which can be verbalised by
a single, coherent sentence. To evaluate the ability
of our generator to generate event descriptions, we
further process this dataset to produce all KB frag-
ments which represent a single event with roles to
entities only. The statistics for the resulting dataset
(dubbed KBGEN+) are shown in Table 1.

2http://www.ai.sri.com/halo/
halobook2010/exported-kb/biokb.html

Items Count
Total nb of Event Descriptions 336
Avg (min/max) nb of roles in
an Event Description 2.93/1.8
Total nb of events 126 (336)
Total nb of entities 271 (929)
Total nb of roles 14 (929)

Table 1: Test Set. The numbers in brackets indi-
cate the number of tokens in KBGEN+

3.2 Corpus Collection

We begin by gathering sentences from several
of the publicly available biomedical domain cor-
pora.3 This includes the BioCause (Mihil et al.,
2013), BioDef4, BioInfer (Pyysalo et al., 2007),
Grec (Thompson et al., 2009), Genia (Kim et al.,
2003) and PubMedCentral (PMC)5 corpus. We
also include the sentences available in annota-
tions of named concepts in the KB BIO 101 ontol-
ogy. This custom collection of sentences will be
the corpus upon which our learning approach will
build on. Table 2 lists the count of sentences avail-
able in each corpus and in total.

#Sentences
BioCause 3,187
BioDef 8,426
BioInfer 1,100
Genia 37,092,000
Grec 2,035
PMC 7,018,743
KBBio101 3,393
Total 44,128,884

Table 2: Corpus Size

3.3 Lexicon Creation

To identify corpus sentences which might contain
verbalisations of KBGEN+ events and entities,
we build a lexicon mapping events and enti-
ties contained in KBGEN+ to natural language
words or phrases using existing resources. First,
we take the lexicon provided by the KBGEN

3Ideally, since KB BIO 101 was developed based on a
textbook, we would use this textbook as a corpus. Unfortu-
nately, the textbook, previously licensed from Pearson, is no
longer available.

4Obtained by parsing the 〈Supplement〉 section of html
pages crawled from http://www.biology-online.
org/dictionary/

5ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
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challenge. The KBGEN lexicon is composed of
entries that provide inflected forms and nominal-
izations for the event variables and singular and
plural noun forms for the entity variables, such as :

Block, blocks, block, blocked, blocking

Earthworm, earthworm, earthworms

To this, we add the synset entries of Mesh6 and
the BioDef7 vocabularies containing the KBGEN+

events and entities . Some example synsets
obtained from Mesh and BioDef are shown below:

Block, prevent, stop

Neoplasm,Tumors,Neoplasia,Cancer

Finally, for generalisation purposes, we auto-
matically extract the direct parent and siblings of
the KBGEN+ events and entities in the KB BIO 101

ontology and add them as a lexical entries for the
corresponding KBGEN+ event/entity. For example,
for the KBGEN+ event “Block”, the direct parent
and siblings extracted from the KB BIO 101 are,
respectively:

make inaccessible

conceal, deactivate, obstruct

Our lexicon is then a merge of all entries ex-
tracted from either a lexicon or the ontology for
the KBGEN+ events and entities. In Table 3, we
present the size of lexicon available from each
source (Total Entries) and the count of KBGEN+

event and entity types (Intersecting Entries) for
which one or more entry was found in that source.
Table 4 shows the proportion of KBGEN+ event and
entity types for which a lexical entry was found
as well as the maximum, minimum and average
number of lexical items associated with event and
entities in the merged lexicon.

3.4 Frame Extraction

Events in KBGEN+ take an arbitrary number of par-
ticipants ranging from 1 to 8. Knowing the lexical-
isation of an event name is therefore not sufficient.
For each event lexicalisation, information about
syntactic subcategorisation and syntactic/semantic

6http://www.nlm.nih.gov/mesh/filelist.
html

7Obtained by parsing the entries in 〈Synonyms〉
section of html pages crawled from http://www.
biology-online.org/dictionary/

Total Entries Intersecting Entries
KBGen 469 397
Mesh 26795 65
BioDef 14934 99
KBBio101 6972 397

Table 3: Lexical Entries and Number of KBGEN+

event and entities for which one or more entry was
found (Intersecting Entries)

linking is also required. Consider for instance, the
following event representation:
SubClassOf ( : PC / EBP b e t a : E n t i t y )
SubClassOf ( : TNF−a c t i v a t i o n : E n t i t y )
SubClassOf ( : Myeloid−C e l l s : E n t i t y )
SubClassOf ( : Block

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : C / EBP b e t a )
ObjectSomeValuesFrom ( : o b j e c t : TNF−a c t i v a t i o n ) ) )
Objec tSomeValuesFrom ( : bas e : Myeloid−C e l l s ) ) )

Knowing that a possible lexicalisation of a Block

event is the finite verb form blocked is not sufficient
to produce an appropriate verbalisation of the KB
event e.g.,

(1) C/EBP beta blocked TNF activation in myeloid cells.

In addition, one must know that this verb (i)
takes a subject, an object and an optional prepo-
sitional argument introduced by a locative prepo-
sition (subcategorisation information) and (ii) that
the INSTRUMENT role is realised by the subject slot,
the OBJECT role by the DOBJ slot and the BASE role
by the PREP-LOC slot (syntax/semantics linking in-
formation). That is, we need to know, for each
KB event e and its associated roles (i.e., event-to-
entity relations), first, what are the syntactic argu-
ments of each possible lexicalisations of e and sec-
ond, for each possible lexicalisation, which role
maps to which syntactic function.

To address this issue, we extract syntactic
frames from our constructed corpus and use the
collected data to learn the mapping between KB
and syntactic arguments.

Frame extraction proceeds as follows. For each
event name in the KBGEN+event set, we look for
sentences in the corpus that mention this event
name or one of its several verbalisations available
in the merged lexicon (ALL in Table 4).

We then parse these sentences using the Stan-
ford dependency parser8 for collapsed dependency
structures and extract frames from the resulting

8http://nlp.stanford.edu/software/
lex-parser.shtml
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KBGen Mesh BioDef KBBio101 ALL Min/MAx/Avg
Event 100% 10.31% 25.39% 100% 100% 5/97/22
Entity 100% 19.18% 24.72% 100% 100% 3/91/16.18
All 100% 16.37% 24.93% 100% 100% 3/97/18.03

Table 4: Proportion of Event and Entity Names for which a Lexical Entry was found. Min, max and
average number of lexical items associated with event and entities

parse trees. A frame is a sequence of dependency
relations labelling the local subtree originating at
a node labelled with an event name (or one of its
variants). For instance, given the sentence and the
dependency tree shown in Figure 2, the extracted
frame for the event Block will be :

nsubj,VB,dobj

indicating that the verb form block requires a
subject and an object.

That is, a syntactic frame describes the argu-
ments required by the lexicalisations of an event
and the syntactic function they realise.

When extracting the frames, we only consider
a subset of the dependency relations produced
by the Stanford parser to avoid including in the
frame adjuncts such as temporal or spatial phrases
which are optional rather than required arguments.
Specifically, the dependency relations considered
for frame construction are:

agent, amod, dobj, nsubj, nsubjpass, prep across,

prep along, prep at, prep away from, prep down,

prep for, prep from, prep in, prep inside, prep into,

prep of, prep out of, prep through, prep to, prep toward,

prep towards, prep via, prep with, vmod creating,

vmod forming, vmod producing, vmod resulting,

vmod using, xcomp using, auxpass.9

A total of 718 distinct event frames were ob-
served whereby 97.63% of the KBGEN+events
were assigned at least one frame and each event
was assigned an average of 82.01 distinct frames.
Each event can be lexicalised by several natural
language words or phrases and each natural lan-
guage expressions may occur in several syntactic
environments.

9vmod creating, vmod forming, vmod producing,
vmod resulting, vmod using, xcomp using are not directly
given by the Stanford parser but reconstructed from a vmod
or an xcomp dependency “collapsed” with the lemmas
producing or using much in the same way as the prep P col-
lapsed dependency relation provided by the Stanford Parser.
These added dependencies are often used in biomedical text
to express e.g., RESULT or RAW-MATERIAL role relations.

3.5 Probabilistic Models
Given F a set of syntactic frames, E a set of
KB event names, D a set of syntactic dependency
names and R, a set of KB roles, we next describe
three probabilistic models that will be used to gen-
erate natural language sentences.

• The model P (f |e) with f ∈ F and e ∈
E, which encodes the probability of a frame
given an event.

• The model P (f |r) with f ∈ F and r ∈
R, which encodes the probability of a frame
given a role.

• The model P (d|r) with d ∈ D and r ∈ R,
which encodes the probability of a syntactic
dependency given a role.

We have chosen generative models for frames
and dependencies given events and roles, and not
the other way around, because such models intu-
itively match the generation process at test time.
Each of the three models P (f |e), P (f |r) and
P (d|r) is assumed multinomial with maximum
likelihood estimates determined by the labelled
data built as described in Algorithm 1. Intuitively,
Ce is the corpus consisting of all frames found
in the corpus to be associated with a lexicalisa-
tion of e. Similarly, Cr nd Cd gathers all pairs of
(frame,role) and (dependency relation, role) that
could be identified given the KBGEN+ KB, the cor-
pus described in Section 3.2 and the lexicon de-
scribed in Section 3.3. A Symmetric Dirichlet
prior with hyperparameter α = 0.1 is further used
in order to favor sparse distributions. Training thus
gives:

P (f |e) = counts ((f, e) ∈ Ce) + 0.1∑
f ′ (counts ((f ′, e) ∈ Ce) + 0.1)

This first model allows to choose a syntactic frame
that will be used to verbalize a given event.

For the second distribution:

P (f |r) = counts ((f, r) ∈ Cr) + 0.1∑
f ′ (counts ((f ′, r) ∈ Cr) + 0.1)
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New immunosuppressive drug pnu156804 blocks IL-2-dependent proliferation
JJ JJ NN NNS VBZ JJ JJ

AMOD

AMOD

NN NSUBJ

DOBJ

AMOD

Figure 2: Example Dependency Parse Tree

This second model also ranks the frames, but this
time based on the given set of roles.

The third model is trained in a similar way:

P (d|r) = counts ((d, r) ∈ Cd) + 0.1∑
d′ (counts ((d

′, r) ∈ Cd) + 0.1)

It is used to choose which dependency in f shall
represent the role r.

3.6 Surface Realisation

In our approach, surface realisation takes as in-
put an even description. To verbalize an input
event description containing an event e and n roles
r1. . . . . . rn, we first identify the event and the roles
present in the input. The arity of the event is then
defined as the count of distinct role types present
in the input (to favor aggregation, in case of re-
peating roles)10. Among all the frames seen for
this event during training, we select only those that
have the same arity (same number of syntactic de-
pendents) as the input event. All such frames are
candidate frames for generation.

We consider two alternative scoring functions
for choosing the n-best frames11. In the first case,
we select the frame which maximises the score
(M1):

P (f |e)×
n∏

i=1

P (f |ri) (M1)

To determine the mapping between roles and
syntactic dependencies, we then look for the best
permutation of the roles for every winning frame
f = (d1, · · · , dn):

(r̂f1 , . . . , r̂
f
n) = argmax

(r1,...,rn)∈P({r1,...,rn})

n∏

i=1

P (di|ri)

10Thus if the input event description contains e.g., 2 object
roles and an instrument role, its arity will be 2 rather than
3. This accounts for the fact that the two object roles will be
verbalised as a coordinated NP filling in a single dependency
function rather than two distinct syntactic arguments.

11n=5 in our experiments

where P({r1, . . . , rn}) is the set of all permuta-
tions of the roles12.

In the second model (M2), we first compute the
optimal mapping (r̂f1 , . . . , r̂

f
n) for every possible

frame and then use this information to select the
n-best frames for generation:

P (f |e)×
n∏

i=1

P (f |ri)×
n∏

i=1

P (di|r̂fi ) (M2)

Note that (M1) (and (M2)) can be viewed as a
product of experts, but with independently trained
experts and without any normalization factor. It is
thus not a probability, but this is fine because the
normalization term does not impact the choice of
the winning frame.

Both (M1) and (M2) alternatives output a win-
ning f̂ , i.e., a sequence of dependencies that shall
be used to generate the sentence, as well as their
mapping with roles (r̂f̂1 , . . . , r̂

f̂
n). Thus, genera-

tion boils down to filling every dependency slot
in sequence with its optional preposition (e.g., for
di = prep to or di = prep at) and the lexical en-
try of the entity bound to the corresponding role.
For repeating roles of the input, we aggregate their
bound entities via the conjunction “and” and fill
the corresponding dependency slot.

The results obtained by verbalising the n-best
frames given by models (M1 & M2) are separately
stored and we present their analysis in Section 4.

4 Results and Discussion

We evaluate our approach on the 336 event rep-
resentations included in the KBGEN+ dataset. For
each event representation, we generate the 5 best
natural language verbalisations using the method
described in the preceding section. We then evalu-
ate the results both qualitatively and quantitatively.

12Here, we assume the order of dependencies in f is fixed,
and we permute the roles; this is of course equivalent to per-
muting the dependencies with fixed roles sequences.
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Input KBGEN+

Lexicons Le for events and Lt for
entities as described in Section 3.3

Raw text corpus T with dependency
trees as described in Section 3.4

Output Corpus (multiset) Ce for model P (f |e)
Corpus (multiset) Cr for model P (f |r)
Corpus (multiset) Cd for model P (d|r)

1. For every event e ∈KBGEN+, let lex(e) be all
possible lexicalisations of e taken from Le:

2. For every lexicalisation l ∈ lex(e):

3. For every occurrence et ∈ T of l:

(a) Extract the frame f governed by et

(b) Add the observation f with label e in the
frame-event corpus:

Ce ← Ce ⊎ {{(f, e)}}

(c) For every entity wt ∈ Lt that is a depen-
dent of et with syntactic relation d, add
every role r associated with this entity
in KBGEN+ to both role corpora:

Cr ← Cr ⊎ {{(f, r)}}

Cd ← Cd ⊎ {{(d, r)}}

Algorithm 1: Preparation of the corpora used to
train our probabilistic models

4.1 Coverage

We first consider coverage i.e., the proportion of
input in the test set for which a verbalisation is
produced. In total, we generate output for 321
(95.53%) of the test data.

For 3 input cases involving two distinct event
names (PHOTORESPIRATION, UNEQUAL-SHARING),
there was no associated frame because none of the
lexicalisations of the event name could be found
in the corpus. Covering such cases would involve
a more sophisticated lexicalisation strategy for
instance, the strategy used in (Trevisan, 2010),
where names are tokenized and pos-tagged before
being mapped using hand-written rules to a
lexicalisation.

For the other 12 input cases, generation fails be-
cause no frame of matching arity could be found.
As discussed in Section 4.3 below, this is often due
to cases where a KB role (mostly the BASE role)

is verbalised as a modifier of an argument rather
than a verb argument. Other cases are cases where
the event is nominalised and there is no matching
frame for that nominalisation.

4.2 Accuracy

Because the generated verbalisations are not
learned from a parallel corpora, the generated sen-
tences are often very different from the reference
sentence. For instance, the generated sentence
may contain a verb while in the reference sen-
tence, the event is nominalised. Or the event might
be verbalised by a transitive verb in the generated
sentence but by a verb taking a prepositional ob-
ject in the reference sentence (Eg: A double bond

holds together an oxygen and a carbon vs. Carbon and oxy-

gen are held together by double bond). To automatically
assess the quality of the generated sentences, we
therefore do not use BLEU. Instead we measure
the accuracy of role mapping and we complement
this automatic metric with the human evaluation
described in the next section.

Role mapping is assessed as follows. For each
input in the test data, we record the mapping be-
ween the KB role of an argument in the event de-
scription and the syntactic dependency of the cor-
responding natural language argument in the gold
sentence. For instance, given the event descrip-
tion shown in Section 3.4 for Sentence 1 (repeated
below for convinience as Example 1), we record
the syntax/semantics mapping: INSTRUMENT:NSUBJ,

OBJECT:DOBJ, BASE:PREP-IN.

Example 1
SubClassOf ( : PC / EBP b e t a : E n t i t y )
SubClassOf ( : TNF−a c t i v a t i o n : E n t i t y )
SubClassOf ( : Myeloid−C e l l s : E n t i t y )
SubClassOf ( : Block

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : C / EBP b e t a )
ObjectSomeValuesFrom ( : o b j e c t : TNF−a c t i v a t i o n ) ) )
Objec tSomeValuesFrom ( : bas e : Myeloid−C e l l s ) ) )

C/EBP beta blocked TNF activation in myeloid cells.

Accuracy is then the proportion of generated
role:dependency mappings which are correct
i.e., which match the reference. Although this
does not address the fact that the generated and
the reference sentence may be very different, it
provides some indication of whether the gen-
erated mappings are plausible. We thus report
this accuracy for the 1-best and 5-best solutions
provided by our model, to partly account for
the variability in possible correct answers. We
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compare our results to two baselines. The first
baseline (BL-LING) is obtained using a default
role/dependency assignment which is manually
defined using linguistic introspection. The second
(BL-GOLD) is a strong, informed baseline which
has access to the frequency of the role/depen-
dency mapping in the gold corpus. That is,
this second baseline assigns to each role in the
input event description, the syntactic dependency
most frequently assigned to this role in the gold
corpus. The default mapping used for BL-GOLD
is as follows: toward/prep towards, site/prep in,

result/dobj, recipient/prep to, raw material/dobj,

path/prep through, origin/prep from, object/dobj, in-

strument/nsubj, donor/prep from, destination/prep into,

base/prep in, away-from/prep away from, agent/nsubj. The
manually defined mapping used for BL-LING
differs on three mappings namely raw material/prep-

from, instrument-with,destination-to.
On the 336 event descriptions (929 roles occur-

rences) contained in the test set, we obtain the fol-
lowing results:

Scoring 5-best acc 1-best acc
BL-Ling 42%
BL-GOLD 49%
M1 48% 30%
M2 49% 31%
M2-BL-LING 57% 43%

As expected, the difference between BL-LING
and BL-GOLD shows that using information from
the GOLD strongly improves accuracy.

While M1 and M2 do not improve on the base-
line, an important drawback of these baselines is
that they may map two or more roles in an event
description to the same dependency (e.g., RAW-

MATERIAL and RESULT to dobj). Worse, they may
map a role to a dependency which is absent from
the selected frame (if the dependency mapped onto
by a role in the input does not exist in that frame).
In contrast, the probabilistic approach is linguis-
tically more promising as it guarantees that each
role is mapped to a distinct dependency relation.
We therefore take advantage of both the linguisti-
cally inspired baseline (BL-LING) and the proba-
bilistic approach by combining both into a model
(M2-BL-LING) which simply replaces the map-
ping proposed by the M2 model by that proposed
by the BL-LING baseline whenever the proba-
bility of the M2 model is below a given thresh-
old13. Because it predicts role/dependency map-

13We have empirically chosen a threshold that retains 40%

pings that are consistent with the selected frames,
this new model is linguistically sound. And be-
cause it makes use of the strong prior information
contained in the BL-LING baseline, it has a good
accuracy.

4.3 Human Evaluation
Taking a sample of 264 inputs from the KBGEN+

dataset, we evaluate the mappings of roles to syn-
tax in the output. The sample contains inputs with
1 to 2 roles (40%), 3 roles (30%) and more than 3
roles (30%). For each sampled input, we consider
the 5 best outputs and manually grade the output
as follows:

1. Correct: both the syntax/semantic linking of
the arguments and the lexicalisation of the
event and of its arguments is correct.

2. Almost Corrrect: the lexicalisation of the
event and of its arguments is correct and the
linking of core semantic arguments is correct.
The core arguments are the most frequent
ones in the test data namely AGENT, BASE, OB-

JECT.

3. Incorrect: all other cases.

Three judges independently graded 264 inputs
using the above criteria. The inter-annotator
agreement, as measured with the Fleiss Kappa in
a preliminary experiment in these conditions, was
κ = 0.76 which is considered as “good agree-
ment” in the literature. 29% of the ouput were
found to be correct, 20% to be almost correct and
51% to be incorrect.

One main factor negatively affecting results is
the number of roles contained in an event descrip-
tion. Unsurprisingly, the greater the number of
roles the lower the accuracy. That is, for event
descriptions with 3 or less roles, the scores are
higher (40%, 23%, 37% respectively for correct,
almost correct and incorrect) as there are less pos-
sibilities to be considered. Another, related issue,
is data sparsity. Unsurprisingly, roles that are less
frequent often score lower (i.e., are more often in-
correctly mapped to syntax) than roles which oc-
cur more frequently. Thus, the three most frequent
roles (AGENT,OBJECT, BASE) have a 5-best role map-
ping accuracy that ranges from 43% to 77%, while
most other roles have much lower accuracy. These

of our model’s outputs; this is the only threshold value that
we have tried, and we have not tuned this threshold at all
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two issues suggest that results could be improved
by using either more data or a more sophisticated
smoothing or learning strategy. However linguis-
tic factors are also at play here.

First, some semantic roles are often verbalised
as verbs rather than thematic roles. For in-
stance, in Sentence (2), the event (INTRACELLULAR-

DIGESTION) is verbalised as a nominalisation and
the OBJECT role as a verb (produces). More gener-
ally, a role in the KB is not necessarily realised by
a thematic role.

(2) Intracellular digestion of polymers and
solid substances in the lysosome produces
monomers.

Second, in some cases, entities which are argu-
ments of the event in the input are verbalised as
prepositional modifiers of an argument of the verb
verbalising the event rather than as an argument of
the verb itself. This is frequently the case for the
BASE relation. For instance, Example (3) shows the
gold sentence for an input containing EUKARYOTIC-

CELL as a BASE argument. As can be seen, in this
case, the EUKARYOTIC-CELL entity is verbalised by a
prepositional phrase modifying an NP rather than
by an argument of the verb.

(3) Lysosomal enzymes digest nucleic acids and
proteins in the lysosome of eukaryotic cells.

5 Conclusion

We have presented an approach for verbalising bi-
ological event representations which differs from
previous work in that (i) it uses a non-parallel cor-
pora and (ii) it focuses on n-ary relations and on
the issue of how to automatically map natural lan-
guage and KB arguments. A first evaluation gives
encouraging results and identifies three main open
questions for further research. How best to deal
with data sparsity to account for event descriptions
involving a high number of roles or roles that are
infrequent? How to handle semantic roles that are
verbalised as modifiers rather than as syntactic ar-
guments? How to account for cases where KB
roles are verbalised by verbs rather than by syn-
tactic dependencies?
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