
Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), pages 1–8,
Brighton, September 2015. c©2015 Association for Computational Linguistics

A Simple Surface Realization Engine for Telugu

Sasi Raja Sekhar Dokkara, Suresh Verma Penumathsa

Dept. of Computer Science
Adikavi Nannayya University, India

 dsairajasekhar@gmail.com,vermaps@yahoo.com

Somayajulu G. Sripada
Dept. of Computing Science
University of Aberdeen, UK

 yaji.sripada@abdn.ac.uk

Abstract

Telugu is a Dravidian language with
nearly 85 million first language speakers.
In this paper we report a realization en-
gine for Telugu that automates the task of
building grammatically well-formed Tel-
ugu sentences from an input specification
consisting of lexicalized grammatical
constituents and associated features. Our
realization engine adapts the design ap-
proach of SimpleNLG family of surface
realizers.

1 Introduction

Telugu is a Dravidian language with nearly 85
million first language speakers. It is a morpho-
logically rich language (MRL) with a simple
syntax where the sentence constituents can be
ordered freely without impacting the primary
meaning of the sentence. In this paper we de-
scribe a surface realization engine for Telugu.
Surface realization is the final subtask of an NLG
pipeline (Reiter and Dale, 2000) that is responsi-
ble for mechanically applying all the linguistic
choices made by upstream subtasks (such as mi-
croplanning) to generate a grammatically valid
surface form. Our Telugu realization engine is
designed following the SimpleNLG (Gatt and
Reiter, 2009) approach which recently has been
used to build surface realizers for German (Boll-
mann, 2011), Filipino (Ethel Ong et al., 2011),
French (Vaudry and Lapalme, 2013) and Brazili-
an Portuguese (de Oliveira and Sripada, 2014).
Figure 1 shows an example input specification in
XML corresponding to the Telugu sentence (1).
vAlYlYu aMxamEna wotalo

neVmmaxigA naduswunnAru.
(They are walking slowly in a

beautiful garden.) (1)

<?xml version=”1.0”encoding=”UTF-
8”standalone=”no”>
<document>
<sentence type=” ” predicate-
type=”verbal” respect=”no”>
<nounphrase role=”subject”>
<head pos=”pronoun” gender=”human”
number=”plural” person=”third” case-
marker=” ” stem=”basic”>
vAdu</head>
</nounphrase>
<nounphrase role=”complement”>
<modifier pos=”adjective”
type=”descriptive” suffix=”aEna”>
aMxamu</modifier>
<head pos=”noun” gen-
der=”nonmasculine” number=”singular”
person=”third” casemarker=”lo”
stem=”basic”>
wota</head>
</nounphrase>
<verbphrase type=” ”>
<modifier pos=”adverb” suffix=”gA”>
neVmmaxi</modifier>
<head pos=”verb” tense-
mode=”presentparticiple”>
naducu</head>
</verbphrase>
</sentence>
</document>

Figure 1. XML Input Specification

2 Related Work

Several realizers are available for English and
other European languages (Gatt and Reiter, 2009;
Vaudry and Lapalme, 2013; Bollmann, 2011;
Elhadad and Robin, 1996). Some general purpose
realizers (as opposed to realizers built as part of
an MT system) have started appearing for Indian
languages as well. Smriti Singh et al. (2007) re-
port a Hindi realizer that includes functionality
for choosing post-position markers based on se-
mantic information in the input. This is in con-
trast to the realization engine reported in the cur-
rent paper which assumes that choices of constit-

1

uents, root words and grammatical features are all
preselected before realization engine is called.
There are no realization engines for Telugu to the
best of our knowledge. However, a rich body of
work exists for Telugu language processing in the
context of machine translation (MT). In this con-
text, earlier work reported Telugu morphological
processors that perform both analysis and genera-
tion (Badri et al., 2009; Rao and Mala, 2011;
Ganapathiraju and Levin, 2006).

2.1 The SimpleNLG Framework

A realization engine is an automaton that gener-
ates well-formed sentences according to a gram-
mar. Therefore, while building a realizer the
grammatical knowledge (syntactic and morpho-
logical) of the target language is an important
resource. Realizers are classified based on the
source of grammatical knowledge. There are real-
izers such as FUF/SURGE that employ grammat-
ical knowledge grounded in a linguistic theory
(Elhadad and Robin, 1996). There have also been
realizers that use statistical language models such
as Nitrogen (Knight and Hatzivassiloglou, 1995)
and Oxygen (Habash, 2000). While linguistic
theory based grammars are attractive, authoring
these grammars can be a significant endeavor
(Mann and Matthiessen, 1985). Besides, non-
linguists (most application developers) may find
working with such theory heavy realizers difficult
because of the initial steep learning curve. Simi-
larly building wide coverage statistical models of
language too is labor intensive requiring collec-
tion and analysis of large quantities of corpora. It
is this initial cost of building grammatical re-
sources (formal or statistical) that becomes a sig-
nificant barrier in building realization engines for
new languages. Therefore, it is necessary to adopt
grammar engineering strategies that have low
initial costs. The surface realizers belonging to
the SimpleNLG family incorporate grammatical
knowledge corresponding to only the most fre-
quently used phrases and clauses and therefore
involve low cost grammar engineering. The main
features of a realization engine following the
SimpleNLG framework are:

1. A wide coverage morphology module inde-

pendent of the syntax module
2. A light syntax module that offers functionality

to build frequently used phrases and clauses
without any commitment to a linguistic theo-
ry. The large uptake of the SimpleNLG real-
izer both in the academia and in the industry

shows that the light weight approach to syn-
tax is not a limitation.

3. Using ‘canned’ text elements to be directly
dropped into the generation process achiev-
ing wider syntax coverage without actually
extending the syntactic knowledge in the re-
alizer.

4. A rich set of lexical and grammatical features
that guide the morphological and syntactic
operations locally in the morphology and
syntax modules respectively. In addition, fea-
tures enforce agreement amongst sentence
constituents more globally at the sentence
level.

3 Telugu Realization Engine

The current work follows the SimpleNLG
framework. However, because of the known dif-
ferences between Telugu and English Sim-
pleNLG codebase could not be reused for build-
ing Telugu realizer. Instead our Telugu realizer
was built from scratch adapting several features
of the SimpleNLG framework for the context of
Telugu.

There are significant variations in spoken and
written usage of Telugu. There are also signifi-
cant dialectical variations, most prominent ones
correspond to the four regions of the state of An-
dhra Pradesh, India – Northern, Southern, East-
ern and Central (Brown, 1991). In addition, Tel-
ugu absorbed vocabulary (Telugised) from other
Indian languages such as Urdu and Hindi. As a
result, a design choice for Telugu realization en-
gine is to decide the specific variety of Telugu
whose grammar and vocabulary needs to be rep-
resented in the system. In our work, we use the
grammar of modern Telugu developed by (Krish-
namurti and Gwynn, 1985). We have decided to
include only a small lexicon in our realization
engine. Currently, it contains the words required
for the evaluation described in section 4. This is
because host NLG systems that use our engine
could use their own application specific lexicons.
More over modern Telugu has been absorbing
large amounts of English vocabulary particularly
in the fields of science and technology whose
morphology is unknown. Thus specialized lexi-
cons could be required to model the morphologi-
cal behavior of such vocabulary. In the rest of this
section we present the design of our Telugu real-
izer.
As stated in section 2.1, a critical step in building
a realization engine for a new language is to re-
view its grammatical knowledge to understand

2

the linguistic means offered by the language to
express meaning. We reviewed Telugu grammar
as presented in our chosen grammar reference by
Krishnamurti and Gwynn (1985). From a realizer
design perspective the following observations
proved useful:

1. Primary meaning in Telugu sentences is main-
ly expressed using inflected forms of content
words and case markers or postpositions than
by position of words/phrases in the sentence.
This means morpho-phonology plays bigger
role in sentence creation than syntax.

2. Because sentence constituents in Telugu can
be ordered freely without impacting the pri-
mary meaning of a sentence, sophisticated
grammar knowledge is not required to order
sentence level constituents. It is possible, for
instance, to order constituents of a declarative
sentence using a standard predefined se-
quence (e.g. Subject + Object + Verb).

3. Telugu, like many other Indian languages, is
not governed by a phrase structure grammar,
instead fits better into a Paninian Grammar
Formalism (Bharati et al., 1995) which uses
dependency grammar. This means, depend-
ency trees represent the structure of phrases
and sentences. At the sentence level verb
phrase is the head and all the other constitu-
ents have a dependency link to the head. At
the phrase level too, head-modifier depend-
ency structures are a better fit.

4. Agreement amongst sentence constituents can
get quite complicated in Telugu. Several
grammatical and semantic features are used
to define agreement rules. Well-formed Telu-
gu sentences are the result of applying
agreement rules at the sentence level on sen-
tence constituents constructed at the lower
level processes.

Based on the above observations we found that
the SimpleNLG framework with its features listed
in section 2.1 is a good fit for guiding the design
of our Telugu realization engine. Thus our reali-
zation engine is designed with a wide coverage
morphology module and a light-weight syntax
module where features play a major role in per-
forming sentence construction operations.

Having decided the SimpleNLG framework for
representing and operationalizing the grammati-
cal knowledge, the following design decisions

were made while building our Telugu realizer
(we believe that these decisions might drive de-
sign of realizers for any other Indian Language as
well):

1. Use wx-notation for representing Indian lan-
guage orthography (see section 3.1 for more
details)

2. Define the tag names and the feature names
used in the input XML file (example shown
in Figure 1) adapted from SimpleNLG and
(Krishnamurti and Gwynn, 1985) for specify-
ing input to the realization engine. It is hoped
that using English terminology for specifying
input to our Telugu realizer simplifies creat-
ing input by application developers who usu-
ally know English well and possess at least a
basic knowledge of English grammar. (see
section 3.2 for more details)

3. In order to offer flexibility to application de-
velopers our realization engine orders sen-
tence level constituents (except verb which is
always placed at the end) using the same or-
der in which they are specified in the input
XML file. This allows application developers
to control ordering based on discourse level
requirements such as focus.

4. The grammar terminology used in our engine
does not directly correspond to the Karaka re-
lations (Bharati et al., 1995) from the Panin-
ian framework because we use the grammar
terminology specified by Krishnamurti and
Gwynn (1985) which is lot closer to the ter-
minology used in SimpleNLG. We are cur-
rently investigating opportunities to align our
design lot closer to the Paninian framework.
We expect such approach to help us while ex-
tending our framework to generate other In-
dian languages as well.

3.1 WX-Notation

WX notation (See appendix B in Bharati et al,
1995) is a very popular transliteration scheme for
representing Indian languages in the ASCII char-
acter set. This scheme is widely used in Natural
Language Processing in India. In WX notation
the small case letters are used for un-aspirated
consonants and short vowels while the capital
case letters are used for aspirated consonants and
long vowels. The retroflexed voiced and voice-
less consonants are mapped to ‘t, T, d and D’.
The dentals are mapped to ‘w, W, x and X’.
Hence the name of the scheme “WX”, referring
to the idiosyncratic mapping.

3

3.2 The Input Specification Scheme

The input to the current work is a tree structure
specified in XML, an example is shown in Figure
1. The root node is the sentence and the nodes at
the next level are the constituent phrases that
have a role feature representing the grammatical
functions such as subject, verb and complement
performed by the phrase. Each of the lower level
nodes could in turn have their own head and
modifier children. Each node also can take attrib-
utes which represent grammatical or lexical fea-
tures such as number and tense. For example the
subject node in Figure 1 can be understood as
follows:

<nounphrase role=”subject”>
<head
pos=”pronoun”gender=”human”number=”p
lural”person=”third”casemarker=” ”
stem=”basic”>
vAdu</head>
</nounphrase>

This node represents the noun phrase that plays
the role of subject in the sentence. There is only
one feature, the head to the subject node whose
type is nominative. The lexical features of the
head “vAdu” are part-of-speech (pos) which is
pronoun, person which is third person, number
which is plural, gender which is human, and case
marker which is null.

3.3 System Architecture

The sentence construction for Telugu involves the
following three steps:

1. Construct word forms by applying morpho-
phonological rules selected based on features
associated with a word (word level morphol-
ogy)

2. Combine word forms to construct phrases us-
ing ‘sandhi’ (a morpho-phonological fusion
operation) if required (phrase building)

3. Apply sentence level agreement by applying
agreement rules selected based on relevant
features. Order sentence constituents follow-
ing a standard predefined sequence. (sentence
building)

Our system architecture is shown in Figure 2
which involves morphology engine, phrase build-
er and sentence builder corresponding to these
three steps. The rest of the section presents how

the example sentence (1) is generated from the
input specification in Figure 1.

Figure 2. System Architecture

3.4 Input Reader

The Input Reader is the module which acts as an
interface between the sentence builder and the
input. Currently the input reader accepts only our
XML input specification but in the future we
would like to extend it to accept other input spec-
ifications such as SSF (Bharati et al., 2007). This
module ensures that the rest of the engine re-
ceives input in the required form.

3.5 Sentence Builder

The Sentence Builder is the main module of the
current system which has a centralized control
over all the other modules. It performs four sub-
tasks:

1. Sentence Builder first checks for predefined
grammatical functions such as subject, object,
complement, and verb which are defined as
features of the respective phrases in the input.
It then calls the appropriate element builder
for each of these to create element objects
which store all the information extracted
from the XML node.

2. These element objects are then passed to ap-
propriate phrase builder to receive back a
string which is the phrase that is being con-
structed according to the requirements of the
input.

3. After receiving all the phrases from the appro-
priate phrase builders the Sentence Builder
applies the agreement rules. Since Telugu is
nominative-accusative language the verb
agrees with the argument in the nominative
case. Therefore the predicate inflects based
on the gender, person and number of the
noun in the nominative case. There are three
features at the sentence level namely type,
predicate-type, and respect. The feature type
refers to the type of the sentence. The current
work handles only simple sentences therefore

4

it is not set to any value. The feature predi-
cate-type can have any one of the three val-
ues namely verbal, nominative, and abstract.
The feature respect can have values yes or no.
The agreement also depends on the features
predicate-type, and respect.

4. Finally, the sentence builder orders the
phrases in the same order they are specified
in the input.

In the case of the example in Figure 1 the sen-
tence builder finds three grammatical functions -
one finite verb, one locative complement, and one
nominative subject. In the example input (1) the
values for the feature predicate-type is “verbal”
and for respect is “no”. The Sentence Builder
retrieves appropriate rule from an externally
stored agreement rule base. In the example input
(1) where predicate-type is set to verbal, the
number of the subject is plural and the gender is
human the Sentence Builder retrieves the appro-
priate suffix “nnAru”. This suffix is then agglu-
tinated to the verb “naduswu” which is returned
by the morphology engine to generate the final
verb form, “naduswunnAru” with the required
agreement with subject.

 “naduswu”+ “nnAru”---- “naduswunnAru”

After the construction of the sentence the Sen-
tence Builder passes it to the Output Generator
which prints the output.

3.6 Element Builder

The element builder of each grammatical function
checks for lower level functions like head and
modifier and calls the appropriate element builder
for the head and modifier which converts the lex-
icalized input into element objects with the
grammatical constituents as their instance varia-
bles and returns the element objects back to the
Sentence Builder. Our realizer creates four types
of element objects namely SOCElement, VAEl-
ement, AdjectiveElement, and AdverbElement.
The SOCElement represents the grammatical
functions subject, object and complement. The
subject in the example of (1) is “vAdu” for
which a SOCElement is created with the speci-
fied features. Similarly a SOCElement is created
for the complement “wota” and its modifier
“aMxamu” which is an AdjectiveElement. Final-
ly a VAElement is created for the verb “na-
ducu” and the modifier “neVmmaxi” which is
an AdverbElement.

3.7 Phrase Builder

Telugu sentences express most of the primary
meaning in terms of morphologically well-
formed phrases or word groups. In Telugu the
main and auxiliary verbs occur together as a sin-
gle word. Therefore their generation is done by
the morphology engine. Telugu sentences are
mainly made up of four types of phrases - Noun
Phrase, Verb Phrase, Adjective Phrase, and Ad-
verb Phrase. Noun phrases and verb phrases are
the main constituents in a sentence while the Ad-
jective Phrase and the Adverb Phrase only play
the role of a modifier in a noun or verb phrase.
There is one feature at the Noun Phrase level
“role” which specifies the role of the Noun
Phrase in the sentence. The phrase builder passes
the elements constructed by the element builder
to the morphology engine and gets back the re-
spective phrases with appropriately inflected
words. In the example input in (1), there are three
constituent phrases, viz, two noun phrases for
subject and complement and a verb phrase. One
of the noun phrases also contains an adjective
phrase which is an optional modifying element of
noun heads in head-modifier noun phrases. The
adjective phrase may be a single element or
sometimes composed of more than one element.
The verb phrase also contains an adverb phrase
which is generally considered as a modifier of the
verb. The phrase builder passes five objects i.e.,
two SOCElement objects, one AdjectiveElement
object, one VAElement object, and one Adver-
bElement object to the morphology engine and
gets back five inflected words which finally be-
come three phrases, viz, two noun phrases
“vAlYlYu”, “aMxamEna wotalo”, and one
verb phrase “neVmmaxigA naduswu”.

3.8 Morphology Engine

The morphology engine is the most important
module in the Telugu realization engine. It is re-
sponsible for the inflection and agglutination of
the words and phrases. The morphology engine
behaves differently for different words based on
their part of speech (pos). The morphology en-
gine takes the element object as the input, and
returns to the phrase builder the inflected or ag-
glutinated word forms based on the rules of the
language. In the current work morphology engine
is a rule based engine with the lexicon to account
for exceptions to the rules. The rules used by the
morphology engine are stored in external files to
allow changes to be made externally.

5

3.8.1 Noun

Noun is the head of the noun phrase. Telugu
nouns are divided into three classes namely (i)
proper nouns and common nouns, (ii) pronouns,
and (iii) special types of nouns (e.g. numerals)
(Krishnamurti and Gwynn, 1985). All nouns ex-
cept few special type nouns have gender, number,
and person. Noun morphology involves mainly
plural formation and case inflection. All the plu-
ral formation rules from sections 6.11 to 6.13 of
our grammar reference have been implemented in
our engine.

The head of the complement in the example (1)
has one noun “wotalo”. The word “wota”
along with its feature values can be written as
follows:

“wota”, noun, nonmasculine, sin-
gular, third, basic, “lo”---
wotalo

The formation of this word is very simple be-
cause the word “wota” in its singular form and
the case marker “lo” get agglutinated through a
sandhi (a morpho-phonological fusion operation)
formation as follows:

‘wota’+lo----- wotalo

3.8.2 Pronoun

Pronouns vary according to gender, number, and
person. There are three persons in Telugu namely
first, second, and third. The gender of the nouns
and pronouns in Telugu depend on the number.
The relation between the number and gender is
shown in table 1.

Number Gender
singular masculine, nonmasculine
plural human, nonhuman

 Table1: Relationship between number and
gender

Plural formation of pronouns is not rule based.
Therefore they are stored externally in the lexi-
con. The first person pronoun “nenu” has two
plural forms “memu” which is the exclusive plu-
ral form and “manamu” which is the inclusive
plural form. In the generation of the plural of the
first person a feature called “exclusive” has to be
specified with the value “yes”, or “no”. Along
with gender, number, and person there is one
more feature which is stem. The stem can be ei-

ther basic or oblique. The formation of the pro-
noun “vAlYlYu” in the example of (1) which is
the head of the subject along with its feature val-
ues can be written as follows:

 “vAdu”, pronoun, human, plural,
third, basic,“”-vAlYlYu

In this case the stem is basic. The gender of
the pronoun is human because the number is plu-
ral as mentioned in table 1. The word “vAlYlYu”
is retrieved from the lexicon as the plural for the
word “vAdu” and the feature values.

3.8.3 Adjective

Adjectives occur most often immediately before
the noun they qualify. The basic adjectives or the
adjectival roots which occur only as adjectives
are indeclinable (e.g. oka (one), ara (half)). Ad-
jectives can also be derived from other parts of
speech like verbs, adverbs, or nouns. The adjec-
tive “aMxamEna” in the example of (1) is a de-
rived adjective formed by adding the adjectival
suffix “aEna” to the noun “aMxamu”. The for-
mation of the word “aMxamEna” in the example
(1) along with its feature values can be written as
follows:

“aMxamu”, adjective, descrip-
tive,“aEna”--aMxamEna

The current work does not take into consideration
the type of an adjective and will be included in a
future version. The formation of this word is
again through a sandhi formation as follows:

aMxamu+aEna-------- aMxamEna

Here the sandhi formation eliminates the “u” in
the first word; “a” in the second word and the
word “aMxamEna” is formed.

3.8.4 Verb

Telugu verbs inflect to encode gender, number
and person suffixes of the subject along with
tense mode suffixes. As already mentioned gen-
der, number and person agreement is applied at
the sentence level. At the word level, verb is the
most difficult word to handle in Telugu because
of phonetic alterations applied to it before being
agglutinated with the tense-aspect-mode suffix
(TAM). Telugu verbs are classified into six clas-
ses (Krishnamurti, 1961). Our engine implements
all these classes and the phonetic alternations ap-

6

plicable to each of these classes are stored exter-
nally in a file.

The verb in the example of Figure 1 has one verb
“naducu” along with its feature values. The
formation of the verb “naduswu” can be written
as follows:

“naducu”,verb, present partici-
ple------naduswu

The word “naducu” belongs to class IIa, for
which the phonetic alteration is to substitute “cu”
with “s”, and therefore the word gets inflected as
follows:

naducu----------------nadus

 The tense mode suffix for present participle is
“wu”, and the word becomes “naduswu”. The
gender and number of the subject also play a role
in the formation of the verb which is discussed in
section 3.5.

3.8.5 Adverb

All adverbs fall into three semantic domains,
those denoting time, place and manner (Krishna-
murti and Gwynn 1985). The adverb
“neVmmaxigA” in the example (1) is a manner
adverb as it tells about the way they are walking
“neVmmaxigA naduswunnaru (walking slowly)”.
In Telugu manner adverbs are generally formed
by adding “gA” to adjectives and nouns. The
formation of the adverb “neVmmaxigA” in the
example (1) along with its feature values can be
written as follows:

“neVmmaxi”, adverb,“gA”-----------
---neVmmaxigA

The formation of this word is a simple sandhi
formation.

3.9 Output Generator

Output Generator is the module which actually
generates text in Telugu font. The Output genera-
tor receives the constructed sentence in WX-
notation and gives as output a sentence in Telugu
based on the Unicode Characters for Telugu.

4 Evaluation

The current work addresses the problem of gen-
erating syntactically and morphologically well-
formed sentences in Telugu from an input speci-

fication consisting of lexicalized grammatical
constituents and associated features. In order to
test the robustness of the realization engine as the
input to the realizer changes we initially ran the
engine in a batch mode to generate all possible
sentence variations given an input similar to the
one shown in Figure 1. In the batch mode the en-
gine uses the same input root words in a single
run of the engine, but uses different combinations
of values for the grammatical features such as
tense, aspect, mode, number and gender in each
new run. Although the batch run was originally
intended for software quality testing before con-
ducting evaluation studies, these tests showed
that certain grammatical feature combinations
might make the realization engine produce unac-
ceptable output. This is an expected outcome be-
cause our engine in the current state performs
very limited consistency checks on the input.

The purpose of our evaluation is to measure our
realizer’s coverage of the Telugu language. One
objective measure could be to measure the pro-
portion of sentences from a specific text source
(such as a Telugu newspaper) that our realizer
could generate. As a first step towards such an
objective evaluation, we first evaluate our realizer
using example sentences from our grammar ref-
erence. Although not ideal this evaluation helps
us to measure our progress and prepares us for
the objective evaluation. The individual chapters
and sections in the book by Krishnamurti and
Gwynn (1985) follow a standard structure where
every new concept of grammar is introduced
with the help of a list of example sentences that
illustrate the usage of that particular concept. We
used these sentences for our evaluation. Please
note that we collect sentences from all chapters.
This means our realizer is required to generate
for example verb forms used in example sen-
tences from other chapters in addition to those
from the chapter on verbs. A total of 738 sen-
tences were collected from chapter 6 to chapter
26, the main chapters which cover Telugu
grammar. Because the coverage of the current
system is limited, we don’t expect the system to
generate all these 738 sentences. Among these,
419/738 (57%) sentences were found to be with-
in the scope of our current realizer. Many of
these sentences are simple and short. For each of
the 419 selected sentences our realizer was run to
generate the 419 output sentences. The output
sentences matched the original sentences from
the book completely. This means at this stage we
can quantify the coverage of our realizer as 57%

7

(419/738) against our own grammar source. A
more objective measure of coverage will be es-
timated in the future.

Having built the functionality for the main sen-
tence construction tasks, we are now in a good
position to widen the coverage. Majority of the
remaining 319 sentences (=738-419) involve
verb forms such as participles and compound
verbs and medium to complex sentence types. As
stated above, we intend to use this evaluation to
drive our development. This means every time
we extend the coverage of the realizer we will
rerun the evaluation to quantify the extended
coverage of our realizer. The idea is not to
achieve 100% coverage. Our strategy has always
been to select each new sentence or phrase type
to be included in the realizer based on its utility
to express meanings in some of the popular NLG
application domains such as medicine, weather,
sports and finance.

5 Conclusion

In this paper, we described a surface realizer for
Telugu which was designed by adapting the
SimpleNLG framework for free word order lan-
guages. We intend to extend the current work
further as stated below:

1. Extend the coverage of our realizer and

perform another evaluation to characterize
the coverage of the realizer more objectively.

2. Create a generalized framework for free
word order language generation (specifically
for Indian languages). The existing frame-
work could be used to generate simple sen-
tences from other Indian languages by plug-
ging in the required morphology engine for
the new language.

Reference
Albert Gatt and Ehud Reiter “SimpleNLG: A realiza-

tion engine for practical applications”, Proceed-
ings of ENLG 2009, pages 90-93, 2009.

AksharaBharati, Vineet Chaitanya, Rajeev Sangal
“Natural Language Processing A Paninian Per-
spective” Prentice-Hall of India, New Delhi, 1995.

Akshara Bharati, Rajeev Sangal, Dipti M Sharma
“SSF: Shakti Standard Format Guide” LTRC, IIIT,
Hyderabad, Report No: TR-LTRC-33, 2007.

Benoit Lavoie and Owen Rambow “A Fast and Port-
able Realizer for Text Generation Systems” Pro-
ceedings of the Fifth Conference on Applied Natu-

ral Language Processing (ANLP97), Washington,
1997.

BH. Krishnamurti and J P L Gwynn, “A Grammar of
Modern Telugu” Oxford University Press, 1985.

BH. Krishnamurti “Telugu Verbal Bases a compara-
tive and Descriptive Study” University of Califor-
nia Press Berkley & Los Angeles, 1961.

Brown, C.P., “The Grammar of the Telugu Lan-
guage”. New Delhi: Laurier Books Ltd, 1991.

Elhadad M. & Robin J. (1996). “A reusable compre-
hensive syntactic realization component”. Paper
presented at Demonstrations and Posters of the
1996 International Workshop on Natural Language
Generation (INLG '96), Herstmonceux, England.

Ethel Ong, Stephanie Abella, Lawrence Santos, and
Dennis Tiu “A Simple Surface Realizer for Filipino
” 25th Pacific Asia Conference on Language, In-
formation and Computation, pages 51–59, 2011.

HabashN. (2000). OxyGen: “A Language Independ-
ent Linearization”Engine. Paper presented at AM-
TA. London: Ablex. Available as USC/ISI Re-
search Report RR-83-105.

Knight K. and V. Hatzivassiloglou. NITROGEN:
“Two-Level, Many-Paths Generation”. Proceed-
ings of the ACL-95 conference. Cambridge, MA
1995.

MadhaviGanapathiraju and Lori Levin “TelMore:
Morphological Generator for Telugu Nouns and
Verbs”, 2006.

Mann, W.C. and C.M.I.M. Matthiessen. Nigel: “A
Systemic Grammar for Text Generation”. In R.
Benson and J. Greaves (eds), Systemic perspec-
tives on Discourse: Proceedings of 9th Internation-
al Systemics workshop 1985.

Marcel Bollmann, “Adapting SimpleNLG to German”
Proceedings of the 13th European Workshop on
Natural Language Generation (ENLG), pages 133–
138, Nancy, France, September 2011.

Pierre-Luc Vaudry and Guy Lapalme “Adapting Sim-
pleNLG for bilingual English-French realisation”
Proceedings of the 14th European Workshop on
Natural Language Generation, pages 183–187,
Sofia, Bulgaria, August 8-9 2013.

Rodrigo de Oliveira, Somayajulu Sripada “Adapting
SimpleNLG for Brazilian Portuguese realisation”,
2014.

Smriti Singh, MrugankDalal, Vishal Vachhani, Push-
pak Bhattacharyya, Om P. Damani “Hindi Genera-
tion from Interlingua (UNL)” in Proceedings of
MT summit, 2007.

Sri BadriNarayanan.R, Saravanan.S, Soman K.P “Da-
ta Driven Suffix List and Concatenation Algorithm
for Telugu Morphological Generator” International
Journal of Engineering Science and Technology
(IJEST), 2009.

Uma MaheshwarRao, G. and Christopher Mala
“TELUGU WORD SYNTHESIZER” International
Telugu Internet Conference Proceedings, Milpitas,
California, USA 28th -30th September, 2011.

8

