The Cohort and Speechify Libraries for Rapid Construction of Speech
Enabled Applications for Android

Tejaswi Kasturi, Haojian Jin, Aasish Pappu, Sungjin Lee
Beverly Harrison, Ramana Murthy, Amanda Stent

Yahoo Labs
{kasturit,haojian, aasishkp, junion, rmurthy, stent}@yahoo-inc.com

Abstract

Despite the prevalence of libraries that
provide speech recognition and text-to-
speech synthesis “in the cloud”, it re-
mains difficult for developers to create
user-friendly, consistent spoken language
interfaces to their mobile applications. In
this paper, we present the Speechify / Co-
hort libraries for rapid speech enabling
of Android applications. The Speechify
library wraps several publicly available
speech recognition and synthesis APIs, in-
corporates state-of-the-art voice activity
detection and simple and flexible hybrid
speech recognition, and allows developers
to experiment with different modes of user
interaction. The Cohort library, built on
a stripped-down version of OpenDial, fa-
cilitates flexible interaction between and
within “Speechified” mobile applications.

1 Introduction

There are now numerous libraries that provide
access to cloud-based ASR and NLU for mo-
bile applications, including offerings from Mi-
crosoft!, AT&T? and Nuance’. However, speech
does not yet live up to its promise on mobile
devices. Partly, this is because developers who
are not expert speech technologists may make
suboptimal decisions regarding interaction man-
agement, choice of speech API, and consistency
across apps. Also, individual speech-enabled apps
are less user-friendly than an app ecosystem within
which a user may move fluidly from GUI interac-
tion to hands/eyes-free interaction and from one
app to another as interest and attention demand.
In this paper we present the Speechify/Cohort li-

"https://www.projectoxford.ai/
*http://developer.att.com/sdks-plugins
3http://dragonmobile.nuancemobiledeveloper.com

441

braries for development of speech-enabled An-
droid apps. Speechify enables rapid development
of usable speech-enabled applications; Cohort al-
lows the user of a suite of Speechified applica-
tions to be hands-free/eyes-free when they need it,
to use the rich multimodality of the applications
themselves when they want to, and to move natu-
rally and fluidly within and between applications.
The Speechify and Cohort libraries will be made
available on github®.

2 Speechify

The Speechify library is designed to solve the fol-
lowing problem: when an organization is speech
enabling a suite of mobile applications, it is easy
to end up with a poor user experience because of
inconsistencies in implementing features like:

e choice of speech API - Speechify wraps
several publicly available speech recogni-
tion and speech synthesis APIs, includ-
ing the Google Android® and Pocketsphinx
(Huggins-Daines et al., 2006) speech recog-
nition engines and the Google Android and
Ivona speech synthesizers.

mode of user interaction - Speechify sup-
ports push-to-talk, wait-to-talk, and always-
on speech recognition (see Section 2.1). In
addition, it can detect when the user is mov-
ing and switch to speech interaction.

hybrid speech recognition Speechify
includes a module for tunable hybrid
embedded/cloud-based speech recognition,
to permit the speed of embedded recog-
nition for command and control, with the
flexibility of cloud-based recognition for
open-vocabulary input (see Section 2.2).

“https://github.com/yahoo

Shttp://developer.android.com/reference/android/speech/

Proceedings of the SIGDIAL 2015 Conference, pages 441443,
Prague, Czech Republic, 2-4 September 2015. (©2015 Association for Computational Linguistics

e voice activity detection and acoustic echo
cancellation - Speechify includes a state-of-
the-art voice activity detection/acoustic echo
cancellation module, allowing more accurate
speech input in noisy environments (see Sec-
tion 2.3).

2.1 Interaction Management

Speechify is built for applications that may or may
not require hands-free interaction, depending on
the user’s other activities. Therefore, Speechify
supports three modes for interaction:

e push-to-talk - In this mode, when the user
taps any non-interactive part of the applica-
tion’s display, a microphone icon is presented
in a transparent overlay on the application,
and the user may speak. We do not use
a push-to-talk button because a user who is
driving, running or walking may not have at-
tention to spare to find a push-to-talk button.

e wait-to-talk - In this mode, when the applica-
tion is not itself talking, a microphone icon is
presented in a transparent overlay on the ap-
plication to indicate that the application is lis-
tening. In this mode, the user cannot “barge
in” on the system.

e always-on - In this mode, the application is
always listening, even when it is itself talk-
ing. We use state-of-the-art voice activity
detection and acoustic echo cancellation to
minimize recognition errors in this mode (see
Section 2.3).

Speechify supports one additional feature for in-
teraction management: it incorporates movement
detection, so that when the user starts moving it
can switch to always-on mode.

In addition to providing the developer with
flexibility to experiment with different modes for
speech interaction, the microphone overlay and
speech control menu provided by Speechify en-
able a consistent interface and interaction for the
user across multiple “Speechified” applications.

2.2 Hybrid Recognition

Cloud-based speech recognition offers unparal-
leled ease of access to high-accuracy, large vo-
cabulary speech recognition. However, even on
fast networks the latency introduced by cloud-
based recognition may negatively impact ease of

442

Recognizer WER | RTF
Google 18.16 | 0.67
PocketSphinx 38 0.15
Hybrid (threshold=47000) | 16.45 | 0.57

Table 1: Hybrid recognition can give simultaneous
improvements in recognition accuracy and recog-
nition speed

use for speech-enabled applications. For many ap-
plications, the majority of speech input is aimed
at command and control (requiring only a small,
fixed vocabulary), while a minority requires a very
large open vocabulary (especially for search). A
hybrid recognition approach may offer a good
trade-off of accuracy and speed.

There are three general approaches to hybrid
recognition: a voted combination of multiple rec-
ognizers run in parallel (Fiscus, 1997); lattice
rescoring of the outputs of multiple recognizers
(Richardson et al., 1995; Mangu et al., 1999); or
heuristic selection of recognition output. Only the
third is currently an on-device option. Speechify
supports tunable on-device heuristic selection be-
tween (a) the output of any wrapped cloud-based
recognizer, and (b) the output of PocketSphinx, an
embedded recognizer.

To assess the tradeoffs for hybrid recognition,
we ran an experiment using the Google Android
cloud-based recognizer and PocketSphinx. For
PocketSphinx we used an off-the-shelf acoustic
model trained on broadcast news speech, with a
grammar based on the prompts recorded by the
speakers. We used 38 prompts each recorded by
7 speakers (from both genders, and with a variety
of accents) in a noisy environment, for a total of
266 utterances. The results in terms of word error
rate (WER) and real time factor (RTF; processing
time / utterance length) are shown in Table 1. We
get a small decrease in real time factor, along with
a useful increase in recognition accuracy, through
the use of hybrid recognition.

2.3 Voice Activity Detection

In a noisy environment or when the phone is in
speaker mode, background noise or system speech
may cause high rates of recognition errors for
speech-enabled mobile apps. Speechify includes a
state-of-the-art, on-device module for voice activ-
ity detection and acoustic echo cancellation. The
module uses a three-stage process: feature extrac-

Q) e .-

Typing f
.
User Interface
= : Cohort
Profilés
AIML
Primary Fallback
L 1
* Opendial Seripts Chatterbot =
Run s Run

~ Beanshell -

Tﬁ*#"

Figure 1: Cohort Architecture

tion, classification of short regions of voice activ-
ity, and smoothing. Only low-level acoustic fea-
tures (such as MFCCs) are used. The classifier for
both classification and smoothing is a lightweight
random forest implementation. On the data from
the recent IEEE AASP voice activity detection
challenge (Giannoulis et al., 2013), our approach
obtained very good F scores of 98.7% (balanced
test data) and 97.6% (unbalanced test data).

3 Cohort

The Cohort library is a wrapper around a stripped-
down version of OpenDial (Lison, 2013), and
is designed to allow the user to navigate hands-
free within and between Speechified applications.
Cohort frees the application developer to think
mainly about the functionality of the application
itself, while Cohort deals with aspects related to
speech interaction.

The architecture of Cohort and Speechify is pre-
sented in Figure 1. Participating apps must be
Speechified, and must supply an application pro-
file (as an OpenDial rule set). Cohort:

e automatically registers all participating apps
on each user’s phone

e passes control to each app as requested by the
user through speech input

e handles contextual disambiguation of com-
mands like “list” that apply to multiple apps,
through the Opendial machinery

443

e supports basic speech commands like
“pause” or “start” for all apps

The Cohort library also wraps a simple AIML-
based chatbot, suitable for jokey conversations or
backoff in case of errors. Cohort comes with a
simple text input interface for debugging.

4 Demo

In general it takes less than 25 lines of code to
Speechify an app, and about the same number
of lines of OpenDial rules to subscribe an app
to Cohort. We have “Speechified” and “Cohort-
subscribed” three mobile applications: an email
client, a news reader, and an Android “home
page” app. We will demonstrate user interac-
tions through and between these apps, and present
the code necessary to make each app work in the
Speechify/Cohort framework.

References

Jonathan G Fiscus. 1997. A post-processing system
to yield reduced word error rates: Recognizer out-
put voting error reduction (rover). In Proceedings of
ASRU.

Dimitrios Giannoulis, Emmanouil Benetos, Dan Stow-
ell, Mathias Rossignol, Mathieu Lagrange, and
Mark D Plumbley. 2013. Detection and classifi-
cation of acoustic scenes and events: an ieee aasp
challenge. In Proceedings of the IEEE Workshop
on Applications of Signal Processing to Audio and
Acoustics.

David Huggins-Daines, Mohit Kumar, Arthur Chan,
Alan W Black, Mosur Ravishankar, and Alex Rud-
nicky. 2006. Pocketsphinx: A free, real-time con-
tinuous speech recognition system for hand-held de-
vices. In Proceedings of ICASSP.

Pierre Lison. 2013. Ph.D. thesis, University of Oslo.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 1999.
Finding consensus among words: lattice-based word
error minimization. In Proceedings of Eurospeech.

Frederick Richardson, Mari Ostendorf, and
JR Rohlicek. 1995. Lattice-based search strate-
gies for large vocabulary speech recognition. In
Proceedings of ICASSP.

