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Abstract

Statistical spoken dialogue systems have
the attractive property of being able to
be optimised from data via interactions
with real users. However in the rein-
forcement learning paradigm the dialogue
manager (agent) often requires significant
time to explore the state-action space to
learn to behave in a desirable manner.
This is a critical issue when the system is
trained on-line with real users where learn-
ing costs are expensive. Reward shaping
is one promising technique for addressing
these concerns. Here we examine three re-
current neural network (RNN) approaches
for providing reward shaping information
in addition to the primary (task-orientated)
environmental feedback. These RNNs are
trained on returns from dialogues gener-
ated by a simulated user and attempt to
diffuse the overall evaluation of the dia-
logue back down to the turn level to guide
the agent towards good behaviour faster.
In both simulated and real user scenarios
these RNNs are shown to increase policy
learning speed. Importantly, they do not
require prior knowledge of the user’s goal.

1 Introduction

Spoken dialogue systems (SDS) offer a natural
way for people to interact with computers. With
the ability to learn from data (interactions) sta-
tistical SDS can theoretically be created faster
and with less man-hours than a comparable hand-
crafted rule based system. They have also been
shown to perform better (Young et al., 2013).
Central to this is the use of partially observable
Markov decision processes (POMDP) to model di-
alogue, which inherently manage the uncertainty
created by errors in speech recognition and seman-
tic decoding (Williams and Young, 2007).
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The dialogue manager is a core component of
an SDS and largely determines the quality of in-
teraction. Its behaviour is controlled by a pol-
icy which maps belief states to system actions (or
distributions over sets of actions) and this policy
is trained in a reinforcement learning framework
(Sutton and Barto, 1999) where rewards are re-
ceived from the environment, the most informative
of which occurs only at the dialogues conclusion,
indicating task success or failure.'

It is the sparseness of this environmental re-
ward function which, by not providing any infor-
mation at intermediate turns, requires exploration
to traverse deeply many sub-optimal paths. This
is a significant concern when training SDS on-
line with real users where one wishes to minimise
client exposure to sub-optimal system behaviour.
In an effort to counter this problem, reward shap-
ing (Ng et al., 1999) introduces domain knowl-
edge to provide earlier informative feedback to the
agent (additional to the environmental feedback)
for the purpose of biasing exploration for discov-
ering optimal behaviour quicker.> Reward shaping
is briefly reviewed in Section 2.1.

In the context of SDS, Ferreira and Lefevre
(2015) have motivated the use of reward shap-
ing via analogy to the ‘social signals’ naturally
produced and interpreted throughout a human-
human dialogue. This non-statistical reward shap-
ing model used heuristic features for speeding up
policy learning.

As an alternative, one may consider attempting
to handcraft a finer grained environmental reward

'A uniform reward of -1 is common for all other, non-
terminal turns, which promotes faster task completion.

?Learning algorithms are another central element in im-
proving the speed of convergence during policy training. In
particular the sample-efficiency of the learning algorithm can
be the deciding factor in whether it can realistically be em-
ployed on-line. See e.g. the GP-SARSA (Gasic and Young,
2014) and Kalman temporal-difference (Daubigney et al.,
2014) methods which bootstrap estimates of sparse value
functions from minimal numbers of samples (dialogues).
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function. For example, Asri et al. (2014) proposed
diffusing expert ratings of dialogues to the state
transition level to produce a richer reward func-
tion. Policy convergence may occur faster in this
altered POMDP and dialogues generated by a task
based simulated user may also alleviate the need
for expert ratings. However, unlike reward shap-
ing, modifying the environmental reward function
also modifies the resulting optimal policy.

We recently proposed convolutional and recur-
rent neural network (RNN) approaches for deter-
mining dialogue success. This was used to pro-
vide a reinforcement signal for learning on-line
from real users without requiring any prior knowl-
edge of the user’s task (Su et al., 2015). Here
we extend the RNN approach by introducing new
training constraints in order to combine the merits
of the above three works: (1) diffusing dialogue
level ratings down to the turn level to (2) add re-
ward shaping information for faster policy learn-
ing, whilst (3) not requiring prior task knowledge
which is simply unavailable on-line.

In Section 2 we briefly describe potential based
reward shaping before introducing the RNNs we
explore for producing reward shaping signals (ba-
sic RNN, long short-term memory (LSTM) and
gated recurrent unit (GRU)). The features the
RNNs use along with the training constraint and
loss are also described. The experimental evalu-
ation is then presented in Section 3. Firstly, the
estimation accuracy of the RNNs is assessed. The
benefit of using the RNN for reward shaping in
both simulated and real user scenarios is then also
demonstrated. Finally, conclusions are presented
in Section 4.

2 RNNs for Reward Shaping

2.1 Reward Shaping

Reward shaping provides the system with an ex-
tra reward signal F' in addition to environmental
reward R, making the system learn from the com-
posite signal R + F'. The shaping reward I’ often
encodes expert knowledge that complements the
sparse signal R. Since the reward function defines
the system’s objective, changing it may result in
a different task. When the task is modelled as a
fully observable Markov decision process (MDP),
Ng et al. (1999) defined formal requirements on
the shaping reward as a difference of any potential
function ¢ on consecutive states s and s’ which
preserves the optimality of policies. Based on this
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Figure 1: RNN with three types of hidden units:
basic, LSTM and GRU. The feature vectors f; ex-
tracted at turns ¢ = 1, ..., 7T are labelled f;.
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property, Eck et al. (2015) further extended it to
POMDP by proof and empirical experiments:

F(by,a,bi1) = vo(by1) — o(b) (1)

where 7 is the discount factor, b, the belief state at
turn ¢, and « the action leading b; to by 1.

However determining an appropriate potential
function for an SDS is non-trivial. Rather than
hand-crafting the function with heuristic knowl-
edge, we propose using an RNN to predict proper
values as in the following.

2.2 Recurrent Neural Network Models

The RNN model is a subclass of neural network
defined by the presence of feedback connections.
The ability to succinctly retain history information
makes it suitable for modelling sequential data. It
has been successfully used for language modelling
(Mikolov et al., 2011) and spoken language under-
standing (Mesnil et al., 2015).

However, Bengio et al. (1994) observed that ba-
sic RNNs suffer from vanishing/exploding gradi-
ent problems that limit their capability of mod-
elling long context dependencies. To address this,
long short-term memory (Hochreiter and Schmid-
huber, 1997) and gated recurrent unit (Chung et
al., 2014) RNNs have been proposed. In this pa-
per, all three types of RNN (basic/LSTM/GRU)
are compared.

2.3 Reward Shaping with RNN Prediction

The role of the RNN is to solve the regression
problem of predicting the scalar return of each
completed dialogue. At every turn ¢, input fea-
ture f; are extracted from the belief/action pair and
used to update the hidden layer h;. From dialogues
generated by a simulated user (Schatzmann and
Young, 2009) supervised training pairs are created
which consist of the turn level sequence of these
feature vectors f; along with the scalar dialogue



return as scored by an objective measure of task
completion. Whilst the RNN models are trained
on dialogue level supervised targets, we hypothe-
sise that their subsequent turn level predictions can
guide policy exploration via acting as informative
reward shaping potentials.

To encourage good turn level predictions, all
three RNN variants are trained to predict the di-
alogue return not with the final output of the net-
work, but with the constraint that their scalar out-
puts from each turn ¢ should sum to predict the
return for the whole dialogue. This is shown in
Figure 1. A mean-square-error (MSE) loss is used
(see Appendix A). The trained RNNs are then
used directly as the reward shaping potential func-
tion ¢, using the RNN scalar output at each turn.

The feature inputs f; for all RNNs consisted of
the following sections: the real-valued belief state
vector formed by concatenating the distributions
over user discourse act, method and goal variables
(Thomson and Young, 2010), one-hot encodings
of the user and summary system actions, and the
normalised turn number. This feature vector was
extracted at every turn (system + user exchange).

3 Experiments

3.1 Experimental Setup

In all experiments the Cambridge restaurant do-
main was used, which consists of approximately
150 venues each having 6 attributes (slots) of
which 3 can be used by the system to constrain the
search and the remaining 3 are informable proper-
ties once a database entity has been found.

The shared core components of the SDS in all
experiments were a domain independent ASR, a
confusion network (CNet) semantic input decoder
(Henderson et al., 2012), the BUDS (Thomson and
Young, 2010) belief state tracker that factorises the
dialogue state using a dynamic Bayesian network
and a template based natural language generator.
All policies were trained by GP-SARSA (Gasic
and Young, 2014) and the summary action space
contains 20 actions. Per turn reward was set to -1
and final reward 20 for task success else 0.

With this ontology, the size of the full feature
vector was 147. The turn number was expressed as
a percentage of the maximum number of allowed
turns, here 30. The one-hot user dialogue act en-
coding was formed by taking only the most likely
user act estimated by the CNet decoder.
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Figure 2: RMSE of return prediction by using
RNN/LSTM/GRU, trained on 18K and 1K dia-
logues and tested on sets festA and festB (see text).

3.2 Neural Network Training

Here results of training the 3 RNNs on the simu-
lated user dialogues are presented.> Two training
sets were used consisting of 18K and 1K dialogues
to verify the model robustness. In all cases a sepa-
rate validation set consisting of 1K dialogues was
used for controlling overfitting. Training and val-
idation sets were approximately balanced regard-
ing objective success/failure labels and collected
at a 15% semantic error rate (SER). Prediction re-
sults are shown in Figure 2 on two test sets; festA:
1K dialogues, balanced regarding objective labels,
at 15% SER and testB: containing 12K dialogues
collected at SERs of 0, 15,30 and 45 as the data
occurred (i.e. with no balancing regarding labels).

Root-MSE (RMSE) results of predicting the di-
alogue return are depicted in Figure 2. The models
with LSTM and GRU units achieved a slight im-
provement in most cases over the basic RNN. No-
tice that the model with GRU even reached com-
parable results when trained with 1K training data
compared to 18K. The results from the 1K train-
ing set indicate that the model can be developed
from limited data. This enables datasets to be cre-
ated by human annotation, avoiding the need for
a simulated user. The results on set festB also
show that the models can perform well in situa-
tions with varying error rates as would be encoun-
tered in real operating environments. Note that the
dataset could also be created from human’s anno-
tation which avoids the need for a simulated user.
We next examine the RNN-based reward shaping
for policy training with a simulated user.

3All RNNs were implemented using the Theano library
(Bergstra et al., 2010). In all cases the hidden layer contained
100 units with a sigmoid non-linearity and used stochastic
gradient descent (per dialogue) for training.
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Figure 3: Policy training via simulated user with
(GRU/HDC) and without (baseline) reward shap-
ing. Standard errors are also shown.

3.3 Policy Learning with Simulated User

Since the aim of reward shaping is to enhance
policy learning speed, we focus on the first 1000
training dialogues. Figure 2 shows that the GRU
RNN attained slightly better performance than the
other two RNN models, albeit with no statistical
significance. Thus for clearer presentation of the
policy training results we plot only the GRU re-
sults, using the model trained on 18K dialogues.
To show the effectiveness of using RNN with
GRU for predicting reward shaping potentials, we
compare it with the hand-crafted (HDC) method
for reward shaping proposed by Ferreira and
Lefévre (2013) that requires prior knowledge of
the user’s task, and a baseline policy using only the
environmental reward. Figure 3 shows the learn-
ing curve of the reward for the three systems. After
every 50 training iterations each system was tested
with 1000 dialogues and averaged over 10 poli-
cies. The simulated user’s SER was set to 15%.
We see that reward shaping indeed provides
the agent with more information, increasing the
learning speed. Furthermore, our proposed RNN
method further outperforms the hand-crafted sys-
tem, whilst also being able to be applied on-line.

3.4 Policy Learning with Human Users

Based on the above results, the same GRU model
was selected for training a policy on-line with hu-
mans. Two systems were trained with users re-
cruited via Amazon Mechanical Turk: a baseline
was trained with only the environmental reward,
and another system was trained with an additional
shaping reward predicted by the proposed GRU.
Learning began from a random policy in all cases.
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Figure 4: Learning curves of reward with standard
errors during on-line policy optimisation for the
baseline (black) and proposed (green) systems.

Figure 4 shows the on-line learning curve of the
reward when training the systems with 400 dia-
logues. The moving average was calculated using
a window of 100 dialogues and each result was av-
eraged over three policies in order to reduce noise.
It can be seen that by adding the RNN based shap-
ing reward, the policy learnt quicker in the impor-
tant initial phase of policy learning.

4 Conclusions

This paper has shown that RNN models can be
trained to predict the dialogue return with a con-
straint such that subsequent turn level predictions
act as good reward shaping signals that are effec-
tive for accelerating policy learning on-line with
real users. As in many other applications, we
found that gated RNNs such as LSTM and GRU
perform a little better than basic RNNs.

In the work described here, the RNNs were
trained using a simulated user and this simulator
could have been used to bootstrap a policy for
use with real users. However our supposition is
that RNNs could be trained for reward prediction
which are substantially domain independent and
hence have wider applications via domain adapta-
tion and extension (GasSi¢ et al., 2015; Brys et al.,
2015). Testing this supposition will be the subject
of future work.
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A Training Constraint/Loss Function

For all RNN models the following MSE loss func-
tion is used on a per-dialogue basis:

T 2
MSE = (R -> n) 2
t=1

where the current dialogue has 7' turns, R is the
return and training target, and r; is the scalar pre-
diction output by the RNN model at each turn.



