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Abstract 

In this paper, we present a data-driven 

approach for detecting instances of mis-

communication in dialogue system inter-

actions. A range of generic features that 

are both automatically extractable and 

manually annotated were used to train 

two models for online detection and one 

for offline analysis. Online detection 

could be used to raise the error awareness 

of the system, whereas offline detection 

could be used by a system designer to 

identify potential flaws in the dialogue 

design. In experimental evaluations on 

system logs from three different dialogue 

systems that vary in their dialogue strate-

gy, the proposed models performed sub-

stantially better than the majority class 

baseline models. 

1 Introduction 

Miscommunication is a frequent phenomenon in 

both human–human and human–machine interac-

tions. However, while human conversational 

partners are skilled at detecting and resolving 

problems, state-of-the-art dialogue systems often 

have problems with this. Various works have 

been reported on detection of errors in human–

machine dialogues. While the common theme 

among these works is to use error detection for 

making online adaption of dialogue strategies 

(e.g., implicit vs. explicit confirmations), they 

differ in what they model as error. For example, 

Walker et al. (2000) model dialogue success or 

failure as error, Bohus & Rudnicky (2002) refers 

to lack of confidence in understanding user in-

tentions as error, Schmitt et al. (2011) use the 

notion of interaction quality in a dialogue as an 

estimate of errors at arbitrary point in a dialogue, 

Krahmer et al. (2001) and Swerts et al. (2000) 

model misunderstandings on the system’s part as 

errors. 

Awareness about errors in dialogues, however, 

has relevance not only for making online deci-

sions, but also for dialogue system designers. 

Access to information about in which states the 

dialogue fails or runs into trouble could enable 

system designers to identify potential flaws in 

the dialogue design. Unfortunately, this type of 

error analysis is typically done manually, which 

is laborious and time consuming. Automation of 

this task has high relevance for dialogue system 

developers, particularly for interactive voice re-

sponse (IVR) systems.   

In this paper, we present a data-driven ap-

proach for detection of miscommunication in 

dialogue system interactions through automatic 

analysis of system logs. This analysis is based on 

the assumption that the onus of miscommunica-

tion is on the system. Thus, instances of non-

understandings, implicit and explicit confirma-

tions based on false assumptions, and confusing 

prompts are treated as problematic system ac-

tions that we want to detect in order to avoid 

them. Since our main goal is to integrate the ap-

proach in a toolkit for offline analysis of interac-

tion logs we focus here largely on models for 

offline detection. For this analysis, we have the 

full dialogue context (backward and forward) at 

our disposal, and use features that are both auto-

matically extractable from the system logs and 

manually annotated. However, we also report the 

performances of these models using only online 

features and limited dialogue context, and 

demonstrate our models’ suitability for online 

use in detection of potential problems in system 

actions. 

354



We evaluate our approach on datasets from 

three different dialogue systems that vary in their 

dialogue modeling, dialogue strategy, language, 

user types. We also report findings from an ex-

perimental work on cross-corpus analysis: using 

a model trained on logs from one system for 

analysis of interaction logs from another system. 

Thus the novelty of work reported here lies in 

our models’ relevance for offline as well as 

online detection of miscommunications, and the 

applicability and generalizability of features 

across dialogue systems and domains. 

The paper is structured as follows: we report 

the relevant literature in Section 2 and establish 

the ground for our work. In Section 3 we de-

scribe the three datasets used. The annotation 

scheme is discussed in Section 4. The complete 

set of features explored in this work is presented 

in Section 5. The experimental method is de-

scribed in Section 6 and results are reported in 

Section 7. We conclude and outline our future 

work in Section 8. 

2  Background 

One way to analyze miscommunication is to 

make a distinction between non-understanding 

and misunderstanding (Hirst et al., 1994). While 

non-understandings are noticed immediately by 

the listeners, the information about misunder-

standings may surface only at a later stage in the 

dialogue. This can be illustrated with the follow-

ing human–machine interaction:  

 

1 S: How may I help you? 

2 U: Can you recommend a Turkish restau-

rant in downtown area?  

3 S: Could you please rephrase that? 

4 U: A Turkish restaurant in downtown. 

5 S: Clowns, which serves Italian food, is a 

great restaurant in downtown area. 

6 U: I am looking for a Turkish restaurant 

Table 1: An illustration of miscommunication in hu-

man-machine interaction. S and U denote system and 

user turns respectively. User turns are transcriptions. 

 

The system, in turn 3, expresses that a non-

understanding of user intentions (in turn 2) has 

occurred. In contrast, in turn 5 – following the 

best assessment of user turn 4 – the system 

makes a restaurant recommendation, but misun-

derstands the user’s choice of cuisine. However, 

this problem does not become evident until turn 

6. The various approaches to detection of errors 

presented in the literature can be broadly classi-

fied in two categories – early error detection and 

late error detection – based on at what turns in 

the dialogue the assessments about errors are 

made (Skantze, 2007). In early error detection 

approaches the system makes an assessment of 

its current hypothesis of what the user just said. 

Approaches for detection of non-understanding, 

such as confidence annotation (Bohus & Rud-

nicky, 2002), fall in this category. In contrast, 

late error detection aims at finding out whether 

the system has made false assumptions about 

user’s intentions in previous turns. These distinc-

tions are vital from our viewpoint as they point 

out the turns in dialogue that are to be assessed 

and the scope of dialogue context that could be 

exploited to make such an assessment.  

We now present some of the related works and 

highlight what has been modeled as error, stage 

in dialogue the assessment about errors are made, 

and type of features and span of dialogue context 

used. Following this we discuss the motivations 

and distinct contributions of our work. 

   Walker et al. (2000) presented a corpus based 

approach that used information from initial sys-

tem-user turn exchanges alone to forecast wheth-

er the ongoing dialogue will fail. If the dialogue 

is likely to fail the call could be transferred to a 

human operator right away. A rule learner, RIP-

PER (Cohen, 1995), was trained to make a fore-

cast about dialogue failure after every user turn. 

The model was trained on automatically extract-

ed features from automatic speech recognizer 

(ASR), natural language understanding (NLU) 

and dialogue management (DM) modules.  

Bohus & Rudnicky (2002) presented an ap-

proach to utterance level confidence annotation 

which aims at making an estimate of the sys-

tem’s understanding of the user’s utterance. The 

model returns a confidence score which is then 

used by the system to select appropriate dialogue 

strategy, e.g. express non-understanding of user 

intention. The approach combines features from 

ASR, NLU and DM for determining the confi-

dence score using logistic regression. 

Schmitt et al. (2011) proposed a scheme to 

model and predict the quality of interaction at 

arbitrary points during an interaction. The task 

for the trained model was to predict a score, from 

5 to 1 indicating very high to very poor quality of 

interaction, on having seen a system-user turn 

exchange. A Support Vector Machine model was 

trained on automatically extractable features 

from ASR, NLU and DM modules. They ob-

served that additional information such as user’s 
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affect state (manually annotated) did not help the 

learning task. 

In their investigations of a Dutch Train time-

table corpus, Krahmer et al., 2001) observed that 

dialogue system users provide positive and nega-

tive cues about misunderstandings on the sys-

tem’s part. These cues include user feedback, 

such as corrections, confirmations, and marked 

disconfirmations, and can be exploited for late 

error detection. 

Swerts et al. (2000) trained models for auto-

matic prediction of user corrections. They ob-

served that user repetition (or re-phrasing) is a 

cue to a prior error made by the system. They 

used prosodic features and details from the ASR 

and the DM modules to train a RIPPER learner. 

Their work highlights that user repetitions are 

useful cue for late error detection. 

For our task, we have defined the problem as 

detecting miscommunication on the system’s 

part. This could be misunderstandings, implicit 

and explicit confirmations based on false as-

sumptions, or confusing system prompts. Since 

instances of non-understandings are self-evident 

cases of miscommunication we exclude them 

from the learning task. Detecting the other cases 

of miscommunications is non-trivial as it re-

quires assessment of user feedback. The pro-

posed scheme can be illustrated in the following 

example interaction: 

 

1 S: How may I help you? 

2 U: Sixty One D 

3 S: The 61C.What’s the departure station?  

4 U: No 

Table 2: An implicit confirmation based on false as-

sumption is an instance of problematic system action. 

User turns are manual transcriptions 

 

In the context of these four turns our task is to 

detect whether system turn 3 is problematic. If 

we want to use the model online for early error 

detection, the system should be able to detect the 

problem using only automatically extractable 

features from turn 1-3. Unlike confidence anno-

tation (Bohus & Rudnicky, 2002), we also in-

clude what the system is about to say in turn 3 

and make an anticipation (or forecast) of whether 

this turn would lead to a problem. Thus, it is pos-

sible for a system that has access to such a model 

to assess different alternative responses before 

choosing one of them. Besides using details from 

ASR and SLU components (exploited in the re-

ported literature) the proposed early model is 

able to use details from Dialogue Manager and 

Natural Language Generation modules. 

Next, we train another model that extends the 

anticipation model by also considering the user 

feedback in turn 4, similar to Krahmer et al., 

2001) and Swerts et al. (2000). Such a model can 

also be used online in a dialogue system in order 

to detect errors after-the-fact, and engage in late 

error recovery (Skantze, 2007). The end result is 

a model that combines both anticipation and user 

feedback to make an assessment of whether sys-

tem turns were problematic. We refer to this 

model as the late model. 

Since both the early and late models are to be 

used online, they only have access to automati-

cally extractable features. However, we also train 

an offline model that can be used by a dialogue 

designer to find potential flaws in the system.  

This model extends the late model in that it also 

has access to features that are derived from man-

ual annotations in the logs.  

In this work we also investigated whether 

models trained on logs of one system can be used 

for error detection in interaction logs from a dif-

ferent dialogue system. Towards this we trained 

our models on generic features and evaluated our 

approach on system logs from three dialogue 

systems that differ in their dialogue strategy.  

3 Corpora  

Dialogue system logs from two publicly availa-

ble corpora and one from a commercially de-

ployed system were used for building and evalu-

ating the three models. The first dataset is from 

the CamInfo Evaluation Dialogues corpus. The 

corpus comprises of spoken interactions between 

the Cambridge Spoken Dialogue System and 

users, where the system provides restaurant rec-

ommendations for Cambridge. The dialogue sys-

tem is a research system that uses dialogue-state 

tracking for dialogue management (Jurcicek et 

al., 2012). As the system is a research prototype, 

users of these systems are not real users in real 

need of information but workers recruited via the 

Amazon Mechanical Turk (AMT). Nevertheless, 

the dialogue system is state-of-the-art in statisti-

cal models for dialogue management. From this 

corpus 179 dialogues were used as the dataset, 

which we will refer to as the CamInfo set. 

The second corpus comes from the Let’s Go 

dialogue system. Let’s Go (Raux et al., 2005) is 

developed and maintained by the Dialogue Re-

search Center (DialRC) at Carnegie Mellon Uni-

versity that provides bus schedule information 
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for Pittsburgh’s Port Authority buses during off-

peak hours. The users of Let’s Go system are real 

users, which are in real need of the information. 

This makes the dataset interesting for us. The 

dataset used here consists of 41 dialogues select-

ed from the data released for the 2010 Spoken 

Dialogue Challenge (Black et al., 2010).  

The third dataset, SweCC – Swedish Call 

Center Corpus, is taken from a corpus of call 

logs from a commercial customer service provid-

er in Sweden providing services in various do-

mains. The system tries to extract some details 

from customers before routing the call to a hu-

man operator in the concerned department. 

Compared to CamInfo and Let’s Go datasets, the 

SweCC corpus is from a commercially deployed 

system, with real users, and the interactions are 

in Swedish. From this corpus 219 dialogues were 

selected. Table 3 provides a comparative sum-

mary of the three datasets. 

 
CamInfo Let’s Go SweCC 

Research Research Commercial 

Hired users Real users Real users 

Mostly implicit 

confirmation 

Mostly explicit 

confirmation 

Only explicit 

confirmation 

Stochastic Rule based Rule based 

English English Swedish 

179 dialogues  41 dialogues 219 dialogues 

5.2 exchanges 

on average per 

dialogue  

19 exchanges 

on average per 

dialogue 

6.6 exchanges 

on average per 

dialogue 

Table 3: A comparative summary of the three datasets 

4 Annotations 

We take a supervised approach for detection of 

problematic system turns in the system logs. This 

requires each system turn in the training datasets 

to be labeled as to whether they are PROBLEMAT-

IC (if the system turn reveals a miscommunica-

tion) or NOT-PROBLEMATIC. There are different 

schemes for labeling data. One approach is to ask 

one or two experts (having knowledge of the 

task) to label data and use inter-annotator agree-

ment to set an acceptable goal for the trained 

model. Another approach is to use a few non-

experts but use a set of guidelines so that the an-

notators are consistent (and to achieve a higher 

Kappa score, (Schmitt et al., 2011)). We take the 

crowdsourcing approach for annotating the 

CamInfo data and use the AMT platform. Thus, 

we avoid using both experts and guidelines. The 

key however is to make the task simple for the 

AMT-workers. Based on our earlier discussion 

on the role of dialogue context and type of errors 

assessed in early and late error detection, we set 

up the annotation tasks such that AMT workers 

saw two dialogue exchanges (4 turns in total), as 

shown in Table 2:. The workers were asked to 

label system turn 3 as PROBLEMATIC or NOT-

PROBLEMATIC, depending on whether it was ap-

propriate or not, or PARTIALLY-PROBLEMATIC 

when it is not straightforward to choose between 

the former two labels.   

In the Let’s Go dataset we observed that 

whenever the system engaged in consecutive 

confirmation requests the automatically extracted 

sub-dialogue (any four consecutive turns) did not 

always result in a meaningful sub-dialogue. 

Therefore the Let’s Go data was annotated by 

one of the co-authors of the paper. The SweCC 

data could not be used on AMT platform due to 

the agreement with the data provider, and was 

annotated by the same co-author. See Appendix 

A for sample of annotated interactions. 

Since we had access to the user feedback to 

the questionnaire for the CamInfo Evaluation 

Dialogues corpus, we investigated whether the 

problematic turns identified by the AMT-

workers reflect the overall interaction quality, as 

experienced by the users. We observed a visibly 

strong correlation between the user feedback and 

the fractions of system turn per dialogue labeled 

as PROBLEMATIC by the AMT-workers. Figure 1 

illustrates the correlation for one of the four 

questions in the questionnaire. This shows that 

the detection and avoidance of problematic turns 

(as defined here), will have bearing on the users’ 

experience of the interaction. 

Each system turn in the CamInfo dataset was 

initially labeled by two AMT-workers. In case of 

a tie, one more worker was asked to label that 

instance. In total 753 instances were labeled in 

the first step. We observed an inter-annotators 

agreement of 0.80 (Fleiss Kappa) among the an-

notators and only 113 instances had a tie and 

were annotated by a third worker. The label with 

the majority vote was chosen as the final class 

label for instances with ties in the dataset. Table 

4 shows the distributions for the three annotation 

categories seen in the three datasets. Due to the 

imbalance of the PARTIALLY-PROBLEMATIC class 

in the three datasets we excluded this class from 

the learning task and focus only on classifying 

system turns as either PROBLEMATIC or NOT-

PROBLEMATIC. System turns expressing non-

understanding were also excluded from the learn-

ing task. The final datasets had the following 

representation for the PROBLEMATIC class: 

CamInfo (615) 86.0%, Let’s Go (744) 57.5, and 
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for SweCC (871) 65.7%. To mitigate the high 

class imbalance in CamInfo another 51 problem-

atic dialogues (selected following the correla-

tions of user feedback from Figure 1) were anno-

tated by a second co-author. The resulting 

CamInfo dataset had 859 instances of which 

75.3% are from PROBLEMATIC class. 

 
Figure 1: Correlation of system turns annotated as 

problematic with user feedback 

 
Dataset 

(#instances) 
CamInfo 

(753) 
Let’s Go 

(760) 
SweCC 

(968) 

PROBLEMATIC 16 % 42% 31% 

NOT-

PROBLEMATIC 
73 % 57% 61% 

PARTIALLY-

PROBLEMATIC 
11 % 1% 8% 

Table 4: Distribution of the three annotation catego-

ries across the three datasets 

5 Features  

We wanted to train models that are generic and 

can be used to analyze system logs from different 

dialogue systems. Therefore we trained our mod-

els on only those features that were available in 

all the three datasets. Below we describe the 

complete feature set, which include features and 

manual annotations that were readily available in 

system logs. A range of higher-level features 

were also derived from the available features. 

Since the task of the three dialogue system is to 

perform slot-filling we use the term concept to 

refer to slot-types and slot-values. 

 ASR: the best hypothesis, the recognition 

confidence score and the number of words. 

NLU: user dialogue act (the best parse hypothe-

sis – nlu_asr), the best parse hypothesis obtained 

on manual transcription (nlu_trn), number of 

concepts in nlu_asr and nlu_trn, concept error 

rate: the Levenshtein distance between nlu_asr 

and nlu_trn, correctly transferred concepts: the 

fraction of concepts in nlu_trn observed in 

nlu_asr. NLG: system dialogue act, number of 

concepts in system act, system prompt, and 

number of words in the prompt. 

Manual annotations: manual transcriptions of 

the best ASR hypothesis, number of words in the 

transcription, word error rate: the Levenshtein 

distance between the recognized hypothesis and 

transcribed string, correctly transferred words: 

fraction of words in the transcription observed in 

the ASR hypothesis. 

Discourse features: position in dialogue: frac-

tion of turns completed up to the decision point. 

New information: fraction of new words (and 

concepts) in the successive prompts of a speaker. 

Repetition: Two measures to estimate repetition 

in successive speaker turns were used: (i) cosine 

similarity, the cosine angle between vector repre-

sentation of the two turns and (ii) the number of 

common concepts. Marked disconfirmation: 

whether the user response to a system request for 

confirmation has a marked disconfirmation (e.g., 

“no”, “not”). Corrections: the number of slots-

values in previous speaker turn that were given a 

new value in the following turn – by either the 

dialogue partner or the same speaker – were used 

as an estimate of user corrections, false assump-

tions and rectifications by the system, and 

change in user intentions.  

6 Models and Method 

As mentioned earlier, the early and late models 

are aimed at online use in dialogue systems, 

whereas the offline model is for offline analysis 

of interaction logs. A window of 4 turns, as dis-

cussed in Section 2, is used to limit the dialogue 

context for extraction of features. Accordingly, 

the early model uses features from turns 1-3; the 

late model uses features from the complete win-

dow, turns 1-4. The offline model like the late 

model uses the complete window, but additional-

ly uses the manual transcription features or fea-

tures derived from them, e.g. word error rate.  

For the purpose of brevity, we report four sets 

of feature combinations: (i) Bag of words repre-

sentation of system and user turns (BoW), (ii) 

DrW: a set containing all the features derived 

from the words in the user and system turns, e.g., 

turn length (measured in number of words), co-

sine similarity in speaker turns as an estimate of 

speaker repetition, (iii) Bag of concept represen-

tation of system and user dialogue acts (BoC), 

and (iv) DrC: a set with all the features derived 
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from dialogue acts, e.g., turn length (measured in 

number of concepts). 

Given the skew in distribution of the two clas-

ses in the three datasets (cf. Section 4) accuracy 

alone is not a good evaluation metric. A model 

can achieve high classification accuracy by simp-

ly predicting the value of the majority class (i.e. 

NOT-PROBLEMATIC) for all predictions. Howev-

er, since we are equally interested in the recall 

for both PROBLEMATIC and NOT-PROBLEMATIC 

classes, we use the un-weighted average recall 

(UAR) to assess the model performance, similar 

to Higashinaka et al., 2010). 

We explored various machine learning algo-

rithms available in the Weka toolkit (Hall et al., 

2009), but report here models trained using two 

different algorithms: JRIP, a Weka implementa-

tion of the RIPPER rule learning algorithm, and 

Support Vector Machine (SVM) with linear ker-

nel. The rules learned by JRIP offer a simple in-

sight into what features contribute in decision 

making. The SVM algorithm is capable of trans-

forming the feature space into higher dimensions 

and learns sophisticated decision boundaries. The 

figures reported here are from a 10-fold cross-

validation scheme for evaluation. 

7  Results 

7.1 Baseline 

To assess the improvements made by the trained 

models we need a baseline model to draw com-

parisons. We can use the simple majority class 

baseline model that will predict the value of ma-

jority class for all predictions. The UAR for such 

a model is shown in Table 5 (row 1). The UAR 

for all the three datasets is 0.50.  

All the three dialogue systems employ confir-

mation strategies, which are simple built-in 

mechanisms for detecting miscommunication 

online. Therefore, a model trained using the 

marked disconfirmation feature alone could be a 

more reasonable baseline model for comparison. 

Row 2 in Table 5 (feature category MDisCnf) 

shows the performances for such a baseline. The 

figures from late and offline models suggest that 

while this feature is not at all useful for CamInfo 

dataset (UAR = 0.50 for both JRIP and SVM) it 

makes substantial contributions to models for 

Let’s Go and SweCC datasets. The late model, 

using the online features for marked disconfirma-

tion and the JRIP algorithm obtained a UAR of 

0.68 for Let’s Go and 0.87 for SweCC. The cor-

responding offline models, which use the manual 

feature in addition, achieve even better results for 

the two datasets: UAR of 0.74 and 0.89 respec-

tively. These figures clearly illustrate two things: 

First, while Let’s Go and SweCC systems often 

employ explicit confirmation strategy, CamInfo 

hardly uses it. Second, the majority of problems 

in the Let’s Go and SweCC are due to explicit 

confirmations based on false assumptions. 

7.2 Word-related features 

Using the bag of word (BoW) feature set 

alone, we observe that for CamInfo dataset the 

SVM achieved a UAR of 0.75 for the early mod-

el, 0.79 for the late model, and 0.80 for the of-

fline model. These are comprehensive gains over 

the baseline of 0.50. The figures for the early 

model suggest that by looking only at (i) the 

most recent user prompt, (ii) the system prompt 

preceding it, and (ii) the current system prompt 

which is to be executed, the model can antici-

pate, well over chance whether the chosen sys-

tem prompt would lead to a problem.  

For the Let’s Go and SweCC datasets, using 

the BoW feature set the late model achieved 

modest gains in performance over the corre-

sponding MDisCnf baseline model. For example, 

using the SVM algorithm the late model for Let’s 

Go achieved a UAR of 0.81. This is an absolute 

gain of 0.13 points over the UAR of 0.68 

achieved using the marked disconfirmation fea-

ture set alone. This large gain can be attributed 

partly to the early model (a UAR of 0.74) and 

the late error detection features which add anoth-

er 0.07 absolute points raising the UAR to 0.81. 

For the SweCC dataset, although the gains made 

by the JRIP learner models over the MDisCnf 

baseline are marginal, the fact that the late model 

gains in UAR scores over early model points to 

the contributions of words that indicate user dis-

confirmations, e.g. no or not. 

Next, on using BoW feature set in combina-

tion with the DrW feature set that contains fea-

tures derived from words, such as prompt length 

(number of words), speaker repetitions, ASR 

confidence score, etc., we achieved both minor 

gains and losses for the CamInfo and Let’s Go 

dataset. The offline models for Let’s Go (both 

JRIP as well as SVM) made a gain of approx. 

0.04 over the late models. A closer look at the 

rules learned by the JRIP model indicates that 

features such as word error rate, cosine similarity 

measure of user repetition, number of words in 

user turns, contributed to rule learning. 

In the SweCC dataset we observe that for all 

the early and late models the combination of 

BoW and DrW feature sets offered improved 
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performances over using BoW alone. The rules 

learned by the JRIP indicate that in addition to 

the marked disconfirmation features the model is 

able to make use of features that indicate whether 

the system takes the dialogue forward, the ASR 

confidence score for user turns, the position in 

dialogue, and the user turn lengths.  

7.3 Concept-related features 

Next, we analyzed the model performances using 

the bag of concept (BoC) feature set alone. A 

cursory look at the performances in row 5 in Ta-

ble 5 suggest that for both CamInfo and Let’s Go 

the BoC feature set offers modest and robust im-

provement over using BoW feature set alone. In 

comparison, for the SweCC dataset the gains 

made by the models over using BoW alone are 

marginal. This is not surprising given the high 

UARs achieved for SweCC corresponding to the 

MDisCnf feature set (row 2), suggesting that 

most problems in SweCC dataset are inappropri-

ate confirmation requests, and detection of user 

disconfirmations is a good enough measure. 

We also observed that the contribution of the 

late model is much clearly seen in Let’s Go and 

SweCC datasets while this is not true for CamIn-

fo. In view of the earlier observation that explicit 

confirmations are seldom seen in CamInfo we 

can say that users are left to use strategies such 

as repetitions to correct false assumptions by the 

system. These cues of corrections are much 

harder to assess than the marked disconfirma-

tions. The best performances were in general ob-

tained by the offline models: UAR of 0.82 on 

CamInfo dataset using SVM algorithm and 0.88 

for Let’s Go using JRIP. Some of the features 

used by the JRIP rule learner include: number of 

concepts in parse hypothesis being zero, the sys-

tem dialogue act indicating open prompts “How 

may I help you?” during the dialogue (suggesting 

a dialogue restart), and slot types which the sys-

tem often had difficulty understanding. These 

were user requests for price range and postal 

codes in the CamInfo dataset, and time of travel 

and place of arrival in the Let’s Go dataset. As 

the NLU for manual transcription is not available 

for the SweCC dataset the corresponding row for 

the offline model in Table 5 is empty.  

Next, we trained the models on the combined 

feature set, i.e. BoC, DrC and DrW sets. We ob-

served that while majority of models achieved 

marginal gains over using BoC set alone, the 

ones that did lose did not exhibit a major drop in 

performance. The best performance for the 

CamInfo is obtained by the offline model (using 

the SVM algorithm): a UAR of 0.84. For Let’s 

Go the JRIP model achieved the best UAR, 0.87 

for the offline model. For the SweCC the late 

model performed better than the offline model 

and achieved a UAR of 0.93 using the JRIP 

learner. These are comprehensive gains over the 

two baseline models. Appendix A shows two 

examples of offline error detection. 

7.4 Impact of data on model performances 

We also analyzed the impact of amount of train-

ing data used on model performances. A hold-out 

validation scheme was followed. A dataset was 

first randomized and then split into 5 sets, each 

containing equal number of dialogues. Each of 

SNr.  CamInfo Let’s Go SweCC 

UAR UAR UAR 

1. Majority class baseline 0.50  0.50 0.50 

 Feature Set Model JRip SVM JRip SVM JRip SVM 

2. MDisCnf 
Late  0.50 

0.50 
0.50 
0.50 

0.68 
0.74 

0.68 
0.73 

0.87 
0.89 

0.83 
0.84 Offline 

3. BoW 

Early 0.72 
0.73 
0.78 

0.75 
0.79 
0.80 

0.72 
0.80 
0.84 

0.74 
0.81 
0.82 

0.78 
0.88 
0.90 

0.80 
0.88 
0.89 

Late 

Offline 

4. 
BoW+DrW 
 

Early 0.75 
0.71 
0.77 

0.77 
0.82 
0.79 

0.71 
0.82 
0.85 

0.75 
0.80 
0.84 

0.84 
0.92 
0.92 

0.82 
0.91 
0.90 

Late 

Offline 

5. BoC 

Early 0.80 
0.81 
0.81 

0.81 
0.82 
0.82 

0.76 
0.86 
0.88 

0.76 
0.84 
0.85 

0.81 
0.89 

- 

0.81 
0.88 

- 
Late 

Offline 

6. BoC+DrC+DrW 

Early 0.80 
0.78 
0.82 

0.83 
0.82 
0.84 

0.70 
0.84 
0.87 

0.80 
0.85 
0.86 

0.84 
0.93 
0.92 

0.82 
0.89 
0.89 

Late 

Offline 
Table 5 : Performance of the various early, late and offline  models for error detection on the three datasets 
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the set was used as a hold-out test set for models 

trained on the remaining 4 sets. Starting with 

only one of the 4 sets as the training set, four 

rounds of training and testing were conducted. At 

each stage one whole set of dialogue was added 

to the existing training set. The whole exercise 

was conducted 5 times, resulting in a total of 

5x5=25 observations per evaluation. Each point 

in Figure 2 illustrates the UAR averaged over 

these 25 observations by the offline model (JRIP 

learner using feature set 6, cf. row 6 in Table 5). 

The performance curves and their gradients sug-

gest that all the models for the three datasets are 

likely to benefit from more training data, particu-

larly the CamInfo dataset.   

 
Figure 2: Gains in UAR made by the offline model 

(JRIP learner and feature set BoC+ DrW+DrC) 

 

Training set → CamInfo Let's Go SweCC 

Test set UAR UAR UAR 

CamInfo - 0.72 0.54 

Let's Go 0.62 - 0.73 

SweCC 0.53 0.89 - 
Table 6: Cross-corpus performances of offline model 

(JRIP learner and feature set BoC+ DrW+DrC) 

7.5 A model for cross-corpus analysis 

We also investigated whether a model trained on 

annotated data from one dialogue system can be 

used for automatic detection of problematic sys-

tem turns in interaction logs from another dia-

logue system. Table 6 illustrates the performanc-

es of the offline model (JRIP learner using fea-

ture set 6, cf. row 6 in Table 5). This experiment 

mostly used numeric features such as turn length, 

word error rate, and dialogue act features that are 

generic across domains, e.g., request for infor-

mation, confirmations, and disconfirmations. 

We observed that using the Let’s Go dataset as 

the training set we can achieve a UAR of 0.89 

for SweCC and 0.72 for CamInfo. Although both 

SweCC and Let’s Go use explicit clarifications, 

since SweCC dataset exhibits limited error pat-

terns a UAR of only 0.73 is obtained for Let’s 

Go when using a model trained on SweCC.  

Models trained on CamInfo seem more appropri-

ate for Let’s Go than for SweCC. 

8 Conclusions and Future work 

We have presented a data-driven approach to 

detection of problematic system turns by auto-

matic analysis of dialogue system interaction 

logs. Features that are generic across dialogue 

systems were automatically extracted from the 

system logs (of ASR, NLU and NLG modules) 

and the manual transcriptions. We also created 

abstract features to estimate discourse phenome-

na such as user repetitions and corrections, and 

discourse progression. The proposed scheme has 

been evaluated on interaction logs of three dia-

logue systems that differ in their domain of ap-

plication, dialogue modeling, dialogue strategy 

and language. The trained models achieved sub-

stantially better recall on the three datasets. We 

have also shown that it is possible to achieve rea-

sonable performance using models trained on 

one system to detect errors in another system.  

We think that the models described here can 

be used in many different ways. A simple appli-

cation of the online models could be to build an 

“error awareness” module in a dialogue system. 

For offline analysis, the late error detection mod-

el could be trained on a subset of data collected 

from a system, and then applied to the whole 

corpus in order to find problematic turns. Then 

only these turns would need to be transcribed and 

analyzed further, reducing a lot of manual work. 

However, we also plan in a next step to not only 

find instances of miscommunication automatical-

ly, but also summarize the main root causes of 

the problems, in order to help the dialogue de-

signer to mitigate them. This could include ex-

tensions of grammars and vocabularies, prompts 

that need rephrasing, or lack of proper error han-

dling strategies.  
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Appendix A: Table 7 and Table 8 illustrate the predictions made by the offline model using JRIP 

rule learner and the combined features: BoC+DrW+DrC (cf. row 6, Table 5). Colum headings T and P 

contain the training and predicted labels, respectively. is PROBLEMATIC,  is NOT-PROBLEMATIC, 

and   is an instance of non-understanding therefore excluded from the learning task. Table 9 illus-

trates the top rules learned by the JRIP learner, for each of the two datasets. 

   T P 

1 S: Welcome to Cambridge system. How may I help you?   

2 U: I want to find a [I want to find a pub]   

3 S: The Avery is a great pub.    

4 U: What is the phone number [what is the phone number]   

5 S: The phone number of The Avery is 01223 323405.   

6 U: Does it have internet [Uh uh have in there]   

7 S: Can I help you with anything else?   

8 U: Does that pub have internet [Where is that er have in]   

9 S: The Avery is on 69-73 Regent Street.   

10 U: Thank you bye.   

Table 7: Offline error detection on a CamInfo interaction. Text within [] is the top ASR hypothesis. 

 

7 S: What can I do for you?   

8 U: Next bus [65e]   

9 S: The 65E. Did I get that right?   

10 U No [no]   

11 S: What can I do for you?   

12 U: 61A [61A]   

13 S: The 61A. Did I get that right?   

14 U: Yes [yes]   

15 S: Alright Where would you like to leave from?   

16 U: Atwood [Duquensne]   

17 S: For example, you can say, NORTH BRADDOCK, FORBES AND 

MURRAY, or DOWNTOWN. 

  

18 U: Forbes and Atwood  [Forbes big at Atwood in wall]   

19 S: ATWOOD IN WALL. Did I get that right?   

20 U: No [no]   

Table 8: Offline error detection on a Let’s Go interaction. Text within [] is the top ASR hypothesis 

 

The top  rule learned by JRIP on CamInfo dataset The top 2 rules learned by JRIP on Let’s Go dataset 

1. (ctc-svp-usr-2 <= 0.5) and  

    (frc-new-slt-asr-usr-2 <= 0.5)                

=>class=problematic (83.0/9.0) 

 

Rule 1: If the correctly transferred concept rate for 

user turn 2 is <= 0.5 and the number of new slots men-

tioned are <= 0.5 then anticipate the system turn 3 as 

PROBLEMATIC. A total of 83 instances were labeled 

problematic by this rule, 9 of which were false predic-

tions.  

 

Summary: The user repeats (rephrases) to correct the 

system’s mistake in grounding. However, the system 

does not have a good model to detect this and therefore 

the system response is most likely to be perceived in 

appropriate by the user. 

1. (wer-tr-usr-2 >= 20) and (4-dact-tr_no >= 1)  

            => class=problematic (121.0/3.0) 

2. (ctc-svp-usr-2 <= 0.5) and (4-dact-tr_yes <= 0)  

            => class=problematic (115.0/23.0) 

Rule 1: If WER for user turn 2 is more than 20 and the 

user d-act in turn 4 is “no” then the system response in 

turn 3 was PROBLEMATIC. 

 

Rule 2: Similar to the Rule 1 but uses different fea-

tures. If correctly transferred concept rate for user turn 

2 is <= 0.5 and in turn 4 the user act was not “yes” 

then the system action in turn 3 was PROBLEMATIC. 

 

Summary: Model uses late error detection cues such 

as marked disconfirmations to assess system actions. 

 

Table 9: The top rules learned by the JRIP model for offline error detection on the CamInfo and Let’s Go da-

tasets (cf. row 6, Table 5). 
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