
Proceedings of the SIGDIAL 2015 Conference, pages 354–363,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Automatic Detection of Miscommunication

in Spoken Dialogue Systems

Raveesh Meena José Lopes Gabriel Skantze Joakim Gustafson

KTH Royal Institute of Technology

School of Computer Science and Communication

Stockholm, Sweden

{raveesh,jdlopes,skantze,jkgu}@kth.se

Abstract

In this paper, we present a data-driven

approach for detecting instances of mis-

communication in dialogue system inter-

actions. A range of generic features that

are both automatically extractable and

manually annotated were used to train

two models for online detection and one

for offline analysis. Online detection

could be used to raise the error awareness

of the system, whereas offline detection

could be used by a system designer to

identify potential flaws in the dialogue

design. In experimental evaluations on

system logs from three different dialogue

systems that vary in their dialogue strate-

gy, the proposed models performed sub-

stantially better than the majority class

baseline models.

1 Introduction

Miscommunication is a frequent phenomenon in

both human–human and human–machine interac-

tions. However, while human conversational

partners are skilled at detecting and resolving

problems, state-of-the-art dialogue systems often

have problems with this. Various works have

been reported on detection of errors in human–

machine dialogues. While the common theme

among these works is to use error detection for

making online adaption of dialogue strategies

(e.g., implicit vs. explicit confirmations), they

differ in what they model as error. For example,

Walker et al. (2000) model dialogue success or

failure as error, Bohus & Rudnicky (2002) refers

to lack of confidence in understanding user in-

tentions as error, Schmitt et al. (2011) use the

notion of interaction quality in a dialogue as an

estimate of errors at arbitrary point in a dialogue,

Krahmer et al. (2001) and Swerts et al. (2000)

model misunderstandings on the system’s part as

errors.

Awareness about errors in dialogues, however,

has relevance not only for making online deci-

sions, but also for dialogue system designers.

Access to information about in which states the

dialogue fails or runs into trouble could enable

system designers to identify potential flaws in

the dialogue design. Unfortunately, this type of

error analysis is typically done manually, which

is laborious and time consuming. Automation of

this task has high relevance for dialogue system

developers, particularly for interactive voice re-

sponse (IVR) systems.

In this paper, we present a data-driven ap-

proach for detection of miscommunication in

dialogue system interactions through automatic

analysis of system logs. This analysis is based on

the assumption that the onus of miscommunica-

tion is on the system. Thus, instances of non-

understandings, implicit and explicit confirma-

tions based on false assumptions, and confusing

prompts are treated as problematic system ac-

tions that we want to detect in order to avoid

them. Since our main goal is to integrate the ap-

proach in a toolkit for offline analysis of interac-

tion logs we focus here largely on models for

offline detection. For this analysis, we have the

full dialogue context (backward and forward) at

our disposal, and use features that are both auto-

matically extractable from the system logs and

manually annotated. However, we also report the

performances of these models using only online

features and limited dialogue context, and

demonstrate our models’ suitability for online

use in detection of potential problems in system

actions.

354

We evaluate our approach on datasets from

three different dialogue systems that vary in their

dialogue modeling, dialogue strategy, language,

user types. We also report findings from an ex-

perimental work on cross-corpus analysis: using

a model trained on logs from one system for

analysis of interaction logs from another system.

Thus the novelty of work reported here lies in

our models’ relevance for offline as well as

online detection of miscommunications, and the

applicability and generalizability of features

across dialogue systems and domains.

The paper is structured as follows: we report

the relevant literature in Section 2 and establish

the ground for our work. In Section 3 we de-

scribe the three datasets used. The annotation

scheme is discussed in Section 4. The complete

set of features explored in this work is presented

in Section 5. The experimental method is de-

scribed in Section 6 and results are reported in

Section 7. We conclude and outline our future

work in Section 8.

2 Background

One way to analyze miscommunication is to

make a distinction between non-understanding

and misunderstanding (Hirst et al., 1994). While

non-understandings are noticed immediately by

the listeners, the information about misunder-

standings may surface only at a later stage in the

dialogue. This can be illustrated with the follow-

ing human–machine interaction:

1 S: How may I help you?

2 U: Can you recommend a Turkish restau-

rant in downtown area?

3 S: Could you please rephrase that?

4 U: A Turkish restaurant in downtown.

5 S: Clowns, which serves Italian food, is a

great restaurant in downtown area.

6 U: I am looking for a Turkish restaurant

Table 1: An illustration of miscommunication in hu-

man-machine interaction. S and U denote system and

user turns respectively. User turns are transcriptions.

The system, in turn 3, expresses that a non-

understanding of user intentions (in turn 2) has

occurred. In contrast, in turn 5 – following the

best assessment of user turn 4 – the system

makes a restaurant recommendation, but misun-

derstands the user’s choice of cuisine. However,

this problem does not become evident until turn

6. The various approaches to detection of errors

presented in the literature can be broadly classi-

fied in two categories – early error detection and

late error detection – based on at what turns in

the dialogue the assessments about errors are

made (Skantze, 2007). In early error detection

approaches the system makes an assessment of

its current hypothesis of what the user just said.

Approaches for detection of non-understanding,

such as confidence annotation (Bohus & Rud-

nicky, 2002), fall in this category. In contrast,

late error detection aims at finding out whether

the system has made false assumptions about

user’s intentions in previous turns. These distinc-

tions are vital from our viewpoint as they point

out the turns in dialogue that are to be assessed

and the scope of dialogue context that could be

exploited to make such an assessment.

We now present some of the related works and

highlight what has been modeled as error, stage

in dialogue the assessment about errors are made,

and type of features and span of dialogue context

used. Following this we discuss the motivations

and distinct contributions of our work.

 Walker et al. (2000) presented a corpus based

approach that used information from initial sys-

tem-user turn exchanges alone to forecast wheth-

er the ongoing dialogue will fail. If the dialogue

is likely to fail the call could be transferred to a

human operator right away. A rule learner, RIP-

PER (Cohen, 1995), was trained to make a fore-

cast about dialogue failure after every user turn.

The model was trained on automatically extract-

ed features from automatic speech recognizer

(ASR), natural language understanding (NLU)

and dialogue management (DM) modules.

Bohus & Rudnicky (2002) presented an ap-

proach to utterance level confidence annotation

which aims at making an estimate of the sys-

tem’s understanding of the user’s utterance. The

model returns a confidence score which is then

used by the system to select appropriate dialogue

strategy, e.g. express non-understanding of user

intention. The approach combines features from

ASR, NLU and DM for determining the confi-

dence score using logistic regression.

Schmitt et al. (2011) proposed a scheme to

model and predict the quality of interaction at

arbitrary points during an interaction. The task

for the trained model was to predict a score, from

5 to 1 indicating very high to very poor quality of

interaction, on having seen a system-user turn

exchange. A Support Vector Machine model was

trained on automatically extractable features

from ASR, NLU and DM modules. They ob-

served that additional information such as user’s

355

affect state (manually annotated) did not help the

learning task.

In their investigations of a Dutch Train time-

table corpus, Krahmer et al., 2001) observed that

dialogue system users provide positive and nega-

tive cues about misunderstandings on the sys-

tem’s part. These cues include user feedback,

such as corrections, confirmations, and marked

disconfirmations, and can be exploited for late

error detection.

Swerts et al. (2000) trained models for auto-

matic prediction of user corrections. They ob-

served that user repetition (or re-phrasing) is a

cue to a prior error made by the system. They

used prosodic features and details from the ASR

and the DM modules to train a RIPPER learner.

Their work highlights that user repetitions are

useful cue for late error detection.

For our task, we have defined the problem as

detecting miscommunication on the system’s

part. This could be misunderstandings, implicit

and explicit confirmations based on false as-

sumptions, or confusing system prompts. Since

instances of non-understandings are self-evident

cases of miscommunication we exclude them

from the learning task. Detecting the other cases

of miscommunications is non-trivial as it re-

quires assessment of user feedback. The pro-

posed scheme can be illustrated in the following

example interaction:

1 S: How may I help you?

2 U: Sixty One D

3 S: The 61C.What’s the departure station?

4 U: No

Table 2: An implicit confirmation based on false as-

sumption is an instance of problematic system action.

User turns are manual transcriptions

In the context of these four turns our task is to

detect whether system turn 3 is problematic. If

we want to use the model online for early error

detection, the system should be able to detect the

problem using only automatically extractable

features from turn 1-3. Unlike confidence anno-

tation (Bohus & Rudnicky, 2002), we also in-

clude what the system is about to say in turn 3

and make an anticipation (or forecast) of whether

this turn would lead to a problem. Thus, it is pos-

sible for a system that has access to such a model

to assess different alternative responses before

choosing one of them. Besides using details from

ASR and SLU components (exploited in the re-

ported literature) the proposed early model is

able to use details from Dialogue Manager and

Natural Language Generation modules.

Next, we train another model that extends the

anticipation model by also considering the user

feedback in turn 4, similar to Krahmer et al.,

2001) and Swerts et al. (2000). Such a model can

also be used online in a dialogue system in order

to detect errors after-the-fact, and engage in late

error recovery (Skantze, 2007). The end result is

a model that combines both anticipation and user

feedback to make an assessment of whether sys-

tem turns were problematic. We refer to this

model as the late model.

Since both the early and late models are to be

used online, they only have access to automati-

cally extractable features. However, we also train

an offline model that can be used by a dialogue

designer to find potential flaws in the system.

This model extends the late model in that it also

has access to features that are derived from man-

ual annotations in the logs.

In this work we also investigated whether

models trained on logs of one system can be used

for error detection in interaction logs from a dif-

ferent dialogue system. Towards this we trained

our models on generic features and evaluated our

approach on system logs from three dialogue

systems that differ in their dialogue strategy.

3 Corpora

Dialogue system logs from two publicly availa-

ble corpora and one from a commercially de-

ployed system were used for building and evalu-

ating the three models. The first dataset is from

the CamInfo Evaluation Dialogues corpus. The

corpus comprises of spoken interactions between

the Cambridge Spoken Dialogue System and

users, where the system provides restaurant rec-

ommendations for Cambridge. The dialogue sys-

tem is a research system that uses dialogue-state

tracking for dialogue management (Jurcicek et

al., 2012). As the system is a research prototype,

users of these systems are not real users in real

need of information but workers recruited via the

Amazon Mechanical Turk (AMT). Nevertheless,

the dialogue system is state-of-the-art in statisti-

cal models for dialogue management. From this

corpus 179 dialogues were used as the dataset,

which we will refer to as the CamInfo set.

The second corpus comes from the Let’s Go

dialogue system. Let’s Go (Raux et al., 2005) is

developed and maintained by the Dialogue Re-

search Center (DialRC) at Carnegie Mellon Uni-

versity that provides bus schedule information

356

for Pittsburgh’s Port Authority buses during off-

peak hours. The users of Let’s Go system are real

users, which are in real need of the information.

This makes the dataset interesting for us. The

dataset used here consists of 41 dialogues select-

ed from the data released for the 2010 Spoken

Dialogue Challenge (Black et al., 2010).

The third dataset, SweCC – Swedish Call

Center Corpus, is taken from a corpus of call

logs from a commercial customer service provid-

er in Sweden providing services in various do-

mains. The system tries to extract some details

from customers before routing the call to a hu-

man operator in the concerned department.

Compared to CamInfo and Let’s Go datasets, the

SweCC corpus is from a commercially deployed

system, with real users, and the interactions are

in Swedish. From this corpus 219 dialogues were

selected. Table 3 provides a comparative sum-

mary of the three datasets.

CamInfo Let’s Go SweCC

Research Research Commercial

Hired users Real users Real users

Mostly implicit

confirmation

Mostly explicit

confirmation

Only explicit

confirmation

Stochastic Rule based Rule based

English English Swedish

179 dialogues 41 dialogues 219 dialogues

5.2 exchanges

on average per

dialogue

19 exchanges

on average per

dialogue

6.6 exchanges

on average per

dialogue

Table 3: A comparative summary of the three datasets

4 Annotations

We take a supervised approach for detection of

problematic system turns in the system logs. This

requires each system turn in the training datasets

to be labeled as to whether they are PROBLEMAT-

IC (if the system turn reveals a miscommunica-

tion) or NOT-PROBLEMATIC. There are different

schemes for labeling data. One approach is to ask

one or two experts (having knowledge of the

task) to label data and use inter-annotator agree-

ment to set an acceptable goal for the trained

model. Another approach is to use a few non-

experts but use a set of guidelines so that the an-

notators are consistent (and to achieve a higher

Kappa score, (Schmitt et al., 2011)). We take the

crowdsourcing approach for annotating the

CamInfo data and use the AMT platform. Thus,

we avoid using both experts and guidelines. The

key however is to make the task simple for the

AMT-workers. Based on our earlier discussion

on the role of dialogue context and type of errors

assessed in early and late error detection, we set

up the annotation tasks such that AMT workers

saw two dialogue exchanges (4 turns in total), as

shown in Table 2:. The workers were asked to

label system turn 3 as PROBLEMATIC or NOT-

PROBLEMATIC, depending on whether it was ap-

propriate or not, or PARTIALLY-PROBLEMATIC

when it is not straightforward to choose between

the former two labels.

In the Let’s Go dataset we observed that

whenever the system engaged in consecutive

confirmation requests the automatically extracted

sub-dialogue (any four consecutive turns) did not

always result in a meaningful sub-dialogue.

Therefore the Let’s Go data was annotated by

one of the co-authors of the paper. The SweCC

data could not be used on AMT platform due to

the agreement with the data provider, and was

annotated by the same co-author. See Appendix

A for sample of annotated interactions.

Since we had access to the user feedback to

the questionnaire for the CamInfo Evaluation

Dialogues corpus, we investigated whether the

problematic turns identified by the AMT-

workers reflect the overall interaction quality, as

experienced by the users. We observed a visibly

strong correlation between the user feedback and

the fractions of system turn per dialogue labeled

as PROBLEMATIC by the AMT-workers. Figure 1

illustrates the correlation for one of the four

questions in the questionnaire. This shows that

the detection and avoidance of problematic turns

(as defined here), will have bearing on the users’

experience of the interaction.

Each system turn in the CamInfo dataset was

initially labeled by two AMT-workers. In case of

a tie, one more worker was asked to label that

instance. In total 753 instances were labeled in

the first step. We observed an inter-annotators

agreement of 0.80 (Fleiss Kappa) among the an-

notators and only 113 instances had a tie and

were annotated by a third worker. The label with

the majority vote was chosen as the final class

label for instances with ties in the dataset. Table

4 shows the distributions for the three annotation

categories seen in the three datasets. Due to the

imbalance of the PARTIALLY-PROBLEMATIC class

in the three datasets we excluded this class from

the learning task and focus only on classifying

system turns as either PROBLEMATIC or NOT-

PROBLEMATIC. System turns expressing non-

understanding were also excluded from the learn-

ing task. The final datasets had the following

representation for the PROBLEMATIC class:

CamInfo (615) 86.0%, Let’s Go (744) 57.5, and

357

for SweCC (871) 65.7%. To mitigate the high

class imbalance in CamInfo another 51 problem-

atic dialogues (selected following the correla-

tions of user feedback from Figure 1) were anno-

tated by a second co-author. The resulting

CamInfo dataset had 859 instances of which

75.3% are from PROBLEMATIC class.

Figure 1: Correlation of system turns annotated as

problematic with user feedback

Dataset

(#instances)
CamInfo

(753)
Let’s Go

(760)
SweCC

(968)

PROBLEMATIC 16 % 42% 31%

NOT-

PROBLEMATIC
73 % 57% 61%

PARTIALLY-

PROBLEMATIC
11 % 1% 8%

Table 4: Distribution of the three annotation catego-

ries across the three datasets

5 Features

We wanted to train models that are generic and

can be used to analyze system logs from different

dialogue systems. Therefore we trained our mod-

els on only those features that were available in

all the three datasets. Below we describe the

complete feature set, which include features and

manual annotations that were readily available in

system logs. A range of higher-level features

were also derived from the available features.

Since the task of the three dialogue system is to

perform slot-filling we use the term concept to

refer to slot-types and slot-values.

 ASR: the best hypothesis, the recognition

confidence score and the number of words.

NLU: user dialogue act (the best parse hypothe-

sis – nlu_asr), the best parse hypothesis obtained

on manual transcription (nlu_trn), number of

concepts in nlu_asr and nlu_trn, concept error

rate: the Levenshtein distance between nlu_asr

and nlu_trn, correctly transferred concepts: the

fraction of concepts in nlu_trn observed in

nlu_asr. NLG: system dialogue act, number of

concepts in system act, system prompt, and

number of words in the prompt.

Manual annotations: manual transcriptions of

the best ASR hypothesis, number of words in the

transcription, word error rate: the Levenshtein

distance between the recognized hypothesis and

transcribed string, correctly transferred words:

fraction of words in the transcription observed in

the ASR hypothesis.

Discourse features: position in dialogue: frac-

tion of turns completed up to the decision point.

New information: fraction of new words (and

concepts) in the successive prompts of a speaker.

Repetition: Two measures to estimate repetition

in successive speaker turns were used: (i) cosine

similarity, the cosine angle between vector repre-

sentation of the two turns and (ii) the number of

common concepts. Marked disconfirmation:

whether the user response to a system request for

confirmation has a marked disconfirmation (e.g.,

“no”, “not”). Corrections: the number of slots-

values in previous speaker turn that were given a

new value in the following turn – by either the

dialogue partner or the same speaker – were used

as an estimate of user corrections, false assump-

tions and rectifications by the system, and

change in user intentions.

6 Models and Method

As mentioned earlier, the early and late models

are aimed at online use in dialogue systems,

whereas the offline model is for offline analysis

of interaction logs. A window of 4 turns, as dis-

cussed in Section 2, is used to limit the dialogue

context for extraction of features. Accordingly,

the early model uses features from turns 1-3; the

late model uses features from the complete win-

dow, turns 1-4. The offline model like the late

model uses the complete window, but additional-

ly uses the manual transcription features or fea-

tures derived from them, e.g. word error rate.

For the purpose of brevity, we report four sets

of feature combinations: (i) Bag of words repre-

sentation of system and user turns (BoW), (ii)

DrW: a set containing all the features derived

from the words in the user and system turns, e.g.,

turn length (measured in number of words), co-

sine similarity in speaker turns as an estimate of

speaker repetition, (iii) Bag of concept represen-

tation of system and user dialogue acts (BoC),

and (iv) DrC: a set with all the features derived

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

strongly
agree

agree slightly
agree

lightly
disagree

disagreeP
R

O
B

LE
M

A
TI

C
 t

u
rn

s
in

 a
 d

ia
lo

gu
e

 (
%

)

User feedback

The system understood me well.

358

from dialogue acts, e.g., turn length (measured in

number of concepts).

Given the skew in distribution of the two clas-

ses in the three datasets (cf. Section 4) accuracy

alone is not a good evaluation metric. A model

can achieve high classification accuracy by simp-

ly predicting the value of the majority class (i.e.

NOT-PROBLEMATIC) for all predictions. Howev-

er, since we are equally interested in the recall

for both PROBLEMATIC and NOT-PROBLEMATIC

classes, we use the un-weighted average recall

(UAR) to assess the model performance, similar

to Higashinaka et al., 2010).

We explored various machine learning algo-

rithms available in the Weka toolkit (Hall et al.,

2009), but report here models trained using two

different algorithms: JRIP, a Weka implementa-

tion of the RIPPER rule learning algorithm, and

Support Vector Machine (SVM) with linear ker-

nel. The rules learned by JRIP offer a simple in-

sight into what features contribute in decision

making. The SVM algorithm is capable of trans-

forming the feature space into higher dimensions

and learns sophisticated decision boundaries. The

figures reported here are from a 10-fold cross-

validation scheme for evaluation.

7 Results

7.1 Baseline

To assess the improvements made by the trained

models we need a baseline model to draw com-

parisons. We can use the simple majority class

baseline model that will predict the value of ma-

jority class for all predictions. The UAR for such

a model is shown in Table 5 (row 1). The UAR

for all the three datasets is 0.50.

All the three dialogue systems employ confir-

mation strategies, which are simple built-in

mechanisms for detecting miscommunication

online. Therefore, a model trained using the

marked disconfirmation feature alone could be a

more reasonable baseline model for comparison.

Row 2 in Table 5 (feature category MDisCnf)

shows the performances for such a baseline. The

figures from late and offline models suggest that

while this feature is not at all useful for CamInfo

dataset (UAR = 0.50 for both JRIP and SVM) it

makes substantial contributions to models for

Let’s Go and SweCC datasets. The late model,

using the online features for marked disconfirma-

tion and the JRIP algorithm obtained a UAR of

0.68 for Let’s Go and 0.87 for SweCC. The cor-

responding offline models, which use the manual

feature in addition, achieve even better results for

the two datasets: UAR of 0.74 and 0.89 respec-

tively. These figures clearly illustrate two things:

First, while Let’s Go and SweCC systems often

employ explicit confirmation strategy, CamInfo

hardly uses it. Second, the majority of problems

in the Let’s Go and SweCC are due to explicit

confirmations based on false assumptions.

7.2 Word-related features

Using the bag of word (BoW) feature set

alone, we observe that for CamInfo dataset the

SVM achieved a UAR of 0.75 for the early mod-

el, 0.79 for the late model, and 0.80 for the of-

fline model. These are comprehensive gains over

the baseline of 0.50. The figures for the early

model suggest that by looking only at (i) the

most recent user prompt, (ii) the system prompt

preceding it, and (ii) the current system prompt

which is to be executed, the model can antici-

pate, well over chance whether the chosen sys-

tem prompt would lead to a problem.

For the Let’s Go and SweCC datasets, using

the BoW feature set the late model achieved

modest gains in performance over the corre-

sponding MDisCnf baseline model. For example,

using the SVM algorithm the late model for Let’s

Go achieved a UAR of 0.81. This is an absolute

gain of 0.13 points over the UAR of 0.68

achieved using the marked disconfirmation fea-

ture set alone. This large gain can be attributed

partly to the early model (a UAR of 0.74) and

the late error detection features which add anoth-

er 0.07 absolute points raising the UAR to 0.81.

For the SweCC dataset, although the gains made

by the JRIP learner models over the MDisCnf

baseline are marginal, the fact that the late model

gains in UAR scores over early model points to

the contributions of words that indicate user dis-

confirmations, e.g. no or not.

Next, on using BoW feature set in combina-

tion with the DrW feature set that contains fea-

tures derived from words, such as prompt length

(number of words), speaker repetitions, ASR

confidence score, etc., we achieved both minor

gains and losses for the CamInfo and Let’s Go

dataset. The offline models for Let’s Go (both

JRIP as well as SVM) made a gain of approx.

0.04 over the late models. A closer look at the

rules learned by the JRIP model indicates that

features such as word error rate, cosine similarity

measure of user repetition, number of words in

user turns, contributed to rule learning.

In the SweCC dataset we observe that for all

the early and late models the combination of

BoW and DrW feature sets offered improved

359

performances over using BoW alone. The rules

learned by the JRIP indicate that in addition to

the marked disconfirmation features the model is

able to make use of features that indicate whether

the system takes the dialogue forward, the ASR

confidence score for user turns, the position in

dialogue, and the user turn lengths.

7.3 Concept-related features

Next, we analyzed the model performances using

the bag of concept (BoC) feature set alone. A

cursory look at the performances in row 5 in Ta-

ble 5 suggest that for both CamInfo and Let’s Go

the BoC feature set offers modest and robust im-

provement over using BoW feature set alone. In

comparison, for the SweCC dataset the gains

made by the models over using BoW alone are

marginal. This is not surprising given the high

UARs achieved for SweCC corresponding to the

MDisCnf feature set (row 2), suggesting that

most problems in SweCC dataset are inappropri-

ate confirmation requests, and detection of user

disconfirmations is a good enough measure.

We also observed that the contribution of the

late model is much clearly seen in Let’s Go and

SweCC datasets while this is not true for CamIn-

fo. In view of the earlier observation that explicit

confirmations are seldom seen in CamInfo we

can say that users are left to use strategies such

as repetitions to correct false assumptions by the

system. These cues of corrections are much

harder to assess than the marked disconfirma-

tions. The best performances were in general ob-

tained by the offline models: UAR of 0.82 on

CamInfo dataset using SVM algorithm and 0.88

for Let’s Go using JRIP. Some of the features

used by the JRIP rule learner include: number of

concepts in parse hypothesis being zero, the sys-

tem dialogue act indicating open prompts “How

may I help you?” during the dialogue (suggesting

a dialogue restart), and slot types which the sys-

tem often had difficulty understanding. These

were user requests for price range and postal

codes in the CamInfo dataset, and time of travel

and place of arrival in the Let’s Go dataset. As

the NLU for manual transcription is not available

for the SweCC dataset the corresponding row for

the offline model in Table 5 is empty.

Next, we trained the models on the combined

feature set, i.e. BoC, DrC and DrW sets. We ob-

served that while majority of models achieved

marginal gains over using BoC set alone, the

ones that did lose did not exhibit a major drop in

performance. The best performance for the

CamInfo is obtained by the offline model (using

the SVM algorithm): a UAR of 0.84. For Let’s

Go the JRIP model achieved the best UAR, 0.87

for the offline model. For the SweCC the late

model performed better than the offline model

and achieved a UAR of 0.93 using the JRIP

learner. These are comprehensive gains over the

two baseline models. Appendix A shows two

examples of offline error detection.

7.4 Impact of data on model performances

We also analyzed the impact of amount of train-

ing data used on model performances. A hold-out

validation scheme was followed. A dataset was

first randomized and then split into 5 sets, each

containing equal number of dialogues. Each of

SNr. CamInfo Let’s Go SweCC

UAR UAR UAR

1. Majority class baseline 0.50 0.50 0.50

 Feature Set Model JRip SVM JRip SVM JRip SVM

2. MDisCnf
Late 0.50

0.50
0.50
0.50

0.68
0.74

0.68
0.73

0.87
0.89

0.83
0.84 Offline

3. BoW

Early 0.72
0.73
0.78

0.75
0.79
0.80

0.72
0.80
0.84

0.74
0.81
0.82

0.78
0.88
0.90

0.80
0.88
0.89

Late

Offline

4.
BoW+DrW

Early 0.75
0.71
0.77

0.77
0.82
0.79

0.71
0.82
0.85

0.75
0.80
0.84

0.84
0.92
0.92

0.82
0.91
0.90

Late

Offline

5. BoC

Early 0.80
0.81
0.81

0.81
0.82
0.82

0.76
0.86
0.88

0.76
0.84
0.85

0.81
0.89

-

0.81
0.88

-
Late

Offline

6. BoC+DrC+DrW

Early 0.80
0.78
0.82

0.83
0.82
0.84

0.70
0.84
0.87

0.80
0.85
0.86

0.84
0.93
0.92

0.82
0.89
0.89

Late

Offline
Table 5 : Performance of the various early, late and offline models for error detection on the three datasets

360

the set was used as a hold-out test set for models

trained on the remaining 4 sets. Starting with

only one of the 4 sets as the training set, four

rounds of training and testing were conducted. At

each stage one whole set of dialogue was added

to the existing training set. The whole exercise

was conducted 5 times, resulting in a total of

5x5=25 observations per evaluation. Each point

in Figure 2 illustrates the UAR averaged over

these 25 observations by the offline model (JRIP

learner using feature set 6, cf. row 6 in Table 5).

The performance curves and their gradients sug-

gest that all the models for the three datasets are

likely to benefit from more training data, particu-

larly the CamInfo dataset.

Figure 2: Gains in UAR made by the offline model

(JRIP learner and feature set BoC+ DrW+DrC)

Training set → CamInfo Let's Go SweCC

Test set UAR UAR UAR

CamInfo - 0.72 0.54

Let's Go 0.62 - 0.73

SweCC 0.53 0.89 -
Table 6: Cross-corpus performances of offline model

(JRIP learner and feature set BoC+ DrW+DrC)

7.5 A model for cross-corpus analysis

We also investigated whether a model trained on

annotated data from one dialogue system can be

used for automatic detection of problematic sys-

tem turns in interaction logs from another dia-

logue system. Table 6 illustrates the performanc-

es of the offline model (JRIP learner using fea-

ture set 6, cf. row 6 in Table 5). This experiment

mostly used numeric features such as turn length,

word error rate, and dialogue act features that are

generic across domains, e.g., request for infor-

mation, confirmations, and disconfirmations.

We observed that using the Let’s Go dataset as

the training set we can achieve a UAR of 0.89

for SweCC and 0.72 for CamInfo. Although both

SweCC and Let’s Go use explicit clarifications,

since SweCC dataset exhibits limited error pat-

terns a UAR of only 0.73 is obtained for Let’s

Go when using a model trained on SweCC.

Models trained on CamInfo seem more appropri-

ate for Let’s Go than for SweCC.

8 Conclusions and Future work

We have presented a data-driven approach to

detection of problematic system turns by auto-

matic analysis of dialogue system interaction

logs. Features that are generic across dialogue

systems were automatically extracted from the

system logs (of ASR, NLU and NLG modules)

and the manual transcriptions. We also created

abstract features to estimate discourse phenome-

na such as user repetitions and corrections, and

discourse progression. The proposed scheme has

been evaluated on interaction logs of three dia-

logue systems that differ in their domain of ap-

plication, dialogue modeling, dialogue strategy

and language. The trained models achieved sub-

stantially better recall on the three datasets. We

have also shown that it is possible to achieve rea-

sonable performance using models trained on

one system to detect errors in another system.

We think that the models described here can

be used in many different ways. A simple appli-

cation of the online models could be to build an

“error awareness” module in a dialogue system.

For offline analysis, the late error detection mod-

el could be trained on a subset of data collected

from a system, and then applied to the whole

corpus in order to find problematic turns. Then

only these turns would need to be transcribed and

analyzed further, reducing a lot of manual work.

However, we also plan in a next step to not only

find instances of miscommunication automatical-

ly, but also summarize the main root causes of

the problems, in order to help the dialogue de-

signer to mitigate them. This could include ex-

tensions of grammars and vocabularies, prompts

that need rephrasing, or lack of proper error han-

dling strategies.

Acknowledgement

We would like to thank our colleagues Giam-

piero Salvi and Kalin Stefanov for their valuable

discussions on machine learning. We also want

to thank the CMU and Cambridge research

groups for making the respective corpus publicly

available. This research is supported by the EU

project SpeDial – Spoken Dialogue Analytics,

EU grant # 611396.

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

U
A

R

Number of training instances

CamInfo

Let's Go

SweCC

361

Reference

Black, A. W., Burger, S., Langner, B., Parent, G., &

Eskenazi, M. (2010). Spoken Dialog Challenge

2010.. In Hakkani-Tür, D., & Ostendorf, M. (Eds.),

SLT (pp. 448-453). IEEE.

Bohus, D., & Rudnicky, A. (2002). Integrating multi-

ple knowledge sources for utterance-level confi-

dence annotation in the CMU Communicator spo-

ken dialog system. Technical Report CS-190, Car-

negie Mellon University, Pittsburgh, PA.

Cohen, W. (1995). Fast effective rule induction. In

Proceedings of the Twelfth International Confer-

ence on Machine Learning.

Hall, M., Frank, E., Holmes, G., Pfahringer, B.,

Reutemann, P., & Witten, I. H. (2009). The WEKA

Data Mining Software: An Update. SIGKDD Ex-

plorations, 11(1).

Higashinaka, R., Minami, Y., Dohsaka, K., & Me-

guro, T. (2010). Modeling User Satisfaction Tran-

sitions in Dialogues from Overall Ratings. In Pro-

ceedings of the SIGDIAL 2010 Conference (pp. 18-

27). Tokyo, Japan: Association for Computational

Linguistics.

Hirst, G., McRoy, S., Heeman, P., Edmonds, P., &

Horton, D. (1994). Repairing conversational mis-

understandings and non-understandings. Speech

Communication, 15, 213-230.

Jurcicek, F., Thomson, B., & Young, S. (2012). Rein-

forcement learning for parameter estimation in sta-

tistical spoken dialogue systems. Computer Speech

& Language, 26(3), 168-192.

Krahmer, E., Swerts, M., Theune, M., & Weegels, M.

(2001). Error detection in spoken human-machine

interaction. International Journal of Speech Tech-

nology, 4(1), 19-29.

Raux, A., Langner, B., Bohus, D., Black, A. W., &

Eskenazi, M. (2005). Let's go public! Taking a

spoken dialog system to the real world.. In INTER-

SPEECH (pp. 885-888). ISCA.

Schmitt, A., Schatz, B., & Minker, W. (2011). Model-

ing and Predicting Quality in Spoken Human-

computer Interaction. In Proceedings of the SIG-

DIAL 2011 Conference (pp. 173-184). Strouds-

burg, PA, USA: Association for Computational

Linguistics.

Skantze, G. (2007). Error Handling in Spoken Dia-

logue Systems. Doctoral dissertation, KTH.

Swerts, M., Hirschberg, J., & Litman, D. (2000). Cor-

rections in spoken dialogue systems. In Proceed-

ings of the International Conference on Spoken

Language Processing. Beijng, China.

Walker, M. A., Langkilde, I., Wright, J., Gorin, A., &

Litman, D. J. (2000). Learning to predict problem-

atic situations in a spoken dialogue system: exper-

iments with How may I help you?. In Proceedings

of North American Meeting of the Association of

Computational Linguistics.

362

Appendix A: Table 7 and Table 8 illustrate the predictions made by the offline model using JRIP

rule learner and the combined features: BoC+DrW+DrC (cf. row 6, Table 5). Colum headings T and P

contain the training and predicted labels, respectively. is PROBLEMATIC,  is NOT-PROBLEMATIC,

and  is an instance of non-understanding therefore excluded from the learning task. Table 9 illus-

trates the top rules learned by the JRIP learner, for each of the two datasets.

 T P

1 S: Welcome to Cambridge system. How may I help you?

2 U: I want to find a [I want to find a pub]

3 S: The Avery is a great pub.  

4 U: What is the phone number [what is the phone number]

5 S: The phone number of The Avery is 01223 323405.  

6 U: Does it have internet [Uh uh have in there]

7 S: Can I help you with anything else?  

8 U: Does that pub have internet [Where is that er have in]

9 S: The Avery is on 69-73 Regent Street.  

10 U: Thank you bye.

Table 7: Offline error detection on a CamInfo interaction. Text within [] is the top ASR hypothesis.

7 S: What can I do for you?

8 U: Next bus [65e]

9 S: The 65E. Did I get that right?  

10 U No [no]

11 S: What can I do for you?  

12 U: 61A [61A]

13 S: The 61A. Did I get that right?  

14 U: Yes [yes]

15 S: Alright Where would you like to leave from?  

16 U: Atwood [Duquensne]

17 S: For example, you can say, NORTH BRADDOCK, FORBES AND

MURRAY, or DOWNTOWN.

 

18 U: Forbes and Atwood [Forbes big at Atwood in wall]

19 S: ATWOOD IN WALL. Did I get that right?  

20 U: No [no]

Table 8: Offline error detection on a Let’s Go interaction. Text within [] is the top ASR hypothesis

The top rule learned by JRIP on CamInfo dataset The top 2 rules learned by JRIP on Let’s Go dataset

1. (ctc-svp-usr-2 <= 0.5) and

 (frc-new-slt-asr-usr-2 <= 0.5)

=>class=problematic (83.0/9.0)

Rule 1: If the correctly transferred concept rate for

user turn 2 is <= 0.5 and the number of new slots men-

tioned are <= 0.5 then anticipate the system turn 3 as

PROBLEMATIC. A total of 83 instances were labeled

problematic by this rule, 9 of which were false predic-

tions.

Summary: The user repeats (rephrases) to correct the

system’s mistake in grounding. However, the system

does not have a good model to detect this and therefore

the system response is most likely to be perceived in

appropriate by the user.

1. (wer-tr-usr-2 >= 20) and (4-dact-tr_no >= 1)

 => class=problematic (121.0/3.0)

2. (ctc-svp-usr-2 <= 0.5) and (4-dact-tr_yes <= 0)

 => class=problematic (115.0/23.0)

Rule 1: If WER for user turn 2 is more than 20 and the

user d-act in turn 4 is “no” then the system response in

turn 3 was PROBLEMATIC.

Rule 2: Similar to the Rule 1 but uses different fea-

tures. If correctly transferred concept rate for user turn

2 is <= 0.5 and in turn 4 the user act was not “yes”

then the system action in turn 3 was PROBLEMATIC.

Summary: Model uses late error detection cues such

as marked disconfirmations to assess system actions.

Table 9: The top rules learned by the JRIP model for offline error detection on the CamInfo and Let’s Go da-

tasets (cf. row 6, Table 5).

363

