Optimising Turn-Taking Strategies With Reinforcement Learning

Hatim Khouzaimi

Romain Laroche

Fabrice Lefévre

Orange Labs Orange Labs, LIA-CERI,
LIA-CERI Issy-les-Moulineaux, Univ. Avignon,
France France France

hatim.khouzaimi@orange.com

Abstract

In this paper, reinforcement learning (RL)
is used to learn an efficient turn-taking
management model in a simulated slot-
filling task with the objective of minimis-
ing the dialogue duration and maximising
the completion task ratio. Turn-taking de-
cisions are handled in a separate new mod-
ule, the Scheduler. Unlike most dialogue
systems, a dialogue turn is split into micro-
turns and the Scheduler makes a decision
for each one of them. A Fitted Value Itera-
tion algorithm, Fitted-Q, with a linear state
representation is used for learning the state
to action policy. Comparison between a
non-incremental and an incremental hand-
crafted strategies, taken as baselines, and
an incremental RL-based strategy, shows
the latter to be significantly more efficient,
especially in noisy environments.

1 Introduction

Most dialogue systems use a simple turn-taking
model: the user speaks and when she finishes her
utterance, the system detects a long enough silence
and speaks afterwards. Quite often the latter can-
not be interrupted neither. On the contrary, incre-
mental dialogue systems are able to understand the
user’s utterance on the fly thus enabling a richer
set of turn-taking behaviours. They can interrupt
the user and quickly report a problem. They can
be interrupted as well. In this paper, we explore
the extent to which such capacity can improve the
overall dialogue efficiency. Reinforcement learn-
ing (Sutton and Barto, 1998) is used to find opti-
mal strategies.

Human beings use a rich set of incremental be-
haviours which help them recover from errors ef-
ficiently. As soon as a conversation participant
detects a problem, she is able to interrupt the

315

romain.laroche@orange.com fabrice.lefevre@Quniv-avignon.fr

speaker so that he can correct his utterance or re-
peat a part of it for example. In this work, we
implement in an expert handcrafted way 3 turn-
taking phenomena amongst those classified in the
taxonomy proposed in (Khouzaimi et al., 2015a).
The resulting strategy is shown to achieve better
performance than a non-incremental handcrafted
strategy. Then, it is compared to an automati-
cally learned incremental strategy and the latter is
shown to achieve even better results.

Machine learning algorithms often need impor-
tant sets of data in order to converge. In the field of
dialogue systems, gathering data is expensive and
as a consequence, researchers use simulated users
for learning (Eckert et al., 1997; Chandramohan
et al., 2011; Pietquin and Hastie, 2013). To run
the experiments in this work, a simulated user
interacts with a service that manages a personal
agenda (Khouzaimi et al., 2015a).

In our work, the turn-taking task is separated
from the common dialogue management one and it
is handled by a separated module called the Sched-
uler (Khouzaimi et al., 2014). A considerable as-
set of this architecture is that it can just be added
to the agenda service in order to make it incremen-
tal. Two versions of this module have been devel-
oped: the first one embeds the handcrafted strat-
egy and the second one uses reinforcement learn-
ing to optimise turn-taking decisions with respect
to objective criteria. Our goal is to improve the di-
alogue efficiency, therefore, as evaluation criteria
and in order to design a reward function, dialogue
duration and task completion are used. Fitted-Q (a
Fitted Value Iteration algorithm) was used and we
show that the optimal policy is quickly learned and
that it outperforms both the non-incremental and
the handcrafted strategies. These three strategies
are then compared under different noise conditions
and the automatically learned strategy is proven to
be the most robust to high levels of noise.

Section 2 presents some related work and Sec-

Proceedings of the SIGDIAL 2015 Conference, pages 315-324,
Prague, Czech Republic, 2-4 September 2015. (©2015 Association for Computational Linguistics

——
Verbosity ASR Qutput
NLG
Scheduler Agenda
(Rule-based » Service
Intention orRL) A
Manager v
Y, < |
e NLU <Jeeee——— j@
< —— | 721"
Manager
—
User Simulator

Figure 1: Simulated environment architecture

tion 3 describes the simulated environment used
for the experiments. Then Section 4 describes the
handcrafted turn-taking model as well as the RL
one. Section 5 presents the experimentation and
the results and finally, Section 6 gives some con-
cluding remarks.

2 Related work

The idea of interrupting the user in order to im-
prove the dialogue efficiency in terms of dialogue
duration and task completion is tackled in (Ghigi
et al., 2014). A corpus study shows that the users’
utterances often go off-domain or contain the same
piece of information several times. By detecting
this kind of sentences and interrupting the user to
report the problem promptly, the dialogue is more
efficient and users tend to conform to the words
and expressions that are known by the system.
Only handcrafted settings are explored.

An approach based on Hierarchical Reinforce-
ment Learning is presented in (Dethlefs et al.,
2012; Hastie et al., 2013). An efficiency re-
ward is used to optimise the Information Pre-
sentation strategy (common dialogue management
task) whereas another reward based on Informa-
tion Density is used for the barge-in and backchan-
nel tasks. In our work, the efficiency reward is di-
rectly applied to turn-taking management.

A research branch in incremental dialogue fo-
cuses on the following principle laid in (Sacks
et al., 1974): Participants in a conversation at-
tempt to minimize gaps and overlaps.(Jonsdottir et
al., 2008) uses a reinforcement learning approach
based on this principle in order to achieve smooth

316

turn-taking (only prosodic features are considered)
whereas (Raux and Eskenazi, 2008; Raux and
Eskenazi, 2012) proposes a classification method
where the costs for silences and overlaps are hand-
crafted. Like the majority of contributions in the
field of incremental dialogue, the main focus here
is smooth turn-taking rather than improving the
general dialogue efficiency.

In order to mimic human turn-taking capabil-
ities, in (Kim et al., 2014) Inverse Reinforcement
Learning has been applied to a system that can per-
form three turn taking actions: speak, silent and
overlap. The main focus here is also end of utter-
ance detection and smooth turn-taking.

In (DeVault et al., 2011), the ability of incre-
mental dialogue systems to guess the remaining
part of a user’s utterance before its end is explored.
(Lu et al., 2011) applies reinforcement learning to
explore the tradeoff between the risk of error rela-
tive to a barge-in due to an early guess and the lack
of reactivity in the case of late system responses.

Finally, reinforcement learning is also applied
in (Selfridge and Heeman, 2010) in the case of
mixed initiative dialogue systems. However the
paper does not tackle the problem of barge-in man-
agement but initial turn-taking (who takes the floor
first): the dialogue participant that has the most
important thing to say to make progress in the di-
alogue takes the floor first.

3 Simulated environment

To learn the turn-taking policy, a simulated envi-
ronment has been developed. Figure 1 gives an
overview of its architecture. The six modules on

the left constitute the user simulator: the Intention
Manager, the Natural Language Generator (NLG),
the Verbosity Manager, the ASR Output Simula-
tor, the Patience Manager and the Natural Lan-
guage Understanding module (NLU). The ASR
Output Simulator communicates the N-Best cor-
responding to the current partial hypothesis to the
Scheduler whose responses are conveyed to the
NLU module.

3.1 Service task

The service used in our experiments is a personal
agenda manager. The user can add events to the
agenda, modify their attributes or delete them. To
complicate a bit the task and justify the need for
interactions a constraint has been introduced: all
events must have separate time slots. If the user
tries to overload a busy time slot, a warning is
generated and the user is required to modify her
request.

The simulated dialogue scenarios are defined by
two event lists. The first one (/nitList) is the list of
events that already exist in the agenda before the
dialogue and the second one (ToAddList) is the list
of events, with priorities and alternative times, to
add during the dialogue. The simulated user tries
to make the maximum number of events with the
highest priority values fit into the agenda. For ex-
ample, if InitList contains the event {title: house
cleaning, date: January 6", slot: from 18 to 20,
priority: 3, alternative 1: January 7", from 18
to 20, alternative 2: January 9", from 10 to 12}
and ToAddList contains the event {title: birthday
party, date: January 6", slot: from 18 to 23, pri-
ority: 2} then the user simulator will first try to
schedule his birthday party on January 6! from
18 to 23 but as a consequence, it will get a warn-
ing from the system because this slot is already
booked for the house cleaning event. Therefore,
the user simulator will reschedule the latter to Jan-
uary 7t" from 18 to 20. If the house cleaning event
was given with no alternative, it will be deleted as
it has a lower priority compared to the birthday

party.
3.2 Service implementation

The service is designed to process slot-filling re-
quests in order to manage the user’s personal
agenda. The required slots are the action type,
the event description, its date and its time slot.
A keyword-based NLU module is configured to
parse natural language requests.

317

A mixed initiative strategy is used for the inter-
action. First, the user takes the lead and utters a
request in natural language. The system picks as
many information slots as it can and if it still needs
more information, it asks the user to complete her
request slot by slot. In the following, a dialogue
task refers to the portion of dialogue correspond-
ing to a particular add, modify or remove action.
In the best case, it consists of two dialogue turns
only (request and confirmation) but if there is im-
portant noise, it might take several turns to com-
plete (given that the user is patient enough not to
hang up before the end of the dialogue task).

The following dialogue example is composed of
two dialogue tasks. In the first one, the system
manages to catch all the information needed to an-
swer whereas in the second one, it missed the time
slot and has to ask for it again. Moreover, the first
dialogue task led to a conflict declaration whereas
the second one could be accomplished:

System: Hi! Welcome to your personal
agenda service. How may I help you?

User: Can you please add the event football
game on November 9" from 18 to 20 if pos-
sible?

System: Sorry. The time slot from 18 to 19
on November 9'" is already booked for the

event guitar course.

User: Ok well, then move the event guitar
course to November 10 from 18 to 19.

System: Please specify a time slot.

User: From 18 to 19.

System: Great. So you want to move the
event guitar course to November 10*" from
18 to 19. Is that right?

User: Yes.

System: Good. Do you want to add another
modification to your agenda?

User: No.

System: Bye.

3.3 ASR N-Best generation

Given ToAddList and the system responses, the In-
tent Manager is able to compute the user’s imme-
diate goal. Afterwards, the NLG transforms it into
a sentence like add the event birthday party on
January 6" from 18 to 23. Moreover, if the sim-
ulated user takes the lead and starts asking for a
specific slot, it is also able to give the information
directly.

In (Ghigi et al., 2014), a corpus study shows
that the user is likely to use off-domain expres-
sion, to add unnecessary information and to repeat
the same piece of information several times in the
same sentence (especially after a misunderstand-
ing). To simulate this phenomenon, the user’s re-
quest in natural language is given to a Verbosity
Manager module that adds prefixes like I would
like to and suffixes like if possible, that repeats the
same information after a misunderstanding (with
a given probability, e.g. 0.3) and that replaces the
request with an off-domain sentence (with a given
probability, e.g. 0.1).

To our knowledge, apart from the simulator de-
scribed in (Selfridge et al., 2012), existent user
simulators are turn-based and therefore, only the
user intent is communicated at each turn (in a con-
cept format) so there is no need to take care of
the utterance formulations. This is not the case
when incremental dialogue and turn-taking are the
object of interest. In this case, the user’s sen-
tence is processed chunk by chunk. The update
step is called a micro-turn and in this paper, the
unit chosen is the word. Suppose that the cur-
rent user utterance contains N words w1, wa, ...wxN
then at micro-turn ¢, the Verbosity Manager sends
w; to the ASR Output simulator. The Ilatter
stores an N-Best list from the previous micro-

wn {(s{ hypl D) s)
that is updated according to w; and WER (hyp; is
the i*" hypothesis in the N-Best and s; is the cor-
responding confidence score). w; can be replaced
by a new word from a dictionary, deleted or a new
word can be added to simulate the ASR noise, be-
fore it is added to the N-Best list.

The confidence score associated with the new
word is computed as follows: if the word has
not been modified, X is sampled from a Gaus-
sian with mean 1 and variance 1 otherwise the
mean is -1. We then compute the sigmoid(X)
(1 + exp(—X))~! as a word score (Figure 2 rep-
resents these two symmetric distributions). This

318

T T
0.5 Bad recognition ||
Good recognition

04 i
)

7 0.3} 8
=
Q
a

0.2} i

0.1 i

— 1 L L L —

0 0.2 0.4 0.6 0.8 1

Score

Figure 2: ASR score sampling distribution

is an adaptation of the simple ASR model intro-
duced in (Pietquin and Beaufort, 2005). The score
of the current partial utterance is the product of its
words.

Another important aspect of incremental ASR
is instability. A new ASR input does not neces-
sarily translate into adding elements on top of the
current output as it can change an important part
if not the totality of it. For instance, in (Schlangen
and Skantze, 2011), when the user says forty, it is
first understood as four then forty. This is due to
the fact that, given the language model, the new
received chunk of information is more likely to
complete a hypothesis that has a lower score in the
N-Best list than the best hypothesis. In this work,
as no language model is used, we use the NLU
knowledge instead. If a new input leads to a new
NLU key concept, then its score is boosted like in
the following

Si<—Si+BF.(1—Si) ()
where the BF parameter (Boost Factor) is set to
0.2 in this work.

3.4 Time management and patience

In order to evaluate the time spent during the cur-
rent dialogue, a speech rate of 200 words per
minute is used (Yuan et al., 2006). Moreover,
when the user hands the floor to the system, a si-
lence of 2 seconds is added to this duration and 1
second the other way around. Finally, a Patience
Manager module simulates the user patience: the
maximum duration per dialogue task that the user
can bear before hanging up. At each dialogue task,
this value is computed as

dpat = 2fipat-sigmoid(X) 2

where fipq¢ is the mean value (f1pqt = 180s).

3.5 Scheduler Module

A non-incremental dialogue system can be trans-
formed into an incremental one by adding an
extra module: the Scheduler (Khouzaimi et al.,
2014). Its objective is to make turn-taking deci-
sions (whether to take the floor or not). When the
user speaks, its partial utterance grows over time.
At each new change, it is sent to the Scheduler that
immediately asks the service for a corresponding
response and then rollbacks the system’s context
as long as it decides not to take the floor. If, on
the other hand, it decides to commit to the last re-
ceived partial utterance by taking the floor, then no
rollback is performed and the dialogue context is
effectively updated.

In this work, the Scheduler can perform two
types of actions: WAIT and SPEAK, that is to say
that it can wait for the next micro-turn without ut-
tering anything or it can start retrieving the last re-
sponse it got from the service.

Two versions of the Scheduler have been imple-
mented: handcrafted rules were implemented in
the first one whereas the second one embeds a re-
inforcement learning algorithm that learns to make
turn-taking decisions by itself.

4 Turn-taking model

4.1 Turn-taking phenomena

Several turn-taking phenomena can be ob-
served when analysing human conversations. A
taxonomy of these phenomena is introduced
in (Khouzaimi et al., 2015b), three of which are
replicated here through the SPEAK action:

FAIL_RAW: The listener sometimes does not
understand the speaker’s message because of noise
or unknown vocabulary. Therefore, she can barge-
in and report the problem without waiting for the
speaker to finish her sentence.

INCOHERENCE_INTERP: Unlike the previ-
ous phenomenon, in this case the listener fully un-
derstands the speaker’s partial utterance. How-
ever, its content is considered problematic given
the dialogue context and this can be reported im-
mediately without waiting for the end of the utter-
ance (system barge-in).

319

e Hi, I would like to book a room tonight and
L.

e Sorry but there are no rooms available at the
moment.

BARGE_IN_RESP: If the listener thinks she
has all the information she needs to formulate a
response, she can barge-in immediately which is
frequent in human-human conversations.

4.2 Rule-based model

The three phenomena described above are repli-
cated as handcrafted rules that have been imple-
mented in the Scheduler:

FAIL_RAW: Depending on the last requested
information by the system, it sets a threshold on
the number of words. Whenever reached if the
system still does not get any interesting informa-
tion, it barges-in to warn the user about the prob-
lem:

1. Open question: this phenomenon is triggered
if no action concept is detected (add, modify
or delete) after 6 words (taking into account
that the user can utter a prefix and leaving a

margin because of the ASR instability).
Yes/no question: the threshold is set to 3.

3. Date question: it is set to 4.

4. Time slot question: it is set to 6.

INCOHERENCE_INTERP: An incoherence
is detected in the user’s utterance in the two
following cases:

1. The user tries to fill a time slot that is already
occupied.

2. The user tries to modify or delete a non-
existing event.

Because of the ASR instability, as a security
margin, the SPEAK decision will be taken two
words after the incoherence is detected if it is
maintained.

BARGE_IN_RESP: As soon as the service
gives a full response to a partial utterance,
the Scheduler considers that all the information
needed has been given by the user. Like in the
previous case, the decision is taken two words af-
ter.

4.3 Reinforcement learning

Despite late 20" century initial proposition (Levin
and Pieraccini, 1997), reinforcement learning as
the machine learning framework in the field of
spoken dialogue systems is still largely explored
in the current days (Lemon and Pietquin, 2007;
Laroche et al., 2010; Pinault and Leféevre, 2011;
Ferreira and Lefevre, 2013; Young et al., 2013).
In non-incremental systems, at each dialogue turn,
the system has to make a decision (action) hence
moving to a new state. In this paper, as we study
dialogue from a turn-taking point of view, the de-
cision unit is the micro-turn.

4.3.1 Background

The turn-taking problem is here cast as a Marko-
vian Decision Process (MDP) (Sutton and Barto,
1998), that is to say a quintuple (S,.A4,7,R,7)
where S is the set of states where the system can
be during a dialogue and A is the set of actions
that can be performed at each time step. 7 is the
transition model, in other words, the set of prob-
abilities P(sy11 = §'|sy = s,a; = a) of get-
ting to state s’ at time ¢ 4 1 if the system was at
state s at time ¢ and performed action a. Such a
decision makes the system get an immediate re-
ward r = R(s¢, at, $¢+1) modeled by R. The ac-
tion to choose at each state is given by a policy m
(m(s¢) = a;) and the cumulative (discounted) re-
ward is defined as Ry = >°,-, 7" try (v is called
the discount factor). Finally, each couple (s, a)
is associated with a value Q™ (s, a) = E[R|s; =
s,a; = a] which is the expected cumulative re-
ward for being at the state s, taking action a and
following the policy 7 afterwards.

The goal of reinforcement learning is to find
an optimal policy 7* such that, for every other
policy , and for every state-action couple (s, a),

Q*(s,a) = Q™ (s,a) > Q™(s,a).
4.3.2 State representation

The system state is characterised by the following
features:

e SYSTEM _REQ: The current information
that is asked for by the system. It can be a
slot value, a confirmation or the system can
ask an open question to make the user fill all
the slots in one dialogue turn (6 alternatives).

e LAST_ INCR_RESP: The Scheduler incre-
mentally gets responses from the service.

320

This feature corresponds to the last response
obtained (11 alternatives).

¢ NB_USER_WORDS: The number of words
added by the user after the last change in the
value of LAST_INCR_RESP (after the last in-
put that made the service catch a new piece
of information and change its mind about the
response to deliver).

o NORMALISED_SCORE: The ASR Output
simulator estimates the score of a partial ut-
terance as the product of its components.
Therefore, the longer the sentence the worse
the confidence score, even if all the compo-
nents have a decent score. To neutralise this
effect we normalise the score by taking its
geometric mean given the number of words.
Suppose there are n words in the current
partial utterance and s its score, then NOR-
MALISED_SCORE = s

e TIME: The duration in seconds reached so
far in the current task. This value is nor-
malised so that it is around zero at the begin-
ning of the task and around 1 for 6 minutes
(maximum user patience).

In order to represent the function Q(s,a), we
maintain one linear model per action. There
are 21 combinations between SYSTEM_REQ and
LAST_INCR _RESP values that are the most likely
to occur. They have been associated to the fea-
tures 91 to do21. &; equals 1 when the ith combina-
tion happens in the current micro-turn and O oth-
erwise. Less frequent combinations have been re-
moved from this initial model: first they make the
model more complex with in all likelihood no sig-
nificant improvement in the performance (making
the learning process slower to converge and more
data demanding) and second, the Fitted-Q algo-
rithm involves the inversion of a feature covari-
ance matrix which could be ill-conditioned with
these rare combinations.

NB_USER_WORDS is represented by three Ra-
dial Basis Function (RBF) features (Sutton and
Barto, 1998) o1, ¢35 and ¢5*. Their means
are set to 0, 5 and 10 and the corresponding
standard deviations are 2, 3 and 3. The same
representation with 2 features is used for NOR-
MALISED_SCORE: ¢'® and ¢%° centered at 0.25
and 0.75 and with a standard deviation of 0.3 for
both.

Finally, TIME is represented as a single feature
T = sigmoid((TIME — 180)/60) so that it is
almost 0 for TIME=0 and almost 1 after 6 min-
utes. As this variable increases, the user is more
and more likely to hangup, therefore the Q func-
tion is supposed to be monotonous with respect
to that feature so it is taken directly in the model
without the use of RBFs.

As a consequence, 28 parameters are involved
for each action (56 in total). Let O(a) be the pa-
rameter vector (©(a) = [fo, 01, ...,027]7) corre-
sponding to action a and ®(s, a) the feature vector
corresponding to state s and action a, therefore:

q)(saa) = [17517"'76217 ?w7 3w7¢§w7
vl 3)
Q(s,a) = O(a)’ @(s,a) 4)

4.3.3 Learning

RL learning of the turn-taking policy is oper-
ated with Fitted-Q, a Fitted Value Iteration algo-
rithm (Lagoudakis and Parr, 2003; Chandramo-
han et al., 2010). Fitted-Q is a batch learning al-
gorithm for reinforcement learning. Standard Q-
learning (Watkins, 1989) has also been tested as
an online algorithm but unsuccessfully, which is
compliant with previous works (e.g. (Daubigney
et al., 2012)).

The optimal Q-function Q* is known to be the
solution of the Bellman optimality equation (Sut-
ton and Barto, 1998):

Q*(s,a) = Es’|s,a[R(5a a, S/)
+ymaxQ(s’, a')] ®)
a’'eA

Therefore, the Fitted-Q algorithm is fed with

a set of N MDP transitions (sj,aj,rj,sg-) and
aims to approximate the representation parame-
ters vector of the Q-function by performing a lin-
ear regression at each iteration step. In our case,
for each action and at the iteration i, the param-
eter vector is updated as follows (for commodity,

®(s;4,a;) is noted ¢;):

N

0" (a) = arg miHZ(Rﬁz_l) - 0(a)"¢;)* (©)
9(‘1) 7=1

R§i—1) =rj +ymax(0] ,¢(s},a)) (7)

acA

This is a classical linear regression problem and

321

we use the closed formula for each iteration:

N N
00 =Y gieD) 1Y RV 8
j=1 J=1
The iteration stop criterion is
> 1109(a) =0 a)[ly < ¢ ©)

acA

In our experiments, the convergence threshold
is set to & = 0.01.

5 Experiment

5.1 Experimental setup

Three dialogue scenario types involving diverse
adding, modifying and deleting tasks were used
for the experiments. For the training of the RL
strategy, the simulated speech recognition WER
was fixed at 0.15. We trained the system 50
times and each training session is made of 3000
episodes. The Fitted-Q algorithm was run ev-
ery 500 episodes on the total batch from the be-
ginning. During the first 500 episodes, a pure-
exploration policy is used: it performs a WAIT
action with a probability of 0.9 (hence a SPEAK
action 10% of the times). An e-greedy (e = 0.1)
policy is then used until episode 2500. After that,
a greedy policy is used (pure-exploitation).

Thus, 50 learning models are collected. As a
linear model is used for the Q-function represen-
tation, we simply average the parameters to get an
average model. The latter is then tested against
the basic non-incremental strategy and our hand-
crafted baseline under different noise conditions
by varying the WER parameter between 0 and 0.3
with a step of 0.03.

5.2 Results

The average learning curve is depicted in Fig-
ure 3. The reward levels corresponding to the
non-incremental case and the handcrafted incre-
mental strategy are indicated by the red and the
blue lines. Each green triangle corresponds to
the moving average reward over 100 episode of
the RL strategy. The first 500 episodes are ex-
clusively exploratory, therefore the system perfor-
mance during that early stage of learning is point-
less. Between episode 500 and episode 2500, we
observe no improvement even though the policy is
still partially exploring. This shows that the 500

110

Reward

105 ¢

—eo— Non Incremental

100 —=— Incremental Baseline | |

A Incremental RL

L L 1 1 1
95100 500 1,000 1,500 2,000 2,500 3,000

Number of episodes

Figure 3: Learning curve (0-500: pure explo-
ration, 500-2500: exploration/exploitation, 2500-
3000: pure exploitation)

first episodes are enough to learn the optimal pol-
icy given our model. The 500 last episodes show
that the learned strategy significantly outperforms
the handcrafted baseline.

Incremental dialogue systems have the ability to
report an error to the user in a more reactive way
and to prevent it from speaking for a long time
without being understood by the system. In noisy
environments, these problems are even more likely
to happen. Figures 4 and 5 show the effect of
noise over dialogue duration and task completion.
They represent the average performance over the
3 dialogue scenarios used in this experiment. In-
cremental dialogue, and the automatically learned
strategy in particular, significantly increase the
noise robustness. In the non-incremental case, the
mean dialogue duration reaches 3 minutes and the
task completion drops below 70%. Our learned
strategy makes the dialogues finish 30 seconds ear-
lier on average (17% gain) and the task completion
is about 80%.

6 Conclusion and future work

In this paper, a simulated environment for a slot-
filling task has been used to compare different
expert and learned turn-taking strategies. A first
one is non-incremental meaning that the user and
the system cannot interrupt each other. As ASR
noise increases, the dialogues tend to last longer
leading to lower task completion. A second strat-
egy is incremental, starting from three turn-taking
phenomena present in the human-human interac-
tion we translated them into a set of handcrafted
rules for human-machine dialogue. This rule-

322

240 T T T
—e— Non Incremental

210 | —=— Incremental Baseline 7
—— Incremental RL

180

150

120

Mean duration (sec)

0.06 012 0.18 0.24 0.3

Figure 4: Simulated dialogue duration for differ-
ent noise levels

1

§

2
g 0.9
o
2
2 08
=3
g
5]
Q
~ 0.7
8
% —e— Non Incremental
s 06| s Incremental Baseline |
—— Incremental RL
0.5 ‘

1 1 1
0 0.06 0.12 0.18 0.24 0.3
WER

Figure 5: Simulated dialogue task completion for
different noise levels

based strategy is then shown to have better perfor-
mance than the non-incremental case in terms of
dialogue duration and task completion ratio when
the noise is increasing. Eventually the Fitted-Q al-
gorithm has been retained to automatically learn
a third turn-taking strategy, still with the same
objective (minimising the dialogue duration and
maximising the task completion). This third strat-
egy significantly improves noise robustness of the
simulated dialogue system. We are now planning
to evaluate this approach with real users and by
taking subjective scores into account for learning
optimal turn-taking strategies with respect to en-
larged view of the system performance, such as
comfort of use, friendliness etc.

References

Senthilkumar Chandramohan, Matthieu Geist, and
Olivier Pietquin. 2010. Optimizing spoken dia-
logue management with fitted value iteration. In IN-
TERSPEECH 11th Annual Conference of the Inter-
national Speech.

Chandramohan, M. Geist, F. Leféevre, and
O. Pietquin. 2011. User Simulation in Dialogue
Systems using Inverse Reinforcement Learning. In
Interspeech.

. Daubigney, M. Geist, S. Chandramohan, and
O. Pietquin. 2012. A comprehensive reinforce-
ment learning framework for dialogue management
optimization. Selected Topics in Signal Processing,
1IEEE Journal of.

Nina Dethlefs, Helen Wright Hastie, Verena Rieser,
and Oliver Lemon. 2012. Optimising incremental
dialogue decisions using information density for in-
teractive systems. In EMNLP-CoNLL.

David DeVault, Kenji Sagae, and David Traum. 2011.
Incremental interpretation and prediction of utter-

ance meaning for interactive dialogue. Dialogue
and Discourse, 2:143-170.
W. Eckert, E. Levin, and R. Pieraccini. 1997. User

modeling for spoken dialogue system evaluation. In
Automatic Speech Recognition and Understanding,
1997. Proceedings., 1997 IEEE Workshop on.

Emmanuel Ferreira and Fabrice Lefevre. 2013.
Expert-based reward shaping and exploration
scheme for boosting policy learning of dialogue
management. In Automatic Speech Recognition and
Understanding (ASRU), 2013 IEEE Workshop on,
pages 108—113. IEEE.

Fabrizio Ghigi, Maxine Eskenazi, M Ines Torres, and
Sungjin Lee. 2014. Incremental dialog processing
in a task-oriented dialog. In Fifteenth Annual Con-
ference of the International Speech Communication
Association.

Helen Hastie, Marie-Aude Aufaure, Panos Alexopou-
los, Heriberto Cuayéhuitl, Nina Dethlefs, Milica Ga-
sic, James Henderson, Oliver Lemon, Xingkun Liu,
Peter Mika, Nesrine Ben Mustapha, Verena Rieser,
Blaise Thomson, Pirros Tsiakoulis, and Yves Van-
rompay. 2013. Demonstration of the parlance sys-
tem: a data-driven incremental, spoken dialogue
system for interactive search. In Proceedings of the
SIGDIAL 2013 Conference.

Gudny Ragna Jonsdottir, Kristinn R. Thorisson, and
Eric Nivel. 2008. Learning smooth, human-like
turntaking in realtime dialogue. In In Proceedings
of Intelligent Virtual Agents (IVA 08, pages 162—175.
Springer.

Hatim Khouzaimi, Romain Laroche, and Fabrice
Lefévre. 2014. An easy method to make dialogue

323

systems incremental. In Proceedings of the 15th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue (SIGDIAL).

Hatim Khouzaimi, Romain Laroche, and Fabrice
Leféevre. 2015a. Dialogue efficiency evaluation of
turn-taking phenomena in a multi-layer incremental
simulated environment. In Proceedings of the HCI
International 2015 Conference (accepted).

Hatim Khouzaimi, Romain Laroche, and Fabrice
Lefévre. 2015b. Turn-taking phenomena in in-
cremental dialogue systems. In Proceedings of the
EMNLP 2015 Conference (submitted).

Dongho Kim, Catherine Breslin, Pirros Tsiakoulis,
Milica Gasic, Matthew Henderson, and Steve
Young. 2014. Inverse reinforcement learning for
micro-turn management. In INTERSPEECH Pro-
ceedings.

Michail G. Lagoudakis and Ronald Parr. 2003. Least-
squares policy iteration. JOURNAL OF MACHINE
LEARNING RESEARCH.

Romain Laroche, Ghislain Putois, and Philippe Bretier.
2010. Optimising a handcrafted dialogue system de-
sign. In INTERSPEECH.

Oliver Lemon and Olivier Pietquin. 2007. Machine
learning for spoken dialogue systems. In Proceed-
ings of the European Conference on Speech Com-
munication and Technologies (Interspeech’07).

Esther Levin and Roberto Pieraccini. 1997. A stochas-
tic model of computer-human interaction for learn-
ing dialogue strategies. In In EUROSPEECH 97.

Di Lu, Takuya Nishimoto, and Nobuaki Minematsu.
2011. Decision of response timing for incremental
speech recognition with reinforcement learning. In
ASRU.

Olivier Pietquin and Richard Beaufort. 2005. Com-
paring asr modeling methods for spoken dialogue
simulation and optimal strategy learning. In INTER-
SPEECH.

Olivier Pietquin and Helen Hastie. 2013. A survey
on metrics for the evaluation of user simulations.
Knowledge Engineering Review.

F. Pinault and F. Lefevre. 2011. Unsupervised clus-
tering of probability distributions of semantic graphs
for pomdp based spoken dialogue systems with sum-
mary space. In IJCAI 7th KRPDS Workshop.

Antoine Raux and Maxine Eskenazi. 2008. Optimiz-
ing endpointing thresholds using dialogue features
in a spoken dialogue system. In SIGDIAL.

Antoine Raux and Maxine Eskenazi. 2012. Optimiz-
ing the turn-taking behavior of task-oriented spoken
dialog systems. ACM Trans. Speech Lang. Process.

Harvey Sacks, Emanuel A. Schegloff, and Gail Jeffer-
son. 1974. A simplest systematics for the organi-
zation of turn-taking for conversation. Language,
50:696-735.

David Schlangen and Gabriel Skantze. 2011. A gen-
eral, abstract model of incremental dialogue pro-
cessing. Dialogue and Discourse, 2:83—111.

Ethan Selfridge and Peter A. Heeman. 2010.
Importance-driven turn-bidding for spoken dialogue
systems. In ACL, pages 177-185.

Ethan O. Selfridge, Iker Arizmendi, Peter A. Heeman,
and Jason D. Williams. 2012. Integrating incremen-
tal speech recognition and pomdp-based dialogue
systems. In Proceedings of the 13th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, July.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement Learning, An Introduction. The MIT
Press, Cambridge, Massachusetts, London, Eng-
land.

Christopher John Cornish Hellaby Watkins. 1989.
Learning from Delayed Rewards. Ph.D. thesis,
King’s College.

S. Young, M. Gasic, B. Thomson, and J.D. Williams.
2013. Pomdp-based statistical spoken dialog sys-
tems: A review. Proceedings of the IEEE.

Jiahong Yuan, Mark Liberman, and Christopher Cieri.
2006. Towards an integrated understanding of
speaking rate in conversation. In INTERSPEECH
Proceedings.

324

