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Abstract

The natural language generation (NLG)
component of a spoken dialogue system
(SDS) usually needs a substantial amount
of handcrafting or a well-labeled dataset to
be trained on. These limitations add sig-
nificantly to development costs and make
cross-domain, multi-lingual dialogue sys-
tems intractable. Moreover, human lan-
guages are context-aware. The most nat-
ural response should be directly learned
from data rather than depending on pre-
defined syntaxes or rules. This paper
presents a statistical language generator
based on a joint recurrent and convolu-
tional neural network structure which can
be trained on dialogue act-utterance pairs
without any semantic alignments or pre-
defined grammar trees. Objective metrics
suggest that this new model outperforms
previous methods under the same experi-
mental conditions. Results of an evalua-
tion by human judges indicate that it pro-
duces not only high quality but linguisti-
cally varied utterances which are preferred
compared to n-gram and rule-based sys-
tems.

1 Introduction

Conventional spoken dialogue systems (SDS) are
expensive to build because many of the process-
ing components require a substantial amount of
handcrafting (Ward and Issar, 1994; Bohus and
Rudnicky, 2009). In the past decade, signif-
icant progress has been made in applying sta-
tistical methods to automate the speech under-
standing and dialogue management components of
an SDS, including making them more easily ex-
tensible to other application domains (Young et
al., 2013; Gašić et al., 2014; Henderson et al.,

2014). However, due to the difficulty of col-
lecting semantically-annotated corpora, the use of
data-driven NLG for SDS remains relatively un-
explored and rule-based generation remains the
norm for most systems (Cheyer and Guzzoni,
2007; Mirkovic and Cavedon, 2011).

The goal of the NLG component of an SDS is
to map an abstract dialogue act consisting of an
act type and a set of attribute-value pairs1 into
an appropriate surface text (see Table 1 below
for some examples). An early example of a sta-
tistical NLG system is HALOGEN by Langkilde
and Knight (1998) which uses an n-gram language
model (LM) to rerank a set of candidates gener-
ated by a handcrafted generator. In order to re-
duce the amount of handcrafting and make the
approach more useful in SDS, Oh and Rudnicky
(2000) replaced the handcrafted generator with a
set of word-based n-gram LM-based generators,
one for each dialogue type and then reranked the
generator outputs using a set of rules to produce
the final response. Although Oh and Rudnicky
(2000)’s approach limits the amount of handcraft-
ing to a small set of post-processing rules, their
system incurs a large computational cost in the
over-generation phase and it is difficult to en-
sure that all of the required semantics are cov-
ered by the selected output. More recently, a
phrase-based NLG system called BAGEL trained
from utterances aligned with coarse-grained se-
mantic concepts has been described (Mairesse et
al., 2010; Mairesse and Young, 2014). By im-
plicitly modelling paraphrases, Bagel can generate
linguistically varied utterances. However, collect-
ing semantically-aligned corpora is expensive and
time consuming, which limits Bagel’s scalability
to new domains.

This paper presents a neural network based
NLG system that can be fully trained from dia-

1Here and elsewhere, attributes are frequently referred to
as slots.
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log act-utterance pairs without any semantic align-
ments between the two. We start in Section 3 by
presenting a generator based on a recurrent neural
network language model (RNNLM) (Mikolov et
al., 2010; Mikolov et al., 2011a) which is trained
on a delexicalised corpus (Henderson et al., 2014)
whereby each value has been replaced by a symbol
representing its corresponding slot. In a final post-
processing phase, these slot symbols are converted
back to the corresponding slot values.

While generating, the RNN generator is condi-
tioned on an auxiliary dialogue act feature and a
controlling gate to over-generate candidate utter-
ances for subsequent reranking. In order to ac-
count for arbitrary slot-value pairs that cannot be
routinely delexicalized in our corpus, Section 3.1
describes a convolutional neural network (CNN)
(Collobert and Weston, 2008; Kalchbrenner et al.,
2014) sentence model which is used to validate
the semantic consistency of candidate utterances
during reranking. Finally, by adding a backward
RNNLM reranker into the model in Section 3.2,
output fluency is further improved. Training and
decoding details of the proposed system are de-
scribed in Section 3.3 and 3.4.

Section 4 presents an evaluation of the proposed
system in the context of an application providing
information about restaurants in the San Francisco
area. In Section 4.2, we first show that new gener-
ator outperforms Oh and Rudnicky (2000)’s utter-
ance class LM approach using objective metrics,
whilst at the same time being more computation-
ally efficient. In order to assess the subjective per-
formance of our system, pairwise preference tests
are presented in Section 4.3. The results show
that our approach can produce high quality utter-
ances that are considered to be more natural than
a rule-based generator. Moreover, by sampling ut-
terances from the top reranked output, our system
can also generate linguistically varied utterances.
Section 4.4 provides a more detailed analysis of
the contribution of each component of the system
to the final performance. We conclude with a brief
summary and future work in Section 5.

2 Related Work

Conventional approaches to NLG typically divide
the task into sentence planning, and surface re-
alisation. Sentence planning maps input seman-
tic symbols into an intermediary tree-like or tem-
plate structure representing the utterance, then sur-

face realisation converts the intermediate structure
into the final text (Walker et al., 2002; Stent et
al., 2004; Dethlefs et al., 2013). As noted above,
one of the first statistical NLG methods that re-
quires almost no handcrafting or semantic align-
ments was an n-gram based approach by Oh and
Rudnicky (2000). Ratnaparkhi (2002) later ad-
dressed the limitations of n-gram LMs in the over-
generation phase by using a more sophisticated
generator based on a syntactic dependency tree.

Statistical approaches have also been studied
for sentence planning, for example, generating
the most likely context-free derivations given a
corpus (Belz, 2008) or maximising the expected
reward using reinforcement learning (Rieser and
Lemon, 2010). Angeli et al. (2010) train a set
of log-linear models to predict individual gen-
eration decisions given the previous ones, using
only domain-independent features. Along simi-
lar lines, by casting NLG as a template extraction
and reranking problem, Kondadadi et al. (2013)
show that outputs produced by an SVM reranker
are comparable to human-authored texts.

The use of neural network-based approaches to
NLG is relatively unexplored. The stock reporter
system ANA by Kukich (1987) is a network based
NLG system, in which the generation task is di-
vided into a sememe-to-morpheme network fol-
lowed by a morpheme-to-phrase network. Recent
advances in recurrent neural network-based lan-
guage models (RNNLM) (Mikolov et al., 2010;
Mikolov et al., 2011a) have demonstrated the
value of distributed representations and the abil-
ity to model arbitrarily long dependencies for both
speech recognition and machine translation tasks.
Sutskever et al. (2011) describes a simple vari-
ant of the RNN that can generate meaningful sen-
tences by learning from a character-level corpus.
More recently, Karpathy and Fei-Fei (2014) have
demonstrated that an RNNLM is capable of gener-
ating image descriptions by conditioning the net-
work model on a pre-trained convolutional image
feature representation. This work provides a key
inspiration for the system described here. Zhang
and Lapata (2014) describes interesting work us-
ing RNNs to generate Chinese poetry.

A specific requirement of NLG for dialogue
systems is that the concepts encoded in the ab-
stract system dialogue act must be conveyed ac-
curately by the generated surface utterance, and
simple unconstrained RNNLMs which rely on em-
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bedding at the word level (Mikolov et al., 2013;
Pennington et al., 2014) are rather poor at this.
As a consequence, new methods have been in-
vestigated to learn distributed representations for
phrases and even sentences by training models
using different structures (Collobert and Weston,
2008; Socher et al., 2013). Convolutional Neural
Networks (CNNs) were first studied in computer
vision for object recognition (Lecun et al., 1998).
By stacking several convolutional-pooling layers
followed by a fully connected feed-forward net-
work, CNNs are claimed to be able to extract sev-
eral levels of translational-invariant features that
are useful in classification tasks. The convolu-
tional sentence model (Kalchbrenner et al., 2014;
Kim, 2014) adopts the same methodology but col-
lapses the two dimensional convolution and pool-
ing process into a single dimension. The resulting
model is claimed to represent the state-of-the-art
for many speech and NLP related tasks (Kalch-
brenner et al., 2014; Sainath et al., 2013).

3 Recurrent Generation Model

Figure 1: An unrolled view of the RNN-based
generation model. It operates on a delexicalised
utterance and a 1-hot encoded feature vector spec-
ified by a dialogue act type and a set of slot-value
pairs. ⊗ indicates the gate used for controlling the
on/off states of certain feature values. The output
connection layer is omitted here for simplicity.

The generation model proposed in this paper is
based on an RNNLM architecture (Mikolov et al.,
2010) in which a 1-hot encoding wt of a token2

wt is input at each time step t conditioned on a re-
current hidden layer ht and outputs the probability
distribution of the next token wt+1. Therefore, by
sampling input tokens one by one from the output
distribution of the RNN until a stop sign is gen-

2We use token instead of word because our model oper-
ates on text for which slot names and values have been delex-
icalised.

erated (Karpathy and Fei-Fei, 2014) or some re-
quired constraint is satisfied (Zhang and Lapata,
2014), the network can produce a sequence of to-
kens which can be lexicalised to form the required
utterance.

In order to ensure that the generated utterance
represents the intended meaning, the input vec-
tors wt are augmented by a control vector f con-
structed from the concatenation of 1-hot encod-
ings of the required dialogue act and its associated
slot-value pairs. The auxiliary information pro-
vided by this control vector tends to decay over
time because of the vanishing gradient problem
(Mikolov and Zweig, 2012; Bengio et al., 1994).
Hence, f is reapplied to the RNN at every time step
as in Karpathy and Fei-Fei (2014).

In detail, the recurrent generator shown in Fig-
ure 1 is defined as follows:

ht = sigmoid(Whhht−1 + Wwhwt + Wfhft) (1)

P (wt+1|wt, wt−1, ...w0, ft) = softmax(Whoht) (2)

wt+1 ∼ P (wt+1|wt, wt−1, ...w0, ft) (3)

where Whh, Wwh, Wfh, and Who are the
learned network weight matrices. ft is a gated ver-
sion of f designed to discourage duplication of in-
formation in the generated output in which each
segment fs of the control vector f corresponding
to slot s is replaced by

fs,t = fs � δt−ts (4)

where ts is the time at which slot s first appears
in the output, δ ≤ 1 is a decay factor, and � de-
notes element-wise multiplication. The effect of
this gating is to decrease the probability of regen-
erating slot symbols that have already been gener-
ated, and to increase the probability of rendering
all of the information encoded in f .

The tokenisation resulting from delexicalising
slots and values does not work for all cases.
For example, some slot-value pairs such as
food=dont care or kids allowed=false cannot be
directly modelled using this technique because
there is no explicit value to delexicalise in the
training corpus. As a consequence, the model is
prone to errors when these slot-value pairs are re-
quired. A further problem is that the RNNLM gen-
erator selects words based only on the preceding
history, whereas some sentence forms depend on
the backward context.
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Figure 2: Our simple variant of CNN sentence model as described in Kalchbrenner et al. (2014).

To deal with these issues, candidates gener-
ated by the RNNLM are reranked using two mod-
els. Firstly, a convolutional neural network (CNN)
sentence model (Kalchbrenner et al., 2014; Kim,
2014) is used to ensure that the required dialogue
act and slot-value pairs are represented in the gen-
erated utterance, including the non-standard cases.
Secondly, a backward RNNLM is used to rerank
utterances presented in reverse order.

3.1 Convolutional Sentence Model

The CNN sentence model is shown in Figure 2.
Given a candidate utterance of length n, an utter-
ance matrix U is constructed by stacking embed-
dings wt of each token in the utterance:

U =


w0

w1

...
wn−1

 . (5)

A set of K convolutional mappings are then ap-
plied to the utterance to form a set of feature detec-
tors. The outputs of these detectors are combined
and fed into a fully-connected feed-forward net-
work to classify the action type and whether each
required slot is mentioned or not.

Each mapping k consists of a one-dimensional
convolution between a filter mk ∈ Rm and the
utterance matrix U to produce another matrix Ck:

Ck
i,j = mk

ᵀUi−m+1:i,j (6)

where m is the filter size, and i,j is the row and
column index respectively. The outputs of each

column of Ck are then pooled by averaging3 over
time:

hk =
[
C̄k

:,0, C̄
k
:,1, ..., C̄

k
:,h−1

]
(7)

where h is the size of embedding and k = 1 . . .K.
Last, the K pooled feature vectors hk are passed
through a nonlinearity function to obtain the final
feature map.

3.2 Backward RNN reranking

As noted earlier, the quality of an RNN language
model may be improved if both forward and back-
ward contexts are considered. Previously, bidi-
rectional RNNs (Schuster and Paliwal, 1997) have
been shown to be effective for handwriting recog-
nition (Graves et al., 2008), speech recognition
(Graves et al., 2013), and machine translation
(Sundermeyer et al., 2014). However, applying
a bidirectional RNN directly in our generator is
not straightforward since the generation process is
sequential in time. Hence instead of integrating
the bidirectional information into a single unified
network, the forward and backward contexts are
utilised separately by firstly generating candidates
using the forward RNN generator, then using the
log-likelihood computed by a backward RNNLM
to rerank the candidates.

3.3 Training

Overall the proposed generation architecture re-
quires three models to be trained: a forward RNN
generator, a CNN reranker, and a backward RNN
reranker. The objective functions for training the

3Max pooling was also tested but was found to be inferior
to average pooling

278



two RNN models are the cross entropy errors be-
tween the predicted word distribution and the ac-
tual word distribution in the training corpus, whilst
the objective for the CNN model is the cross en-
tropy error between the predicted dialogue act and
the actual dialogue act, summed over the act type
and each slot. An l2 regularisation term is added to
the objective function for every 10 training exam-
ples as suggested in Mikolov et al. (2011b). The
three networks share the same set of word em-
beddings, initialised with pre-trained word vectors
provided by Pennington et al. (2014). All costs
and gradients are computed and stochastic gra-
dient descent is used to optimise the parameters.
Both RNNs were trained with back propagation
through time (Werbos, 1990). In order to prevent
overfitting, early stopping was implemented using
a held-out validation set.

3.4 Decoding
The decoding procedure is split into two phases:
(a) over-generation, and (b) reranking. In the over-
generation phase, the forward RNN generator con-
ditioned on the given dialogue act, is used to
sequentially generate utterances by random sam-
pling of the predicted next word distributions. In
the reranking phase, the hamming loss costCNN

of each candidate is computed using the CNN
sentence model and the log-likelihood costbRNN

is computed using the backward RNN. Together
with the log-likelihood costfRNN from the for-
ward RNN, the reranking score R is computed as:

R = −(costfRNN + costbRNN + costCNN ). (8)

This is the reranking criterion used to analyse each
individual model in Section 4.4.

Generation quality can be further improved by
introducing a slot error criterion ERR, which is
the number of slots generated that is either redun-
dant or missing. This is also used in Oh and Rud-
nicky (2000). Adding this to equation (8) yields
the final reranking score R∗:

R∗ = −(costfRNN + costbRNN+
costCNN + λERR)

(9)

In order to severely penalise nonsensical utter-
ances, λ is set to 100 for both the proposed RNN
system and our implementation of Oh and Rud-
nicky (2000)’s n-gram based system. This rerank-
ing criterion is used for both the automatic evalu-
ation in Section 4.2 and the human evaluation in
Section 4.3.

4 Experiments

4.1 Experimental Setup
The target application area for our generation sys-
tem is a spoken dialogue system providing infor-
mation about restaurants in San Francisco. There
are 8 system dialogue act types such as inform to
present information about restaurants, confirm to
check that a slot value has been recognised cor-
rectly, and reject to advise that the user’s con-
straints cannot be met (Table 1 gives the full list
with examples); and there are 12 attributes (slots):
name, count, food, near, price, pricerange, post-
code, phone, address, area, goodformeal, and kid-
sallowed, in which all slots are categorical except
kidsallowed which is binary.

To form a training corpus, dialogues from a set
of 3577 dialogues collected in a user trial of a
statistical dialogue manager proposed by Young
et al. (2013) were randomly sampled and shown
to workers recruited via the Amazon Mechanical
Turk service. Workers were shown each dialogue
turn by turn and asked to enter an appropriate
system response in natural English corresponding
to each system dialogue act. The resulting cor-
pus contains 5193 hand-crafted system utterances
from 1006 randomly sampled dialogues. Each cat-
egorical value was replaced by a token represent-
ing its slot, and slots that appeared multiple times
in a dialogue act were merged into one. This re-
sulted in 228 distinct dialogue acts.

The system was implemented using the Theano
library (Bergstra et al., 2010; Bastien et al., 2012).
The system was trained by partitioning the 5193
utterances into a training set, validation set, and
testing set in the ratio 3:1:1, respectively. The
frequency of each action type and slot-value pair
differs quite markedly across the corpus, hence
up-sampling was used to make the corpus more
uniform. Since our generator works stochasti-
cally and the trained networks can differ depend-
ing on the initialisation, all the results shown be-
low4 were averaged over 10 randomly initialised
networks. The BLEU-4 metric was used for the
objective evaluation (Papineni et al., 2002). Mul-
tiple references for each test dialogue act were ob-
tained by mapping them back to the 228 distinct
dialogue acts, merging those delexicalised tem-
plates that have the same dialogue act specifica-
tion, and then lexicalising those templates back to

4Except human evaluation, in which only one set of net-
work was used.
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Table 1: The 8 system dialogue acts with example realisations
# Dialogue act and example realisations of our system, by sampling from top-5 candidates
1 inform(name=”stroganoff restaurant”,pricerange=cheap,near=”fishermans wharf”)

stroganoff restaurant is a cheap restaurant near fishermans wharf .
stroganoff restaurant is in the cheap price range near fishermans wharf .

2 reject(kidsallowed=yes,food=”basque”)
unfortunately there are 0 restaurants that allow kids and serve basque .

3 informonly(name=”bund shanghai restaurant”, food=”shanghainese”)
i apologize , no other restaurant except bund shanghai restaurant that serves shanghainese .
sorry but there is no place other than the restaurant bund shanghai restaurant for shanghainese .

4 confirm(goodformeal=dontcare)
i am sorry . just to confirm . you are looking for a restaurant good for any meal ?
can i confirm that you do not care about what meal they offer ?

5 request(near)
would you like to dine near a particular location ?

6 reqmore()
is there anything else i can do for you ?

7 select(kidsallowed=yes, kidsallowed=no)
are you looking for a restaurant that allows kids , or does not allow kids ?

8 goodbye()
thank you for calling . good bye .

Table 2: Comparison of top-1 utterance between
the RNN-based system and three baselines. A
two-tailed Wilcoxon rank sum test was applied to
compare the RNN model with the best O&R sys-
tem (the 3-slot, 5g configuration) over 10 random
seeds. (*=p<.005)

Method beam BLEU ERR
handcrafted n/a 0.440 0
kNN n/a 0.591 17.2
O&R,0-slot,5g 1/20 0.527 635.2
O&R,1-slot,5g 1/20 0.610 460.8
O&R,2-slot,5g 1/20 0.719 142.0
O&R,3-slot,3g 1/20 0.760 74.4
O&R,3-slot,4g 1/20 0.758 53.2
O&R,3-slot,5g 1/20 0.757 47.8
Our Model 1/20 0.777* 0*

form utterances. In addition, the slot error (ERR)
as described in Section 3.4, out of 1848 slots in
1039 testing examples, was computed alongside
the BLEU score.

4.2 Empirical Comparison

As can be seen in Table 2, we compare our pro-
posed RNN-based method with three baselines:
a handcrafted generator, a k-nearest neighbour
method (kNN), and Oh and Rudnicky (2000)’s
n-gram based approach (O&R). The handcrafted
generator was tuned over a long period of time
and has been used frequently to interact with real
users. We found its performance is reliable and
robust. The kNN was performed by computing

Figure 3: Comparison of our method (rnn) with
O&R’s approach (5g) in terms of optimising top-5
results over different selection beams.

the similarity of the testing dialogue act 1-hot
vector against all training examples. The most
similar template in the training set was then se-
lected and lexicalised as the testing realisation.
We found our RNN generator significantly out-
performs these two approaches. While compar-
ing with the O&R system, we found that by par-
titioning the corpus into more and more utterance
classes, the O&R system can also reach a BLEU
score of 0.76. However, the slot error cannot be
efficiently reduced to zero even when using the
error itself as a reranking criterion. This prob-
lem is also noted in Mairesse and Young (2014).
In contrast, the RNN system produces utterances

without slot errors when reranking using the same
number of candidates, and it achieves the highest
BLEU score. Figure 3 compares the RNN sys-
tem with O&R’s system when randomly select-
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Table 3: Pairwise comparison between four systems. Two quality evaluations (rating out of 5) and one
preference test were performed in each case. Statistical significance was computed using a two-tailed
Wilcoxon rank sum test and a two-tailed binomial test (*=p<.05, **=p<.005).

Metrics
handcrafted RNN1 handcrafted RNN5 RNN1 RNN5 O&R5 RNN5

148 dialogs, 829 utt. 148 dialogs, 814 utt. 144 dialogs, 799 utt. 145 dialogs, 841 utt.
Info. 3.75 3.81 3.85 3.93* 3.75 3.72 4.02 4.15*
Nat. 3.58 3.74** 3.57 3.94** 3.67 3.58 3.91 4.02
Pref. 44.8% 55.2%* 37.2% 62.8%** 47.5% 52.5% 47.1% 52.9%

ing from the top-5 ranked results in order to intro-
duce linguistic diversity. Results suggest that al-
though O&R’s approach improves as the selection
beam increases, the RNN-based system is still bet-
ter in both metrics. Furthermore, the slot error of
the RNN system drops to zero when the selection
beam is around 50. This indicates that the RNN
system is capable of generating paraphrases by
simply increasing the number of candidates dur-
ing the over-generation phase.

4.3 Human Evaluation

Whilst automated metrics provide useful informa-
tion for comparing different systems, human test-
ing is needed to assess subjective quality. To do
this, about 60 judges were recruited using Amazon
Mechanical Turk and system responses were gen-
erated for the remaining 2571 unseen dialogues
mentioned in Section 4.1. Each judge was then
shown a randomly selected dialogue, turn by turn.
At each turn, two utterances were generated from
two different systems and presented to the judge
who was asked to score each utterance in terms
of informativeness and naturalness (rating out of
5), and also asked to state a preference between
the two taking account of the given dialogue act
and the dialogue context. Here informativeness is
defined as whether the utterance contains all the
information specified in the dialogue act, and nat-
uralness is defined as whether the utterance could
have been produced by a human. The trial was run
pairwise across four systems: the RNN system us-
ing 1-best utterance RNN1, the RNN system sam-
pling from the top 5 utterances RNN5, the O&R
approach sampling from top 5 utterances O&R5,
and a handcrafted baseline.

The result is shown in Table 3. As can be
seen, the human judges preferred both RNN1 and
RNN5 compared to the rule-based generator and
the preference is statistically significant. Further-
more, the RNN systems scored higher in both in-
formativeness and naturalness metrics, though the
difference for informativeness is not statistically

significant. When comparing RNN1 with RNN5,
RNN1 was judged to produce higher quality ut-
terances but overall the diversity of output offered
by RNN5 made it the preferred system. Even
though the preference is not statistically signifi-
cant, it echoes previous findings (Pon-Barry et al.,
2006; Mairesse and Young, 2014) that showed that
language variability by paraphrasing in dialogue
systems is generally beneficial. Lastly, RNN5 was
thought to be significantly better than O&R in
terms of informativeness. This result verified our
findings in Section 4.2 that O&R suffers from high
slot error rates compared to the RNN system.

4.4 Analysis

In order to better understand the relative contribu-
tion of each component in the RNN-based gener-
ation process, a system was built in stages train-
ing first only the forward RNN generator, then
adding the CNN reranker, and finally the whole
model including the backward RNN reranker. Ut-
terance candidates were reranked using Equation
(8) rather than (9) to minimise manual interven-
tion. As previously, the BLEU score and slot error
(ERR) were measured.
Gate The forward RNN generator was trained
first with different feature gating factors δ. Using
a selection beam of 20 and selecting the top 5 ut-
terances, the result is shown in Figure 4 for δ=1 is
(equivalent to not using the gate), δ=0.7, and δ=0
(equivalent to turning off the feature immediately
its corresponding slot has been generated). As can
be seen, use of the feature gating substantially im-
proves both BLEU score and slot error, and the
best performance is achieved by setting δ=0.
CNN The feature-gated forward RNN gen-
erator was then extended by adding a single
convolutional-pooling layer CNN reranker. As
shown in Figure 5, evaluation was performed on
both the original dataset (all) and the dataset con-
taining only binary slots and don’t care values
(hard). We found that the CNN reranker can better
handle slots and values that cannot be explicitly
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Figure 4: Feature gating effect Figure 5: CNN effect Figure 6: Backward RNN effect

delexicalised (1.5% improvement on hard com-
paring to 1% less on all).
Backward RNN Lastly, the backward RNN
reranker was added and trained to give the full
generation model. The selection beam was fixed
at 100 and the n-best top results from which to
select the output utterance was varied as n = 1,
5 and 10, trading accuracy for linguistic diversity.
In each case, the BLEU score was computed with
and without the backward RNN reranker. The re-
sults shown in Figure 6 are consistent with Sec-
tion 4.2, in which BLEU score degraded as more
n-best utterances were chosen. As can be seen,
the backward RNN reranker provides a stable im-
provement no matter which value n is.
Training corpus size Finally, Figure 7 shows
the effect of varying the size of the training cor-
pus. As can be seen, if only the 1-best utterance
is offered to the user, then around 50% of the data
(2000 utterances) is sufficient. However, if the lin-
guistic variability provided by sampling from the
top-5 utterances is required, then the figure sug-
gest that more than 4156 utterances in the current
training set are required.

Figure 7: Networks trained with different propor-
tion of data evaluated on two selection schemes.

5 Conclusion and Future Work

In this paper a neural network-based natural lan-
guage generator has been presented in which a for-
ward RNN generator, a CNN reranker, and back-
ward RNN reranker are jointly optimised to gen-
erate utterances conditioned by the required dia-
logue act. The model can be trained on any cor-
pus of dialogue act-utterance pairs without any se-
mantic alignment and heavy feature engineering or
handcrafting. The RNN-based generator is com-
pared with an n-gram based generator which uses
similar information. The n-gram generator can
achieve similar BLEU scores but it is less efficient
and prone to making errors in rendering all of the
information contained in the input dialogue act.

An evaluation by human judges indicated that
our system can produce not only high quality but
linguistically varied utterances. The latter is par-
ticularly important in spoken dialogue systems
where frequent repetition of identical output forms
can rapidly become tedious.

The work reported in this paper is part of a
larger programme to develop techniques for im-
plementing open domain spoken dialogue. A key
potential advantage of neural network based lan-
guage processing is the implicit use of distributed
representations for words and a single compact
parameter encoding of a wide range of syntac-
tic/semantic forms. This suggests that it should
be possible to transfer a well-trained generator of
the form proposed here to a new domain using a
much smaller set of adaptation data. This will be
the focus of our future work in this area.
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