
Proceedings of the SIGDIAL 2015 Conference, pages 68–76,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Belief Tracking with Stacked Relational Trees

Deepak Ramachandran
Nuance Communications Inc.

1178 E Arques, Sunnyvale, CA
deepak.ramachandran@nuance.com

Adwait Ratnaparkhi
Nuance Communications Inc.

1178 E Arques, Sunnyvale, CA
adwait.ratnaparkhi@nuance.com

Abstract

We describe a new model for Dialog State
Tracking called a Stacked Relational Tree,
which naturally models complex relation-
ships between entities across user utter-
ances. It can represent multiple conver-
sational intents and the change of focus
between them. Updates to the model are
made by a rule-based system in the lan-
guage of tree regular expressions. We also
introduce a probabilistic version that can
handle ASR/NLU uncertainty. We show
how the parameters can be trained from log
data, showing gains on a variety of standard
Belief Tracker metrics, and a measurable
impact on the success rate of an end-to-end
dialog system for TV program discovery.

1 Introduction

Significant advances have been made in recent
years on the problem of Dialog State Tracking or
Belief Tracking. Successive iterations of the Dialog
State Tracking Challenge (Williams et al., 2013;
Henderson et al., 2014b; Henderson et al., 2014a)
have expanded the scope of the problem to more
general settings such as changing goals and domain
adaptation. It has been shown that improvements
in Belief Tracking metrics lead to improvements in
extrinsic measures of dialog success as well (Lee,
2014). However, the underlying representations
of state have almost always been propositional i.e.
defined by a collection of slot-value pairs, though
the probability distribution used for tracking might
be quite complex (Mehta et al., 2010). These repre-
sentations are good for form-filling or information
collection type dialogs that are most commonly de-
ployed e.g. airline reservation systems that fill in all
the constraints a user has (such as destination and
source) before doing a database lookup. However,
as dialog systems get more sophisticated, complex

dialog phenomena present in human-human conver-
sations such as common ground or conversational
focus need to be supported as well.

This work is motivated by the need for a belief
tracker capable of tracking conversations with the
end-to-end conversational prototype for TV pro-
gram discovery described in (Ramachandran et al.,
2014). The prototype understands concepts at a
deep relational level and and supports nested sub-
dialogs with multiple intents of different types like
searches, questions, and explanations. We intro-
duce a representation called a Stacked Relational
Tree to represent the state of a dialog between a
user and system. It uses the notion of a relational
tree, similar to a dependency graph but constructed
between entities from a Named Entity Recognizer
(NER), to represent each individual intent of the
user. A stack (i.e. LIFO structure) of these trees
is used to model the conversational focus and the
structure of subdialogs. State updates are mod-
eled by sequences of stack and tree-editing opera-
tions. Allowable operations are defined using the
language of tree-regular expressions (Lai and Bird,
2004). The use of stacks to represent intentional
structure is common in dialog modeling (Grosz
and Sidner, 1986) and plan recognition (Carberry,
1990). Our novel contribution is to combine it
with a semantic representation and update rules
that are simple enough so that the entire model can
be trained from dialog data.

A system using this belief tracker was deployed
in a user study and made a dramatic difference in
the task success rate. We also describe a probabilis-
tic extension of this model for handling uncertainty
in input and ambiguity in understanding. We show
that training the weights of this model on log data
can improve its performance.

2 Dialog State Representation

Most commercial and research dialog systems rep-
resent the state of a conversation as a collection

68

Play Country Movie Country Person
play a french movie with an italian actor

object

filmingLocation ethnicOrigin

actor

Figure 1: REL-Tree for the utterance “Play a
French movie with an Italian actor.”

WhoQA MovieTitle And MovieTitle
who directed mystic river and stars in unforgiven

and

director

actor

Figure 2: REL-Tree for the question “Who directed
Mystic river and stars in Unforgiven?”

Play Person Movie not Person
play a superman movie without christopher reeve

object

NarrativeRole not actor

Figure 3: REL-Tree for the utterance “Play a Su-
perman movie without Christopher Reeve.”

of slot-value pairs that define the system’s best
understanding of the user’s intent e.g. an airline
reservation system might have slots for destination
city, arrival city, and date. Shallow NLP techniques
such as Named-Entity Recognition are used to ex-
tract the relevant slot-value pairs from each spoken
utterance of the user. As successive utterances
accumulate, a state tracking strategy is needed to
update the state given the slot-value pairs provided
at each turn. Traditionally, state tracking followed
a simple replacement semantics. Modern systems
maintain a probability distribution over possible
states, reflecting all the uncertainty and ambiguity
in ASR and NLU. Recent extensions have focused
on adaptation to new domains (Henderson et al.,
2014b) and changing user goals (Zhu et al., 2014).
However, in most cases we are aware of, the base
representation of the dialog state is propositional
(i.e. a collection of slot-value pairs). This reflects
the simple, goal-directed nature of the dialogs sup-
ported by such systems.

2.1 REL-Trees
Consider an utterance like “Play a French movie
with an Italian actor.” A slot-based system with a

Play Movie Person not Person
virtual a movie where christopher reeve doesn’t play superman

object

NarrativeRole

not

actor

Figure 4: REL-Tree for the fragmentary utterance
“A movie where Christopher Reeve doesn’t play
Superman.”

slot called Country would not be able to distin-
guish between the filming location and the actor’s
country of origin. A possible solution is to intro-
duce two separate slots called actorEthnicity
and filmingLocation, but scaling this ap-
proach leads to a multiplicity of slots that becomes
difficult to manage and extend. A more com-
pact representation (called a Relational Tree or
REL-Tree) is shown in Fig. 1. The only entity
types are Country, Movie, and Person. To
elaborate the meaning of the utterance, “French”
is attached to the Movie entity by the relation
filmingLocation and “italian” is attached to
Person by the relation ethnicOrigin. A
REL-Tree is a rooted tree with node labels corre-
sponding to entities and edge labels corresponding
to relations between them. In most cases, a relation
link is analogous to a syntactic dependency link
from a dependency parser – a link from child to par-
ent signifies that the child is a modifier of the parent.
The label at the root of the tree represents the in-
tent of the utterance (e.g., “Play”, “Who-QA”, and
“ExpressPreference”) if one can be distinguished,
see Fig. 2 for another example. Fragmentary utter-
ances can have missing intents, in which case the
root is simply labeled ROOT.

Comparing the REL-Trees in Figures 3 and 4
shows another example of the representational
power of REL-Trees . The two utterances have dif-
ferent meanings and indeed yield different results
(The 2013 movie “Man of Steel” had Christopher
Reeve in a cameo role, but not as Superman). In
our dialog system, REL-Trees are produced by a
Relation Extraction component that operates after
NER. Note that the NER is trained to label boolean
connectors such as “and” and “without” as entities
as well. In some cases, it adds “virtual” entities to
fragmentary utterances when they are not explicit
in the text (e.g. the Play entity in Fig. 4). For
more details refer to (Ramachandran et al., 2014).

69

2.2 Stacks
The dialog example of Table 4 (see Appendix) illus-
trates another phenomenon not usually considered
by belief trackers: multiple intents and the con-
cept of a conversational focus (Grosz and Sidner,
1986). The user starts with the intention of finding
a romantic movie to watch but is then led by the
system response into asking a question about one
of the search results (a query). He then modifies
the argument of the query to ask about a different
movie. Then, he gives a command to provide him
with more suggestions. Finally, he goes back to
the original search intent and modifies the genre.
The second column of this table shows how we
model multiple intents and the change in focus by
a stack of REL-Trees (called a Stacked REL-Tree
or a Stack). Each REL-Tree represents a separate
intent of the user and the REL-Tree on top of the
stack is the current focus of the conversation. Sub-
sequent utterances are interpretated as refining or
modifying this REL-Tree. If no such interpreta-
tion is possible, then either the focus is assumed to
have shifted back to an earlier intent in the stack or
we treat the utterance as a new intents. The allow-
able set of operations and the algorithm by which
they are applied are fully specified in the next few
sections. A REL-Tree that represents an utterance
from the user will be called an utterance REL-Tree
wherever it is necessary to make the distinction.

3 Update Rules

The Stacked REL-Tree representation of dialog
state was introduced in the previous section and
Table 4 shows how a dialog state progresses as
each utterance comes in. A set of state update rules
are used to specify how the REL-tree on the top
of a stack is modified by the incoming utterance.
To describe the update rules, we will need three
definitions.

Tree Regular Expressions A tree regular ex-
pression (or tree regex) is a regular expression that
matches against paths in a rooted tree from a node
to one of its descendants, with node and edge labels
serving as the tokens of the string (Lai and Bird,
2004). The basic elements of a tree regex are:

1. Node and Edge labels: These are repre-
sented by a string regular expression (i.e. a
regular expression over strings) surrounded by
“/ /” e.g. /[actor|director]/ matches
a node with an actor or director label.

When labels are concantenated they represent
a path from the root to a descendant node with
each successive label alternatively matching
node and edge labels on the path. For example,
/Movie/actor/Person/ethnicOrigin/Place

would match against the path from the “movie”
node to the “italian” in Fig. 1. The empty
label // matches any node or edge label.

2. Node Values: A node label followed by
the expression {V} where V is a string
regular expression, matches nodes where
the surface text of the node equals V. e.g.
/Movie/narrativeRole/Person{superman}/
matches the path from the “movie” node to
the “superman” node in Fig. 3.

3. Operators: The symbols ∗, ?, . have the usual
meanings for regular expressions when placed
after a tree regular expression. Note however,
that ∗ and + automatically match against al-
ternating node and edge labels along a path.
Thus, the expression //*/Place/ matches
against two paths from the root in Fig. 1. The
operators ∧ and $ represent the root node and
a leaf node respectively.

4. Groups: Groups are defined by enclosing a
part of a tree regex inside parentheses. Let
M be a successful match of a tree regex P to
the tree T , the sub-path in M matching the
ith group in P can be retrieved by M.@i. For
example, for the tree in Fig. 2 and the pat-
tern /And/./(MovieTitle), there are
two matches M1 and M2 with M1.@1 hav-
ing value “mystic river” and M2.@1 having
value “unforgiven.”

Tree Constraints For tree regexes P1 and P2, a
Tree constraint on P1 and P2 is an expression of
the form P1.@i = P2.@j, P1.@i{} = P2.@j{},
or P1.@i{} < P2.@j{}. Here, x < y means x is a
substring of y. {} retrieves the value of a node (the
surface form).

Transformations A transformation τ on tree
regexes P1 and P2, is a list of one or more of the fol-
lowing operations performed on paths that match
against groups from P1 and P2 :

1. Add(g1, g2): Add the matched sub-path
from group g2 as a child of the head node
of the matched sub-path from group g1.

70

2. Delete(g): Remove the head node and all
descendants of the path matching group g.

3. Unify(g1, g2): Replace the head node h1,
of g1 with the head node, h2 of g2, and add all
children of h2 as children of h1.

An update rule is defined as a tuple (P1, P2, E, τ)
where P1 and P2 are tree regular expressions, E
is a set of tree constraints on P1 and P2, and τ is
a transformation on P1 and P2. An update rule U
is applicable to a dialog state tree T and an input
REL-tree L if:

1. P1 has a match, M1 on T
2. P2 has a match, M2 on L
3. E holds for the groups in M1 and M2.
In such case, the result of applying U on T and

L are the trees S′ and L′ obtained by applying each
operation in τ to {M1,M2} in the order specified.

Here are some example update rules with expla-
nations:

1. Head Variable Unification
P1: /object/(Program/)
P2: /object/([Movie|TvShow|Game]/)
E: {}
τ: {Unify(P1.@1,P2.@1)}

If the object of the current intent is Program
and the current utterance from the user asks
for either a movie, tv show, or game, then
update the dialog state to reflect that we are
searching for this kind of program (See Fig. 5
for an example).

2. Concept Replacement
P1: ∧///(///)$
P2: ∧///(///)$
E: {P1.@1=P2.@1}
τ: {Unify(P1.@1,P2.@1),Delete(P2.@1)})

This rule is applicable when the input utter-
ance has a value for some attribute that is al-
ready present in the dialog state. In this case,
the new value of the attribute replaces the old
one. Note that the constraint in the utterance
tree is also “consumed” by this rule (See Fig.
5 for an example).

3. Boolean fragment

P1: (/[or|and]/[And|Or]/)*(/or/Or)(///)$
P2: ∧(/or/Or)(///)$
E: {P1.@3=P2.@2}
τ: {Add(P2.@2,P1.@3),Delete(P1.@3),
Add(P2.@2,P1.@2),Delete(P2.@2)})

This rule is applicable when the input utter-
ance is a boolean fragment with an attribute

Play Movie Person
play a movie with tom cruise

object Actor

Play Program Person
virtual *virtual* with bruce willis

Actor

object

Play Movie Person
movie bruce willis

object Actor

Figure 5: The tree at the bottom is the result of
applying rules 1 and 2 to the trees at the top (current
dialog state) and the middle (current utterance).

Play Movie Person
play a movie with tom cruise

object Actor

ROOT Or Person
or bruce willis

or Actor

Play Movie Person Or Person
movie tom cruise bruce willis

object Actor Actor

or

Figure 6: The tree at the bottom is the result of
applying rules 1 and 3 to the trees at the top (current
dialog state) and the middle (current utterance).

already present in the dialog state. The sub-
trees are then unified as shown in Fig. 6.

The definition of update rules and the allowable
operations we have presented were tailored to our
particular domain. In principle, it is possible to
extend them to be more general, but care must
be taken so that the operations and especially the
regex matching algorithm can be efficiently imple-
mented (Lai and Bird, 2004). For our implemen-
tation of tree regexes we adapted the TSurgeon
package (Levy and Andrew, 2006) from the Stan-
ford Parser.

71

Algorithm 1: UpdateDialogState
Data: Stacked REL-Tree S, utterance

REL-Tree L, List of Update Rules R
Applied:=false, Scur := S;
repeat

T := S.pop();
for each update rule Ri ∈ R in sequence
do

if Ri is applicable to (T, L) then
Applied=true;
Apply transformation τi (from Ri)
to (T, L);

until S.empty() or Applied==true;
if not Applied then

S:= Scur;
S.push(T);

return S;

3.1 The Belief Tracking Algorithm

Recall that our state representation is a stack of
REL-Trees as in Table 4. Algorithm 1 shows how
we update the dialog state at each turn. It is pa-
rameterized by an ordered list of update rules as
described in Section 3. We attempt to apply them
in order to the REL-Tree at the top of the stack
first. If no rule is applicable, this indicates that
the conversational focus has shifted. We pop the
top REL-Tree off the stack and try again with the
REL-Tree below it. This process continues, until a
rule is succesfully applied or the stack is empty. In
the latter case, the utterance is regarded as being a
new intent, and the utterance REL-Tree is pushed
on top of the old dialog state.

4 A Probabilistic Extension

The State Tracker described above is able to model
relational representations and shifting conversa-
tional focus. However, it is deterministic and thus
unable to handle ambiguity caused by multiple ap-
plicable rules. Consider the third user turn in Table
4. We interpret “How about The Notebook?” as
a modification to the question intent, but it is pos-
sible that the user intended it to be a refinement
of his search intent i.e. he wants to watch “The
Notebook”. Furthermore, in most practical dialog
systems the output of the ASR and NLU compo-
nents will have multiple hypotheses with associated
confidence scores or probabilities.

To represent this uncertainty in a compact way,

Ground State Probability

PersonQA MovieTitle
who the notebook

Director

Play Movie Genre Time
movie romance tonight

object Genre

ShowTime 0.8

Play Movie Genre Time Title
movie romance tonight the notebook

object Genre

ShowTime

TitleOf

0.2

Figure 7: A sample belief state after turn 3 of the
dialog in Table 4. The first ground state is the result
of a merge of the utterance REL-Tree with the top
of the stack. The second ground state is the result
of a pop followed by a merge.

we will expand our representation of dialog state to
a dialog belief state that is a probability distribution
over Stacked REL-Trees. An example belief state
for the case above is shown in Fig. 7, having two
ground dialog states (i.e. Stacked REL-Trees) with
probability 0.8 and 0.2. The belief state, Bt, for a
particular turn t, is constructed from the belief state
of the previous turn Bt−1, by trying every combi-
nation of Stacked REL-Tree St−1 in the support
of Bt−1, utterance REL-Tree L, and sequence of
applicable rule {Ri} to yield a different Stacked
REL-Tree St. The probability of St is given by:

PrBt(St|St−1, L, {Ri}) =

PrBt−1(St−1)·PrL(L)·
∏

i

Pr(Ri|Si−1
t−1 , L)

where Si
t is obtained by applying Ri to Si−1

t , and

Pr(Ri|S,L) ∝ e−wi·f(S,L,Ri) (1)

Here, f(S,L,Ri) is a feature-generating func-
tion. It uses a combination of structural tree fea-
tures such as number of children and depth from
root and features from the surface text (e.g., func-
tional words/phrases such as “and” or “instead of”
). We also have special rules for pushing a REL-
Tree on top of the stack, popping the top REL-Tree,
and rules marked terminal indicating that no more
rules are to be applied. The weights for all rules
are trained by logistic regression.

72

Algorithm 2: UpdateBeliefState
Data: Belief State of previous turn Bt−1(S),

Distribution over utterance REL-Trees
PL(L), List of Update Rules R

for each stack S in the support of Bt−1 do
for each tree L in the support of PL do

W := Bt−1(S) · PL(L)
Bt := Bt ∪ UpdateI-State (S, L, W)

Prune Bt down to the top K elements;
Normalize the weights to 1.
return Bt

Algorithm 3: UpdateI-State
Data: Stacked REL-Tree S, Utterance

REL-Tree L, List of Update Rules R,
Prior Weight W

S = {}
for each update rule Ri ∈ R applicable to
(S,L) do

Apply transformation τi (from Ri) to
(S,L) to get (S′, L′)
Wi := W · Pr(Ri|S,L)
if Ri is terminal then

S := S + (S′,Wi)

else
S:= S ∪ UpdateI-State(S′,L′,Wi)

return S;

The full probabilistic belief tracking algorithm
is shown in Algorithm 2. It uses a recursive helper
method (Algorithm 3) to apply rules successively
to stacks in the input distribution. The intermediate
states of this process are called I-States. To prevent
a combinatorial explosion in the size of the belief
state over successive turns, it is pruned down at
the end to a distribution over at most K stacks
(K = 50).

Training For training data, we use conversations
with a full dialog-system. Each turn of the dialog is
annotated with the sequence of update rules that are
applied to the belief state of the previous turn to get
the correct belief state for the current turn. From
these, we can compute the sequence of I-States for
that turn. Then, for each rule that is applicable to
each of these I-States, a training instance is added
to the classifier for that rule, along with a binary
label indicating whether the rule was applied in
that I-State or not. The classifier (using logistic

regression) then learns to distinguish I-States where
the rule should be used, from those where it should
not. Note that this training protocol requires very
strong labels from the annotator (a sequence of
operations for every turn). This limits its scalability
to larger training sets, but nevertheless we present
it as a proof of concept that training this model is
possible in principle. Exploring ways to ease this
constraint is a topic we plan to explore in future
work.

5 Evaluation

We present two evaluations of the tracking ap-
proaches described above. The first one measures
the impact of using the deterministic algorithm as
part of a larger conversational prototype for TV
Program Discovery, in contrast to a system with no
belief tracking (stateless). In the second, we show
the additional value gained by the probabilistic ver-
sion, trained on dialogs from developer logs. The
framework for the second evaluation was made to
be as close as possible to the methods in the DSTC
competition.

5.1 User Study

An implementation of Algorithm 1 with 16 update
rules and 4 kinds of user intents (search requests,
questions, commands, and preference statements)
was included as a component of a Spoken Dialog
System for TV Program Discovery on an IPad. The
system had an NER and a Relation Extractor as
described in Section 2 as well as a dialog manager
that operated on Stacked REL-Trees and a back-
end for program search that used both structured
database queries and graph inference on Freebase.
For more details, see (Ramachandran et al., 2014).
This system was evaluated in a user study with 14
subjects to determine how much the statefulness
of the dialog model impacted success and usabil-
ity. Subjects were presented with 7 scenarios to
imagine themselves in and asked to find a suitable
program to watch using the prototype, for example:

You are at home and have young nieces
and nephews coming over. Find a pro-
gram to watch with them.

The subject was asked to continue speaking with
the system until he/she either found a suitable pro-
gram (in which case the scenario was recorded
as a success) or gave up (in which case a failure
was recorded). For this evaluation, the subject was

73

Figure 8: A Screenshot of our IPad Conversational
Prototype after the query “Movies playing this
weekend”.

System Succ. Avg. # SUS
Rate of turns Score

Stateful 85.72 % 4.81 84.29 (15.7)
Stateless 63.27% 5.38 85.71 (15.5)

Table 1: Comparison of dialog system performance
for 14 real users with and without the state tracker.
SUS score is a industry-standard usability metric.

asked to do these tasks using both the complete
stateful dialog system and a stateless repeated one-
shot version where the belief tracker and dependent
components were deactivated. Both systems were
otherwise identical and the subjects were not told
what the differences between them was. Table 1
summarizes the result of the comparsion. The use
of belief tracking was found to make a 22% (ab-
solute) difference to the objective success rate of
the system. The stateful model allowed subjects to
pose more complex requests that are difficult to for-
mulate as a single utterance as a series of simpler
ones; or allowed them to explore the space of op-
tions more efficiently. This was also reflected in a
lower average number of turns per dialog. Interest-
ingly, this did not lead to a significant difference in
the perceived usability of the system, as measured
by the industry standard SUS score (Brooke, 1996).
Indeed, users barely noticed the stateful/stateless
distinction between the systems. The overall us-
ability was still pretty high, corresponding to an
adjective rating of “Good” verging on “Excellent.”

User football games this weekend
Sys Football games this weekend. Would you like College Football

or Classic College Football?
User or next weekend
Sys Football games this weekend or next weekend. Would you like

Classic College Football, College Football, or Rose Bowl?
User romantic movies tomorrow
Sys Ok starting a new search. Romantic movies tomorrow. Would

you like something with Sandra Bullock, Nicole Kidman, Kristen
Stewart, or more suggestions?

User more suggestions
Sys How about Robert Pattinson, Kate Winslet, Katherine Heigl or

more suggestions?
User Winslet
Sys Romantic movies with Kate Winslet tomorrow. Would you like

Titanic or Little Children?
User the first one
Sys You chose Titanic on Bravo at 10:30 AM on Saturday
User movies about the gulf war
Sys Movies set during the Gulf war. Would you like Courage Under

Fire, Jarhead, or The Finest Hour?
User explain the second one
Sys This film is an adaptation of the book “Jarhead: a Marine’s

Chronicle of the Gulf War and Other Battles”, whose subject is
the Gulf War. Would you like Courage under Fire, Jarhead, or
The Finest Hour?

Table 2: Example dialog with our system. Sys-
tem responses are accompanied by movie or TV
thumbnail images on the iPad UI.

5.2 Probabilistic Belief Tracking

The Dialog State Track Competitions (Williams
et al., 2013; Henderson et al., 2014b; Henderson
et al., 2014a) introduced a shared evaluation task
for belief tracking on a corpus of dialog data from
various domains. Unfortunately, the data is purely
slot-based so it cannot be used to evaluate our meth-
ods directly. However, the competitions also intro-
duced a rubric for evaluation that we endevoured
to follow as closely as possible in this section.

Algorithm 2 was implemented with 16 update
rules similar to the deterministic tracker described
above. The weight vectors for each rule were
trained by logistic regression as described. The
training data came from the developer logs of our
system.1 Each turn of dialog was labelled by us
with the correct dialog-state (i.e. stacked REL-tree)
and the sequence of updates rule that were applied
to progress to the next state. The training protocol
of Section 4 was then followed. Overall there were
673 dialogs with 1726 turns of speech and 3642 I-
states. After training, the belief tracking algorithm
(Algorithm 2) was evaluated on a held out test set
of 50 dialogs with 142 turns.

The DSTC competitions identified 4 clusters of
evaluation metrics that tended to rank various track-
ing algorithms equivalently. In Table 3 we show
the performance of the trained tracker and the deter-

1Logs of conversations involving testing and bug fixing
were removed.

74

System Accuracy L2 ROC.V2.CA20 ROC.V1.EER
Deterministic-Test Set 0.743 0.264 0.82 0.25

Trained-Test Set 0.788 0.237 0.73 0.22
Deterministic-User Study 0.661 0.348 0.75 0.35

Trained-User Study 0.680 0.335 0.72 0.33

Table 3: Comparsion of belief tracker performance with and without training using DSTC metrics.

mininstic baseline on one metric from each cluster:
Accuracy measures the percent of turns where the
top-ranked hypothesis is correct. L2 measures the
L2 distance between the vector of scores for each
hypothesis, and a vector of zeros with 1 in the po-
sition of the correct hypothesis. The other two
measures relate to receiver-operating characteristic
(ROC) curves, which measure the discrimination
of the score for the highest-ranked state hypothe-
sis. ROC.V2.CA20 is the Correct acceptance-rate
for the highest ranked hypothesis when the false-
acceptance rate is set to 20%, for correctly clas-
sified utterances only. ROC.V1.EER is the Equal-
error rate i.e. where false-acceptance rate equals
false-reject rate, for all utterances. In addition to
the test data-set, performance was also measured
on all dialogs from the user study of Section 5.1.
This gives a measure of generalization to dialogs
from outside the training distribution. The results
show that the trained belief tracker outperformed
the handcrafted on all measures, though not by
large amounts. As expected, performance was uni-
formly worse on the (out-of-sample) user study
data but there was still some improvement.

6 Conclusions and Future Work

In this paper, we present the first (to our knowledge)
Belief Tracking approach that represents the dialog
state with a probabalistic relational and multi-intent
model. We show that this model is effective when
measured on standard metrics used for belief track-
ing, as well as making a marked difference in the
task success rate of a complete dialog system.

The most serious shortcoming of this approach
is the reliance on very strong labels for the training.
To relax this requirement, we are exploring the
possibility of training our model using weak labels
(such as query results) in the manner of (Berant
et al., 2013). Another direction to explore is the
representation of distributions over Stacked REL-
trees in compact forms.

References
J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Semantic

parsing on Freebase from question-answer pairs. In Empir-
ical Methods in Natural Language Processing (EMNLP).

J. Brooke. 1996. SUS: A quick and dirty usability scale. In
Usability Evaluation in Industry.

S. Carberry. 1990. Plan recognition in natural language
dialogue. MIT press.

B. J. Grosz and C. L. Sidner. 1986. Attention, intentions,
and the structure of discourse. Computational linguistics,
12(3):175–204.

M. Henderson, , B. Thomson, and J. Williams. 2014a. The
third dialog state tracking challenge. Proceedings of IEEE
Spoken Language Technology.

M. Henderson, B. Thomson, and J. Williams. 2014b. The
second dialog state tracking challenge. In Proceedings of
the SIGDIAL 2014 Conference, page 263.

C. Lai and S. Bird. 2004. Querying and updating treebanks: A
critical survey and requirements analysis. In Proceedings
of the Australasian language technology workshop, pages
139–146.

S. Lee. 2014. Extrinsic evaluation of dialog state tracking and
predictive metrics for dialog policy optimization. In 15th
Annual Meeting of the Special Interest Group on Discourse
and Dialogue, page 310.

R. Levy and G. Andrew. 2006. Tregex and tsurgeon: tools
for querying and manipulating tree data structures. In Pro-
ceedings of the fifth international conference on Language
Resources and Evaluation, pages 2231–2234. Citeseer.

N. Mehta, R. Gupta, A. Raux, D. Ramachandran, and
S. Krawczyk. 2010. Probabilistic ontology trees for belief
tracking in dialog systems. In Proceedings of the SIGDIAL
2010 Conference, pages 37–46. Association for Computa-
tional Linguistics.

D. Ramachandran, P. Yeh, W. Jarrold, B. Douglas, A. Ratna-
parkhi, R. Provine, J. Mendel, and A. Emfield. 2014. An
end-to-end dialog system for tv program discovery. In SLT.

J. Williams, A. Raux, D. Ramachandran, and A. Black. 2013.
The dialog state tracking challenge. In Proceedings of the
SIGDIAL 2013 Conference, pages 404–413.

S. Zhu, L. Chen, K. Sun, D. Zheng, and K. Yu. 2014. Seman-
tic parser enhancement for dialogue domain extension with
little data. In Spoken Language Technology Workshop.

A Dialog Example

In Table 4 we show the belief tracking process us-
ing a Stacked REL-Tree for a sample conversation.

75

Utterance System state after utterance Operation performed on
stack

User: I want a romance movie
tonight.

Play Movie Genre Time
movie romance tonight

object Genre

ShowTime
Initial Search Intent

System: Ok how about The Note-
book or Walk the Line?
User: Who directed walk the
line?

PersonQA MovieTitle
walk the line

Director

Play Movie Genre Time
movie romance tonight

object Genre

ShowTime

New question intent put on
top of stack

System: James Mangold
User: How about The Notebook?

PersonQA MovieTitle
the notebook

Director

Play Movie Genre Time
movie romance tonight

object Genre

ShowTime

Modification to question on
top of stack.

System: Nick Cassavetes.
User: Give me more suggestions.

ProvideInfo MoreSuggestions

object

Play Movie Genre Time
movie romance tonight

object Genre

ShowTime

Utterance is a command
for more suggestions, gets
placed on top of the stack re-
placing the question.

System: No more suggestions.
User: Ok well, let’s try a comedy
then.

Play Movie Genre Time
movie comedy tonight

object Genre

ShowTime
Command is popped off,
comedy replaces romance in
the original search intent.

Table 4: Dialog State updates of the deterministic tracker (Algorithm 1) for each turn of a sample dialog.

76

