
Proceedings of the SIGDIAL 2015 Conference, pages 2–11,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Human-Machine Dialogue as a Stochastic Game

Merwan Barlier1,2

1NaDia Team
Orange Labs

merwan.barlier@orange.com

Julien Perolat2

2Univ. Lille - CRIStAL lab
SequeL team

julien.perolat@univ-lille1.fr

Romain Laroche
NaDia Team
Orange Labs

romain.laroche@orange.com

Olivier Pietquin2,3

3Institut Universitaire de France
IUF

olivier.pietquin@univ-lille1.fr

Abstract

In this paper, an original framework to
model human-machine spoken dialogues
is proposed to deal with co-adaptation be-
tween users and Spoken Dialogue Systems
in non-cooperative tasks. The conversa-
tion is modeled as a Stochastic Game:
both the user and the system have their
own preferences but have to come up with
an agreement to solve a non-cooperative
task. They are jointly trained so the Dia-
logue Manager learns the optimal strategy
against the best possible user. Results ob-
tained by simulation show that non-trivial
strategies are learned and that this frame-
work is suitable for dialogue modeling.

1 Introduction

In a Spoken Dialogue System (SDS), the Dia-
logue Manager (DM) is designed in order to im-
plement a decision-making process (called strat-
egy or policy) aiming at choosing the system inter-
action moves. The decision is taken according to
the current interaction context which can rely on
bad transcriptions and misunderstandings due to
Automatic Speech Recognition (ASR) and Spoken
Language Understanding (SLU) errors. Machine
learning methods, such as Reinforcement Learn-
ing (RL) (Sutton and Barto, 1998), are now very
popular to learn optimal dialogue policies under
noisy conditions and inter-user variability (Levin
and Pieraccini, 1997; Lemon and Pietquin, 2007;
Laroche et al., 2010; Young et al., 2013). In
this framework, the dialogue task is modeled as
a (Partially Observable) Markov Decision Process
((PO)MDP), and the DM is an RL-agent learning
an optimal policy. Yet, despite some rare exam-

ples, RL-based DMs only consider task-oriented
dialogues and stationary (non-adapting) users.

Unfortunately, (PO)MDP are restricted to
model game-against-nature problems (Milnor,
1951). These are problems in which the learn-
ing agent evolves in an environment that doesn’t
change with time and acts in a totally disinter-
ested manner. (PO)MDP-based dialogue model-
ing thus applies only if 1) the user doesn’t modify
his/her behavior along time (the strategy is learned
for a stationary environment) and 2) the dialogue
is task-oriented and requires the user and the ma-
chine to positively collaborate to achieve the user’s
goal.

The first assumption doesn’t hold if the user
adapts his/her behavior to the continuously im-
proving performance of a learning DM. Some re-
cent studies have tried to model this co-adaptation
effect between a learning machine and a hu-
man (Chandramohan et al., 2012b) but this ap-
proach still considers the user and the machine as
independent learning agents. Although there has
already been some few attempts to model the “co-
evolution” of human machine interfaces (Bour-
guin et al., 2001), this work doesn’t extend to
RL-based interfaces (automatically learning) and
is not related to SDS.

More challenging situations do also arise when
the common-goal assumption doesn’t hold either,
which is the case in many interesting applications
such as negotiation (El Asri et al., 2014), seri-
ous games, e-learning, robotic co-workers etc. Es-
pecially, adapting the MDP paradigm to the case
of negotiation dialogues has been the topic of re-
cent works. In (Georgila et al., 2014), the authors
model the problem of negotiation as a Multi-Agent
Reinforcement Learning (MARL) problem. Yet,
this approach relies on algorithms that are treat-

2



ing the multi-player issue as a non-stationnarity
problem (e.g. WoLF-PHC (Bowling and Veloso,
2002)). Each agent is assumed to keep a stable in-
teraction policy for a time sufficiently long so that
the other agent can learn it’s current policy. Oth-
erwise, there is no convergence guarantees. An-
other major issue with these works is that noise in
the ASR or NLU results is not taken into account
although this is a major reason for using stochas-
tic dialogue models. In (Efstathiou and Lemon,
2014), the authors follow the same direction by
considering both agents as acting in a stationary
MDP.

In this paper, we propose a paradigm shift
from the now state-of-the-art (PO)MDP model
to Stochastic Games (Patek and Bertsekas, 1999)
to model dialogue. This model extends the
MDP paradigm to multi-player interactions and
allows learning jointly the strategies of both
agents (the user and the DM), which leads to the
best system strategy in the face of the optimal
user/adversary (in terms of his/her goal). This
paradigm models both co-adaptation and possi-
ble non-cooperativness. Unlike models based on
standard game theory (Caelen and Xuereb, 2011),
Stochastic Games allow to learn from data. Es-
pecially, departing from recent results (Perolat et
al., 2015), we show that the optimal strategy can
be learned from batch data as for MDPs (Pietquin
et al., 2011). This means that optimal negotiation
policies can be learnt from non-optimal logged in-
teractions. This new paradigm is also very dif-
ferent from MARL methods proposed in previous
work (Chandramohan et al., 2012b; Georgila et
al., 2014; Efstathiou and Lemon, 2014) since op-
timization is jointly performed instead of alterna-
tively optimizing each agent, considering the other
can stay stationary for a while. Although experi-
ments are only concerned with purely adversarial
tasks (Zero-Sum games), we show that it could be
naturally extended to collaborative tasks (general
sum games) (Prasad et al., 2015). Experiments
show that an efficient strategy can be learned even
under noisy conditions which is suitable for mod-
eling realistic human-machine spoken dialogues.

2 Markov Decision Processes and
Reinforcement Learning

As said before, human-machine dialogue has been
modeled as an (PO)MDP to make it suitable for
automatic strategy learning (Levin and Pieraccini,

1997; Young et al., 2013). In this framework,
the dialogue is seen as a turn-taking process in
which two agents (a user and a DM) interact
through a noisy channel (ASR, NLU) to exchange
information. Each agent has to take a decision
about what to say next according to the dialogue
context (also called dialogue state). In this sec-
tion, MDPs (Puterman, 1994) and RL (Sutton and
Barto, 1998; Bertsekas and Tsitsiklis, 1996) are
briefly reviewed and formally defined which will
help switching the Stochastic Games in Section 3.

2.1 Markov Decision Processes
Definition 2.1. A Markov Decision Process
(MDP) is a tuple 〈S,A, T ,R, γ〉 where: S is the
discrete set of environment states, A the discrete
set of actions, T : S × A × S → [0, 1] the state
transition probability function andR : S×A → R
the reward function. Finally, γ ∈ [0, 1) is a dis-
count factor.

At each time step, the RL-agent acts accord-
ing to a policy π, which is either deterministic
or stochastic. In the first case, π is a mapping
from state space to action space : π : S → A,
while in the latter, π is a probability distribu-
tion on the state-action space π : S × A →
[0, 1]. Policies are generally designed to maxi-
mize the value of each state, i.e. the expected dis-
counted cumulative reward: ∀s ∈ S, V π(s) =
E[
∑∞

t=0 γ
tr(st, π(st))|s0 = s]. Let V be the

space of all possible value functions. The optimal
value function V ∗ is the only value function such
that: ∀V ∈ V,∀s ∈ S, V ∗ ≥ V . The following
result, proved in (Puterman, 1994), is fundamental
in the study of MDPs:
Theorem 2.1. Let M be an MDP. Its optimal value
function V ∗ exists, is unique and verifies:

∀s ∈ S, V ∗(s) = max
a∈A

(
r(s, a)

+
∑
s′∈S
T (s, a, s′)V ∗(s′)

)
Furthermore, one can always find a deterministic
policy π∗ inducing V ∗.

The function Qπ : (s, a) 7→ r(s, a) +∑
s′∈S T (s, a, s′)Vπ(s′) is called Q-function. We

thus have: π∗(s) = argmaxaQπ∗(s, a) =
argmaxaQ∗(s, a).

2.2 Reinforcement Learning
In many cases, transition and reward functions are
unknown. It is thus not possible to compute values

3



nor Q-Functions, the RL-agent learns an approx-
imation by sampling through actual interactions
with the environment. The set of techniques solv-
ing this problem is called Reinforcement Learning.

For instance the Q-Learning algorithm
(Watkins and Dayan, 1992) approximates, at each
time step, the optimal Q-Function and uses the
following update rule:

Qt+1(st, at)← Qt(st, at) + α[rt+1(st, at)
+ γmax

a
Qt(st+1, a)−Qt(st, at)]

It can been shown that, under the assumption that∑
α = ∞ and

∑
α2 < ∞ and that all states are

visited infinitely often,Q-values converge towards
the optimal ones. Thus, by taking at each state the
action maximizing those values, one finds the op-
timal policy. There are batch algorithms solving
the same problem among which Fitted-Q (Gor-
don, 1999; Ernst et al., 2005).

3 Stochastic Games

Stochastic Games (Filar and Vrieze, 1996; Ney-
man and Sorin, 2003), introduced in (Shapley,
1953), are a natural extension of MDPs to the
Multi-Agent setting.

3.1 Definitions

Definition 3.1. A discounted Stochastic Game
(SG) is a tuple 〈D,S,A, T ,R, γ〉 where: D =
{1, ..., n} represents the set of agents, S the dis-
crete set of environment states, A = ×i∈DAi
the joint action set, where for all i = 1, ..., n,
Ai is the discrete set of actions available to the
ith agent, T : S × A × S → [0, 1] the state
transition probability function, R = ×i∈DRi the
joint reward function, where for all i = 1, ..., n,
Ri : S ×A→ R is the reward function of agent i.
Finally, γ ∈ [0, 1) is a discount factor.

An agent i chooses its actions according to
some strategy σi, which is in the general case a
probability distribution on i’s state-action space. If
the whole space of agents is considered, we speak
about the joint strategy σ. The notation σ−i repre-
sents the joint strategy of all agents except i.

This definition is general, every ’MDP’ in
which multiple agents interact may be interpreted
as a Stochastic Game. It is therefore useful to
introduce a taxonomy. A game where there are
only two players and where the rewards are oppo-
site (i.e. R1 = −R2) is called Zero-Sum Game.

Conversely, a Purely Cooperative Game is a game
where all the agents have the same reward (i.e.
∀i ∈ D,Ri = R). A game which is neither Zero-
Sum nor Purely Cooperative is said to be General-
Sum.

3.2 Best Response
In all environments, agents learn by acting ac-
cording to what has previously been learned. In
other words, agents adapt to an environment. This
is also valid in a multi-agent scenario, if agent i
wants to learn about agent j, it will act accord-
ing to what has previously been learned about j.
But conversely, if j wants to learn about agent i,
it will act according to what it knows about i. We
say that agents co-adapt. Co-adapation is, due to
this feedback loop, an intrinsically non-stationary
process. An algorithm converges if it converges to
stationary strategies.

Each agent acts in order to maximize its ex-
pected discounted cumulative reward, also called
the discounted value of the joint strategy σ in state
s to player i : Vi(s,σ) = E[

∑∞
t=0 γ

tr(st,σ)].
The Q-function is then defined as (Filar and
Vrieze, 1996):

Q(s,σ, a) = R(s, a) + γ
∑
s′∈S
T (s, a, s′)V (s′,σ)

This value function depends on the opponents’
strategies. It is therefore not possible to define
in the general case a strategy optimal against ev-
ery other strategy. A Best Response is an optimal
strategy given the opponents ones.

Definition 3.2. Agent i plays a Best Response σi
against the other players’ joint strategy σ−i if σi is
optimal given σ−i. We write σi ∈ BR(σ−i).

Best Response induces naturally the following
definition:

Definition 3.3. The strategy profile {σi}i∈D is a
Nash Equilibrium (NE) if for all i ∈ D, we have
σi ∈ BR(σ−i).

It is interesting to notice that in a single-player
game, Nash Equilibrium strategies match the opti-
mal policies defined in the previous section.

The existence of Nash Equilibria in all dis-
counted Stochastic Games is assured by the fol-
lowing theorem (Filar and Vrieze, 1996):

Theorem 3.1. In a discounted Stochastic Game
G, there exists a Nash Equilibrium in stationary
strategies.

4



Two remarks need to be introduced here. First,
nothing was said about uniqueness since in the
general case, there are many Nash Equilibria.
Equilibrium selection and tracking may be a big
deal while working with SGs. Second, contrarily
to the MDP case, there may be no deterministic
Nash Equilibrium strategies (but only stochastic).

3.3 The Zero-Sum Case
There are two ways to consider a Zero-Sum
Stochastic Game: one can see two agents aiming
at maximizing two opposite Q-functions or one
can also see only one Q-function, with the first
agent (called the maximizer) aiming at maximiz-
ing it and the second one (the minimizer) aim-
ing at minimizing it. One can prove (Patek and
Bertsekas, 1999), that if both players follow those
maximizing and minimizing strategies, the game
will converge towards a Nash Equilibrium, which
is the only one of the game. In this case, thanks
to the Minmax theorem (Osborne and Rubinstein,
1994), the value of the game is (with player 1 max-
imizing and player 2 minimizing):

V ∗ = max
σ1

min
σ2

V (σ1, σ2)

= min
σ2

max
σ1

V (σ1, σ2)

As we will see later, the existence of this unique
value function for both player is helpful for finding
efficient algorithms solving zero-sum SGs.

4 Algorithms

Even if the field of Reinforcement Learning in
Stochastic Games is still young and guaranteed
Nash Equilibrium convergence with tractable al-
gorithms is, according to our knowledge, still an
open problem, many algorithms have however al-
ready been proposed (Buşoniu et al., 2008), all
with strengths and weaknesses.

Reinforcement Learning techniques to
solve Stochastic Games were first introduced
in (Littman, 1994). In his paper, Littman presents
minimax-Q, a variant of theQ-Learning algorithm
for the zero-sum setting, which is guaranteed to
converge to the Nash Equilibrium in self-play. He
then extended his work in (Littman, 2001) with
Friend-or-Foe Q-Learning (FFQ), an algorithm
assured to converge, and converging to Nash
Equilibria in purely cooperative or purely compet-
itive settings. The authors of (Hu and Wellman,
2003) were the first to propose an algorithm for

general-sum Stochastic Games. Their algorithm,
Nash-Q, is also a variant of Q-Learning able to
allow the agents to reach a Nash Equilibrium
under some restrictive conditions on the rewards’
distribution. In the general case, they empirically
proved that convergence was not guaranteed any
more. (Zinkevich et al., 2006) proved by giving
a counter-example that the Q-function does not
contain enough information to converge towards a
Nash Equilibrium in the general setting.

For any known Stochastic Game, the Stochas-
tic Tracing Procedure algorithm (Herings and
Peeters, 2000) finds a Nash Equilibrium of it. The
algorithm proposed in (Akchurina, 2009) was the
first learning algorithm converging to an approx-
imate Nash Equilibrium in all settings (even with
an unknown game). Equilibrium tracking is made
here by solving at each iteration a system of or-
dinary differential equations. The algorithm has
no guaranty to converge toward a Nash Equilib-
rium even however, it seems empirically to work.
Finally, (Prasad et al., 2015) presented two algo-
rithms converging towards a Nash Equilibrium in
the General-Sum setting: one batch algorithm as-
suming the complete knowledge of the game and
an on-line algorithm working with simulated tran-
sitions of the Stochastic Game.

In this paper we will use two algorithms which
are reviewed hereafter: WoLF-PHC (Bowling and
Veloso, 2002) and AGPI-Q (Perolat et al., 2015).

4.1 WoLF-PHC

WoLF-PHC is an extension of the Q-learning al-
gorithm allowing probabilistic strategies. It con-
siders independent agents evolving in an environ-
ment made non-stationary by the presence of the
others. In such a setting, the aim of the agents
is not to find a Nash Equilibrium (it is therefore
not an SG algorithm) but to do as good as possi-
ble in this environment (and as a consequence, it
may lead to a Nash Equilibrium). The algorithm
is based on the following idea: convergence shall
be facilitated if agents learn quickly to adapt when
they are sub-optimal and learn slowly when they
are near-optimal (in order to let the other agents
adapt to this strategy).
Q-values are updated as in Q-learning and the

probability of selecting the best action is incre-
mentally increased according to some (variable)
learning rate δ, which is decomposed into two
learning rates δL and δW , with δL > δW . The

5



policy update is made according to δL while los-
ing and to δW while winning.

To determine if an agent is losing or win-
ning, the expected value of its actual strategy π,
is compared to the expected value of the aver-
age policy π. Formally, an agent is winning if∑

a π(s, a)Q(s, a) >
∑

a π(s, a)Q(s, a) and los-
ing otherwise.

In the general case, convergence is not proven
and it is even shown on some toy-examples
that sometimes, the algorithm does not converge
(Bowling and Veloso, 2002).

4.2 AGPI-Q

Approximate Generalized Policy Iteration-Q, or
AGPI-Q (Perolat et al., 2015), is an extension of
the Fitted-Q (Gordon, 1999; Ernst et al., 2005) al-
gorithm solving Zero-Sum Stochastic Games in a
batch setting. At the initialization step, N samples
(s, a1, a2, r, s

′) and aQ-function (for instance, the
null function) are given. The algorithm consists
then in K iterations, each of them composed of
two parts : a greedy part and an evaluation part.
The algorithm provides then at each iteration a bet-
ter approximation of the Q-function.

Let j = (sj , aj , bj , rj , s′j) be N collected sam-
ples. At time step k + 1, the greedy part consists
of finding the maximizer’s maxminimizing action
a of the matrix game defined by Qjk(s

′j , aj , bj).
In our case, a turn-based setting, this involves
finding a maximum. Then, during the evalua-
tion part, since the second agent plays a mini-
mizing strategy, the following value is computed:
Qj = r + γminbQ

j
k(s
′j , aj , b). At each iteration,

the algorithm returns the Q-function Qk+1 fitting
at best these values over some hypothesis space.

5 Dialogue as a Stochastic Game

Dialogue is a multi-agent interaction and there-
fore, it shall be considered as such during the op-
timization process. If each agent (i.e. the user
and the DM) has its own goals and takes its de-
cisions to achieve them, it sounds natural to model
it as an MDP. In traditional dialogue system stud-
ies, this is only done for one conversant over two.
Since (Levin and Pieraccini, 1997; Singh et al.,
1999), only the DM is encoded as an RL agent, de-
spite rare exceptions (Chandramohan et al., 2011;
Chandramohan et al., 2012b; Chandramohan et
al., 2012a)). The user is rather considered as
a stationary agent modeled as a Bayesian net-

work (Pietquin, 2006) or an agenda-based pro-
cess (Schatzmann et al., 2007), leading to model-
ing errors (Schatztnann et al., 2005; Pietquin and
Hastie, 2013).

At first sight, it seems reasonable to think that
if two RL agents, previously trained to reach an
optimal strategy, interact with each other, it would
result in ”optimal” dialogues. Yet, this assertion is
wrong. Each agent would be optimal given the
environment it’s been trained on, but given an-
other environment, nothing can be said about the
learnt policy. Furthermore, if two DMs are trained
together with traditional RL techniques, no con-
vergence is guaranteed since, as seen above, non-
stationarities emerge. Indeed, non-stationarity is
not well managed by standard RL methods al-
though some methods can deal with it (Geist et
al., 2009; Daubigney et al., 2012) but adaptation
might not be fast enough.

Jointly optimizing RL-agents in the framework
of Stochastic Games finds a Nash Equilibrium.
This guarantees both strategies to be optimal and
this makes a fundamental difference with previous
work (Chandramohan et al., 2012b; Georgila et al.,
2014; Efstathiou and Lemon, 2014).

In the next section, we illustrate how dialogue
may be modeled by a Stochastic Game, how tran-
sitions and reward functions depend on the pol-
icy of both agents. We propose now a Zero-Sum
dialogue game where agents have to drive effi-
ciently the dialogue to gather information quicker
than their opponent. In this example, human user
(Agent 1) and DM (Agent 2) are modeled with
MDPs: each of them has a goal encoded into re-
ward functions R1 and R2 (they may depend on
the joint action).

5.1 A Zero-Sum Dialogue Game

The task involves two agents, each of them re-
ceives a random secret number and aims at guess-
ing the other agent’s number. They are adver-
saries: if one wins, the other one loses as much.

To find the secret number out, agents may per-
form one of the following actions: ask, answer,
guess, ok, confirm and listen.

During a dialogue turn, the agent asking the
question is called the guesser and the one answer-
ing is the opponent. To retrieve information about
the opponent’s hidden number, the guesser may
ask if this number is smaller or greater than some
other number. The opponent is forced to answer

6



the truth. To show that it has understood the an-
swer, the agent says ok and releases then the turn
to its adversary, which endorses the guesser’s role.

Agents are not perfect, they can misunderstand
what has been said. This simulates ASR and NLU
errors arising in real SDSs. They have an indicator
giving a hint about the probability of having well
understood (a confidence level). They are however
never certain and they may answer a wrong ques-
tion, e.g. in the following exchange :

- Is your secret number greater than x ?
- My number is greater than y.
When such an error arises, Agent 1 is allowed

to ask another question instead of just saying ok.
This punishment is harsh for the agent which mis-
understood, it is almost as if it has to pass its turn.
Another dialogue act is introduced to deal with
such situations. If an agent is not sure, it may ask
to confirm. In this case, Agent 1 may ask its
question again. To avoid abuses, i.e. infinitely ask
for a confirmation, this action induces a cost (and
therefore a gain for the opponent).

If an agent thinks that it has found the num-
ber out, it can make a guess. If it was right, it
wins (and therefore its opponent loses), otherwise,
it loses (and its opponent wins).

Since we model dialogue as a turn-based inter-
action and we will need to consider joint actions,
we introduce the action listen corresponding to
the empty action.

6 Experimental Setting

Effects of the multi-agent setting are studied here
through one special feature of the human-machine
dialogue: the uncertainty management due to the
dysfunctions of the ASR and the NLU. To promote
simple algorithms, we ran our experiments on the
zero-sum dialogue game presented above.

On this task, we compare three algorithms: Q-
Learning, WoLF-PHC and AGPI-Q. Among those
algorithms, only AGPI-Q is proved to converge to-
wards a Nash Equilibrium in a Multi-Agent set-
ting. Q-Learning and WoLF-PHC have however
been used as Multi-Agent learning algorithm in
a dialogue setting (English and Heeman, 2005;
Georgila et al., 2014). Similarly to these papers,
experiments will be done using simulation. We
will show that, contrarily to AGPI-Q, they do not
converge towards the Nash Equilibrium and there-
fore do not fit to the dialogue problem.

6.1 Modeling ASR and NLU Confidence
Estimation

One difficulty while working with Spoken Dia-
logue Systems is how can a DM deal with uncer-
tainty resulting from ASR and NLU errors and re-
flected by their Confidence Scores. Those scores
are not always a probability. The only assumption
made here is that with a score lower (resp. greater)
than 0.5, the probability to misunderstand the last
utterance is greater (resp. lower) than 0.5. Since
dialogues are simulated, the ASR and NLU confi-
dence levels will be modeled the following way.

Each agent owns some fixed Sentence Error
Rate (SERi). With probability (1 − SERi), agent
i receives each utterance undisrupted, while with
probability SERi, this utterance is misunderstood
and replaced by another one.

A (−∞,∞) score is then sampled according to
a normal distribution centered in -1 for incorrect
understanding and +1 for correct understanding.
The (0,1) score is obtained by applying the sig-
moid function f(x) = 1

1+exp(−x) , to the (−∞,∞)
score.

Since Q-Learning and WoLF-PHC are used in
their tabular form, it was necessary to discretize
this score. To have states where the agent is almost
sure of having understood (or sure of having mis-
understood), we discretized by splitting the score
around the cut points 0.1, 0.5 and 0.9. By equity
concerns, the same discretization was applied for
the AGPI-Q algorithm.

6.2 Task Modeling

6.2.1 State Space
Consider two agents i and j. Their secret numbers
are respectively m and n. To gather information
about m, agent i asks if the secret number m is
smaller or greater than some given number k. If
agent j answers that m is greater (resp. smaller)
than k, it will provides i a lower bound bi (resp.
an upper bound b′i) on m. Agent i’s knowledge on
m may be represented by the interval Ii = [bi, b′i].
The probability of wining by making a guess is
then given by p = 1

b′i−bi+1
. Progress of agent i

in the game may therefore measured by only ci =
b′i − bi + 1, the cardinal of Ii. At the beginning of
the game, one has: Ii = Ij = [1, 5]. Since agents
have to know the progress of the whole game, they
both track ci and cj .

To take an action, an agent needs to remember
who pronounced the last utterance, what was the

7



last utterance it heard and to what extent it believes
that what it heard was what had been said.

To summarize, agents taking actions make their
decision according to the following features: the
last utterance, its trust in this utterance, who ut-
tered it, its progress in the game and its opponent’s
progress. they do not need to track the whole range
of possible secret numbers but only the cardinal
of these sets. Dialogue turn, last action, confi-
dence score, cardinal of possible numbers for both
agents are thus the five state features. The state
space thus contains 2 ∗ 5 ∗ 4 ∗ 5 ∗ 5 = 1000 states.

6.2.2 Action Space
Agents are able to make one of the following
actions: ask, answer, guess, confirm and
listen. The actions ask, answer and guess
need an argument: the number the agent wants to
compare to. To learn quicker, we chose not to take
a decision about this value. When an agent asks, it
asks if the secret number is greater or smaller than
the number in the middle of his range (this range is
computed by the environment, it is not taken into
account in the states). An agent answering says
that her secret number is greater or smaller than
the number it heard (which may be not the uttered
number). An agent guessing proposes randomly a
number in his range of possible values.

6.2.3 Reward function
To define the reward function, we consider the
maximizing player. It is its turn to play. If it is
guessing the right number, it earns +1. If it asks
for a confirmation, it earns −0.2. Therefore, it is
never in its interest to block the dialogue by al-
ways asking for a confirmation (in the worst case,
ie if second agent immediately wins, it earns −1
while if it infinitely blocks the dialogue, it earns
−0.2

∑∞
k=0(γ

2)k ≈ −1.05 for γ = 0.9).

6.3 Training of the algorithms

To trainQ-Learning and WoLF-PHC, we followed
the setup proposed in (Georgila et al., 2014). Both
algorithms are trained in self-play by following an
ε-greedy policy. Training is split into five epochs
of 100000 dialogues. The exploration rate is set to
0.95 in the first epoch, 0.8 in the second, 0.5 in the
third, 0.3 in the fourth and 0.1 in the fifth.

The parameters δL and δW of WoLF-PHC are
set to δW = 0.05 and δL = 0.2. The ratio
δL/δW = 4 assures an aggressive learning when
losing.

As a batch RL algorithm, AGPI-Q requires
samples. To generate them, we followed the setup
proposed in (Pietquin et al., 2011). An optimal
(or at least near) policy is first handcrafted. This
policy is the following: an agent always asks for
more information except when it or its opponent
have enough information to make the right guess
with probability 1. When the agent has to answer,
it asks to confirm if its confidence score is be-
low 0.5.

An ε-random policy is then designed. Agents
make their decisions according the hand-crafted
policy with probability ε and pick randomly
actions with probability (1 − ε). Tuples
(s, a1, a2, r, s

′) are then gathered. We are then as-
sured that the problem space is well-sampled and
that there also exists samples giving the successful
task completion reward. To ensure convergence,
75000 such dialogues are generated.

To keep the model as parameter-free as possi-
ble, CART trees are used as hypothesis space for
the regression.

Each algorithm is trained with the following
SER values: 0, 0.1, 0.2, 0.3 and 0.4.

6.4 Results

The decision in the game is made on only two
points: when is the best moment to end the di-
alogue with the guess action and what is the
best way to deal with uncertainty by the use of
the confirm action. Average duration of dia-
logues and average number of confirm actions
are therefore chosen as the feature characterizing
the Nash Equilibrium. Both are calculated over
5000 dialogues. Figures 1 and 2 illustrate those
results.
Q-Learning dialogues’ length decreases grad-

ually with respect to an increasing SER (Figure
1). Figure 2 brings an explanation: Q-Learning
agents do not learn to use the CONFIRM action.
More, dialogue length is even not regular, proving
that the algorithm did not converge to a ’stable’
policy. Q-Learning is a slow algorithm and there-
fore, agents do not have enough time to face the
non-stationarities of the multi-agent environment.
Convergence is thus not possible.

WoLF-PHC does not treat uncertainty too. Its
number of confirm actions is by far the high-
est but stays constant. If the SDS asks for con-
firmation, even when there is no noise, it may be
because being disadvantaged, it always loses, and

8



while losing, its quick learning rate makes its strat-
egy always changing. As previously said, conver-
gence was not guaranteed.

AGPI-Q is then the only algorithm providing
robustness against noise. The length of dialogues
and the number of confirm actions increase both
gradually with the SER of the SDS. We are also
assured by the theory that in this setting, no im-
provement is possible.

It is also interesting to note the emergence of
non-trivial strategies coming from the interaction
between the AGPI-Q agents. For instance, when
both agents are almost at the end of the dialogue
(ci = 2 for each agent), agents make guess.
Even if they have very low chances of wining,
agents make also guess when it is sure that the
adversary will win at the next turn.

Figure 1: Length of dialogues

Figure 2: Frequency of the action CONFIRM

7 Conclusion: Beyond the Zero-Sum
Setting

We provided a rigorous framework for co-learning
in Dialogue Systems allowing optimization for
both conversants. Its efficiency was shown on a
purely adversarial setting under noisy conditions
and an extension to situations more general than
the purely adversarial setting is now proposed.

7.1 An appointment scheduling problem

The previous model considers only purely compet-
itive scenarios. In this section, it is extended for
the General-Sum case. We take as an example the
task of scheduling the best appointment between
two agents, where conversants have to interact to
find an agreement.

Each agent i has its own preferences about a slot
in their agenda, they are encoded into some reward
function Ri. At each turn, an agent proposes
some slot k. Next turn, its interlocutor may
propose another slot or accept this one. If
it accepts, agent i earnsRi(k), it gets nothing oth-
erwise. The conversation ends when an agent ac-
cepts an offered slot.

Agents, which are not always perfect, can mis-
understand the last offer. An action confirm is
therefore introduced. If an agent thinks that the
last offer was on the slot k′ instead of the slot k,
the outcome may be disastrous. An agent has thus
always to find a trade-off between the uncertainty
management on the last offer and its impatience,
(due to the discount factor γ which penalizes long
dialogues).

Here, cooperation is implicit. Conversants are
self-centered, they care only on their own value
functions, but, since it depends on both actions, or
more explicitly the opponent may refuse an offer,
they have to take into account the opponent’s be-
havior.

7.2 Future work

In future, using General-Sum algorithms (Prasad
et al., 2015), our framework will be applied on
those much more complicated dialogue situations
where cooperative and competitive phenomenon
get mixed up in addition to the noisy conditions
encountered in dialogue.

The long-term goal of this work is to use the
model on a real data set in order to provide model
of real interactions and designing adaptive SDS
freeing ourselves from user modeling.

9



Acknowledgement

This work has been partially funded by the French
National Agency for Research (ANR) through the
ContInt Project MaRDi (Man-Robot Dialogue)
and by the French Ministry for Higher Education
and Research (MESR).

References
Natalia Akchurina. 2009. Multiagent reinforcement

learning: algorithm converging to nash equilibrium
in general-sum discounted stochastic games. In
Proc. of AAMAS.

Dimitri P. Bertsekas and John Tsitsiklis. 1996. Neuro-
Dynamic Programming. Athena Scientific.

Grégory Bourguin, Alain Derycke, and Jean-Claude
Tarby. 2001. Beyond the interface: Co-evolution
inside interactive systems - a proposal founded
on activity theory. In People and Computers
XV-Interaction without Frontiers, pages 297–310.
Springer.

Michael Bowling and Manuela Veloso. 2002. Multi-
agent learning using a variable learning rate. Artifi-
cial Intelligence, 136(2):215–250.

Lucian Buşoniu, Robert Babuska, and Bart De Schut-
ter. 2008. A comprehensive survey of multiagent re-
inforcement learning. Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, IEEE Trans-
actions on, 38(2):156–172.

Jean Caelen and Anne Xuereb. 2011. Dialogue et
théorie des jeux. In Congrés international SPeD.

Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefèvre, and Olivier Pietquin. 2011. User Simula-
tion in Dialogue Systems using Inverse Reinforce-
ment Learning. In Proc. of Interspeech.

Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefèvre, and Olivier Pietquin. 2012a. Behavior
Specific User Simulation in Spoken Dialogue Sys-
tems. In Proc. of ITG Conference on Speech Com-
munication.

Senthilkumar Chandramohan, Matthieu Geist, Fab-
rice Lefèvre, and Olivier Pietquin. 2012b. Co-
adaptation in Spoken Dialogue Systems. In Proc.
of IWSDS.

Lucie Daubigney, Matthieu Geist, Senthilkumar Chan-
dramohan, and Olivier Pietquin. 2012. A compre-
hensive reinforcement learning framework for dia-
logue management optimization. IEEE Journal of
Selected Topics in Signal Processing, 6(8):891–902.

Ioannis Efstathiou and Oliver Lemon. 2014. Learn-
ing non-cooperative dialogue behaviours. In Proc.
of SIGDIAL.

Layla El Asri, Romain Laroche, and Olivier Pietquin.
2014. Dinasti : Dialogues with a negotiating ap-
pointment setting interface. In Proc. of LREC.

Michael S. English and Peter A. Heeman. 2005.
Learning mixed initiative dialog strategies by us-
ing reinforcement learning on both conversants. In
Proc. of HLT/EMNLP.

Damien Ernst, Pierre Geurts, and Louis Wehenkel.
2005. Tree-based batch mode reinforcement learn-
ing. pages 503–556.

Jerzy Filar and Koos Vrieze. 1996. Competitive
Markov decision processes. Springer.

Matthieu Geist, Olivier Pietquin, and Gabriel Fricout.
2009. Tracking in reinforcement learning. In Proc.
of ICONIP.

Kallirroi Georgila, Claire Nelson, and David Traum.
2014. Single-agent vs. multi-agent techniques for
concurrent reinforcement learning of negotiation di-
alogue policies. In Proc. of ACL.

Geoffrey J. Gordon. 1999. Approximate Solutions to
Markov Decision Processes. Ph.D. thesis, Carnegie
Melon University.

P. Jean-Jacques Herings and Ronald Peeters. 2000.
Stationary equilibria in stochastic games: structure,
selection and computation.

Junling Hu and Michael P. Wellman. 2003. Nash q-
learning for general-sum stochastic games. Journal
of Machine Learning Research, 4:1039–1069.

Romain Laroche, Ghislain Putois, and Philippe Bretier.
2010. Optimising a handcrafted dialogue system de-
sign. In Proc. of Interspeech.

Oliver Lemon and Olivier Pietquin. 2007. Machine
learning for spoken dialogue systems. In Proc. of
Interspeech.

Esther Levin and Roberto Pieraccini. 1997. A stochas-
tic model of computer-human interaction for learn-
ing dialogue strategies. In Proc. of Eurospeech.

Michael L. Littman. 1994. Markov games as a frame-
work for multi-agent reinforcement learning. In
Proc. of ICML.

Michael L. Littman. 2001. Friend-or-foe q-learning in
general-sum games. In Proc. of ICML.

John Milnor. 1951. Games against nature. Technical
report, RAND corporation.

Abraham Neyman and Sylvain Sorin. 2003. Stochas-
tic games and applications, volume 570. Springer
Science & Business Media.

Martin J. Osborne and Ariel Rubinstein. 1994. A
course in game theory. MIT press.

10



Stephen D. Patek and Dimitri P. Bertsekas. 1999.
Stochastic shortest path games. SIAM Journal on
Control and Optimization, 37(3).

Julien Perolat, Bilal Piot, Bruno Scherrer, and Olivier
Pietquin. 2015. Approximate dynamic program-
ming for two-player zero-sum markov games. In
Proc. of ICML.

Olivier Pietquin and Helen Hastie. 2013. A survey on
metrics for the evaluation of user simulations. The
knowledge engineering review, 28(01):59–73.

Olivier Pietquin, Matthieu Geist, Senthilkumar Chan-
dramohan, and Hervé Frezza-Buet. 2011. Sample-
efficient batch reinforcement learning for dialogue
management optimization. ACM Transactions on
Speech and Language Processing (TSLP), 7(3).

Olivier Pietquin. 2006. Consistent goal-directed user
model for realistic man-machine task-oriented spo-
ken dialogue simulation. In Proc of ICME.

H.L. Prasad, L.A. Prashanth, and Shalabh Bhatnagar.
2015. Algorithms for nash equilibria in general-sum
stochastic games. In Proc. of AAMAS.

Martin L. Puterman. 1994. Markov decision pro-
cesses: discrete stochastic dynamic programming.
John Wiley & Sons.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Proc. of HLT.

Jost. Schatztnann, Matthew Stuttle, Konrad Weilham-
mer, and Steve Young. 2005. Effects of the
user model on simulation-based learning of dialogue
strategies. In Proc. of ASRU.

Lloyd Shapley. 1953. Stochastic games. Proc. of the
National Academy of Sciences of the United States
of America, 39(10):1095–1100.

Satinder P. Singh, Michael J. Kearns, Diane J. Litman,
and Marilyn A. Walker. 1999. Reinforcement learn-
ing for spoken dialogue systems. In Proc. of NIPS.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement learning: An introduction. MIT press.

Christopher Watkins and Peter Dayan. 1992. Q-
learning. Machine learning, 8(3-4):279–292.

Steve Young, Milica Gasic, Blaise Thomson, and Ja-
son D. Williams. 2013. Pomdp-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE, 101(5):1160–1179.

Martin Zinkevich, Amy Greenwald, and Michael L.
Littman. 2006. Cyclic equilibria in markov games.
In Proc. of NIPS.

11


