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Abstract

In this article we describe the microtext
normalization system we have used to par-
ticipate in the Normalization of Noisy Text
Task of the ACL W-NUT 2015 Workshop.
Our normalization system was originally
developed for text mining tasks on Span-
ish tweets. Our main goals during its de-
velopment were flexibility, scalability and
maintainability, in order to test a wide va-
riety of approximations to the problem at
hand with minimum effort. We will pay
special attention to the process of adapting
the components of our system to deal with
English tweets which, as we will show,
was achieved without major modifications
of its base structure.

1 Introduction

The value of Twitter and other microblogging ser-
vices as information sources in domains like mar-
keting, business intelligence, journalism, etc. is
obvious nowadays. Nevertheless, such amount of
information can only be appropriately exploited
through text mining techniques.

However, there are notable differences between
“standard” language and the so-called texting used
in those microtexts. In this kind of writings, it is
important to reduce the number of characters used
to fit their length restrictions while maintaining
the readability of the message to some extent. To
achieve this, most of the techniques applied rely
on phonetics, thus being language-specific (López
Rúa, 2007). For example: intentionally ignoring
orthographic and grammar rules, as in “be like” for
“am/is/are/was/were like” in the case of English
or “asique” for “ası́ que” in the case of Spanish;
the usage of shortenings, contractions and abbre-
viations such as “c u” for “see you” in English or
“ksa” for “casa” in Spanish; or the employment of

smileys to express emotions, for instance :) to ex-
press happiness. These resulting terms are called
lexical variants (Han et al., 2013).

The problem is that, in general, text mining
tools are very sensitive to those phenomena, as
they are designed for dealing with standard texts.
Therefore, it is necessary to normalize these texts
before their processing, that is, to transform them
into standard language. This way “c u nxt week”,
for example, would be transformed into “see you
next week”. This is the goal of the W-NUT 2015
Normalization Task (Baldwin et al., 2015).

The rest of this paper is organized as follows:
Section 2 describes the core architecture of our
system, and how it was adapted to fit this shared
task, and Section 3 presents the resources used.
Next, Section 4 evaluates the system and discusses
the results obtained. Finally, Section 5 presents
our conclusions and considers some possible fu-
ture improvements for our system.

2 Architecture

Our tweet normalization system was developed
taking as basic premises its flexibility, scalabil-
ity and maintainability. As a starting point, we
took a previous prototype for Spanish tweet nor-
malization (Vilares et al., 2013) which, although
fully functional, did not turn out to be as flexi-
ble and maintainable as expected. This could have
become a problem for future developments, since
the adaptation effort needed to integrate new tech-
niques would have been too large, so we decided
to refactor the whole system to solve this.

The general scheme of the original system mim-
ics that of Han and Baldwin (2011) and comprises
three stages:

1. Tweet preprocessing.

2. In-vocabulary word identification (IV), based
on the lexicon of the system, obtaining as
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a result an initial set of out-of-vocabulary
words (OOV).

3. OOV set processing in order to distinguish be-
tween correct words which are out of the sys-
tem lexicon and proper lexical variants, ob-
taining for each one of the latter a normal-
ized form. This last step can be in turn de-
composed into two: the first one, which gen-
erates a set of possible normalization candi-
dates based on the application of certain nor-
malization techniques; and the second one,
which selects one of these candidates as the
normalized form (in our case, in a score-
driven process).

As for the particular normalization techniques em-
ployed throughout our system, we decided to try
first a combination of two of the traditional ap-
proximations to this task (Kobus et al., 2008): the
spell checking and the automatic speech recogni-
tion metaphors.

2.1 The pipeline

We decided to give our system an object oriented
approach (using JAVA) as opposed to the impera-
tive approach of the original prototype (in PERL).
The new system is structured in processors, for-
merly known as modules in the prototype, whose
goal is to apply a certain process to the input
tweets so that we can obtain the normalization
candidates of their terms at its output.

The core component of our system is the
pipeline, consisting of a classic cascade structure
where we can insert an arbitrary number of pro-
cessors and have their inputs and outputs automat-
ically linked. In this way, the original input of the
system becomes the input of the first processor, the
output of the first processor is the input of the sec-
ond one, the output of this second processor is the
input of the third one, and so on, until reaching the
last processor, whose output becomes the output
of the system.

Regarding its design, we have followed good
engineering practices and made extensive use of
design patterns. Among them, it should be noted
the use of the decorator pattern which, in our con-
text, represents a simple pipeline, allowing us to
dynamically stack an arbitrary number of proces-
sors. Its combination with the composition pattern
lets us group them into stages, which enable the
definition of particular processor sequences while

still sharing the same basic processor interface,
thus preserving the flexibility of the decorator.
Thereby, the resulting structure allows for the dy-
namic construction of different pipeline configu-
rations of varying complexity and different levels
of abstraction, not being restricted to the original
settings.

The application of the template pattern allowed
us to factorize great part of the common processes
of the components, such as the sequential iteration
through all the input tweets, which most of the
processors perform. This resulted in a great ho-
mogenization of the code, thus simplifying main-
tenance and allowing us to focus our efforts on the
specific implementation of the processing methods
in each case.

Moreover, some processors make use of exter-
nal tools capable of being changed even at runtime
— something of special interest in multilingual en-
vironments. It should also be possible to integrate
them into other external components, so that their
logic can be reused by others. All this involves
decoupling the processors from the specific imple-
mentations of the external components employed,
which we have achieved through the use of the in-
version of control pattern.

Furthermore, communication between the com-
ponents of the pipeline is done through structured
text files, allowing us to gain flexibility as we can
integrate and exchange with ease new processing
modules regardless of their particular implemen-
tation (Vilares et al., 2013). In this case we have
used XML along with an implementation of the ab-
stract factory pattern for its construction and pars-
ing. This also facilitates possible future migra-
tions to other data representation languages, such
as JSON.

Finally, we have created a dynamic configura-
tion subsystem based on XML files that allows us to
define and instantiate the particular structure of the
pipeline on which we want to process the tweets.
The advantages of such a subsystem are clear, both
for system maintainability and testing:

1. It improves the multilingual support of the
system by enabling the definition of configu-
rations that use processors and resources de-
signed for a particular language.

2. It allows for experimentation in a simple, ag-
ile and documented (the configuration file it-
self also serves as documentation) manner.
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3. It avoids the necessity of modifying the sys-
tem source code.

2.2 Configuration before W-NUT 2015
The current processor configuration for Spanish
tweet normalization derives from that one used
by the initial prototype for its participation in the
TweetNorm 2013 task (Alegrı́a et al., 2013). The
general procedure works like this: firstly, using
processors to prepare the input (preprocessing);
secondly, employing those whose purpose is to
obtain new normalization forms (candidates gen-
eration); thirdly, using those in charge of select-
ing or filtering the best normalization forms (can-
didate filtering/selection); and lastly, employing
those which prepare the final output of the system
(postprocessing). Such setup includes the follow-
ing processors:

• FreelingProcessor, which reads the
input data in the TweetNorm 2013 format
and uses Freeling (Padró and Stanilovsky,
2012) to perform the tokenization, lemmati-
zation and POS tagging (although these tags
are not currently in use) of the text of the
tweet.

• MentionProcessor,
HashtagProcessor, URLProcessor
and SmileyProcessor, which act as
filters for OOVs we do not want to consider
for normalization.

• LaughESProcessor, which normalizes
laugh string representations, as in “ja” for
“jajaja”.

• PhoneticProcessor, which uses a pho-
netic table to map characters to their phonetic
equivalent strings, such as “x” to “por”.1

• SMSDictionaryProcessor, which
looks for normalization candidates in an SMS

dictionary, for example “también” (too/also)
for “tb”.

• AspellProcessor, which obtains nor-
malization candidates using the spell checker
aspell (Aspell, 2011), as in “polémica”
(controversy) for “polemik”. It should be
noted that this tool has been customised
with a new phonetic table for Spanish, based

1The character “x” resembles the multiplication (times)
sign ×, which in Spanish is read as “por”.

on the Metaphone algorithm (Philips, 1990)
and a new Spanish dictionary extracted from
Wikimedia resources.2

• AffixESProcessor, which identifies and
normalizes affix-derived Spanish forms of
base words, also supporting phonetical writ-
ing, as in the case of “chikiyo” for “chiquillo”
(little boy), obtained from “chico” with the
suffix “-illo” (little/small).

• NGramProcessor, which calculates the
scores of those most likely normalization
candidates according to the Viterbi algo-
rithm (Manning and Schütze, 1999, Ch. 9)
taking as reference the Web 1T 5-gram
v1 (Brants and Franz, 2006) Spanish lan-
guage model.

• CandidateProcessor, which selects the
top-scoring candidate for each word.

• ResultProcessor, which dumps the
tweet data obtained by the system to a file us-
ing the required format.

2.3 Adaptation for W-NUT 2015
In general, the adaptation process revolved around
implementing new processors and integrating new
resources to account for the requirements of this
new task, such as the use of English instead of
Spanish on the new I/O data format, while leaving
the base structure of the system untouched. This
was precisely the main goal during the refactoring
process at the beginning of this project.

The resulting configuration includes the follow-
ing new processors (see Section 3 for a description
of the resources they use):

• WNUTTweetProcessor, which parses the
structured input (now in JSON format instead
of plain text) and obtains the system repre-
sentation of the tweets.

• ArkTweetProcessor, which uses the
ark-tweet-nlp POS tagger to obtain the
morphosyntactic information of the input
tweet tokens.

• WNUTFilterProcessor, which filters
out all those terms that should not be normal-
ized according to the task rules (mentions,
hashtags, URLs, etc.) using regular expres-
sions.

2http://wikimediafoundation.org
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• LowerCaseProcessor, which takes
all the candidate forms of a token and
lowercases them; AspellCProcessor,
a constrained version of the original
AspellProcessor described in Sec-
tion 2.2 (see Section 3 for further details).

• WNUTNgramProcessor, which is similar
to the previous NGramProcessor but with
some added modifications to fit the particu-
larities of our new custom language model.

• WNUTResultProcessor, which dumps
all tweet data generated by the system in the
required output format (JSON).

We show in Figure 1 a graphical representation
of the architecture of the system both before (left
side) and after (right side) the adaptation.

Unfortunately, time limitations prevented us
from implementing an English phonetic table for
the PhoneticProcessor, which would have
provided us with mappings such as “two”, “too”
or “to” for “2”. To alleviate this, we did extend the
SMS dictionary to cover some of these cases.

It should be noted that because of those limita-
tions we did not address those cases were multi-
ple contiguous tokens of the input tweet should be
normalized into a single output token (i.e. the so
called “n-1 mappings”). Moreover, since that phe-
nomenon was rare (it appeared in just 11 tweets
out of 2950 of the training dataset) we considered
that leaving this feature behind would have little
impact on the final performance of the system.

3 Integrated resources

The base resources we have used for this task, and
on which most of the system processors rely, are
the following:

• aspell (Aspell, 2011), the well-known
spell-checker together with its default En-
glish dictionary.

• ark-tweet-nlp (Owoputi et al., 2013), a
Twitter-focused NLP toolkit from which we
have used its POS tagger.

• BerkeleyLM (Pauls and Klein, 2011), a
Java library and toolset focused on language
modeling.

• Redis,3 a noSQL key-value datastore; and
the SMS normalization dictionaries, canoni-
cal lexicon and training dataset provided by
the organizers of the task.

As a result of processing the previous resources,
we have obtained the following additional ones:

• A global SMS normalization dictionary im-
plemented as a Redis datastore, whose en-
tries were extracted from the two normaliza-
tion dictionaries and the training dataset pro-
vided by the organizers.

• A Kneser-Ney language model (Kneser and
Ney, 1995) of the target domain (standard
tweet text) obtained with the BerkeleyLM
tools taking as input tweets of the training
dataset.

• A new English dictionary for aspell built
on the canonical lexicon.

With respect to the differences existing between
the configurations of the system for constrained
and unconstrained runs, there is only one. In
the case of the constrained run, since only off-
the-shelf tools are permitted, the aspell spell-
checker was employed using its default dictionary
but filtering its retrieved candidate corrections tak-
ing as reference the canonical lexicon; i.e. only
those candidates that could be found on this lexi-
con were taken into account. On the other hand,
in the case of the unconstrained run, aspell was
used instead with the dictionary obtained from the
canonical lexicon. The rest of the processors and
their parameters remained the same.

Moreover, although we also considered the use
of the Web 1T 5-gram v1 language model in the
unconstrained run, our preliminary tests showed
that the results obtained were very poor in this
case, as we further comment in Section 4.

4 Evaluation

Table 1 shows the results obtained for the train-
ing corpus. It should be noted that these corre-
spond to a slightly overfitted system, since we in-
advertently used a language model built using the
whole training dataset (for candidate selection) in
our 10-fold cross-validation framework. Never-
theless, this also gave us an interesting clue to the
main performance bottleneck of our system, as we
will discuss below.
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Figure 1: Original pipeline (left) and pipeline adapted for W-NUT 2015 (right) integrated into the archi-
tecture of the system.

precision recall F1
constrained 0.8956 0.8746 0.8850
unconstrained 0.8914 0.8739 0.8825

Table 1: Training results.

precision recall F1
constrained 0.4646 0.6281 0.5341
unconstrained 0.4592 0.6296 0.5310

Table 2: Testing results.

Table 2 shows the results obtained for the test
corpus. At the sight of these figures, which differ
considerably from the previous ones, we decided
to analyse them in more detail. For this purpose,

3http://redis.io/

we obtained a recall metric on the scope of the can-
didates proposed by the system; in other words,
we wanted to see how many times the correct can-
didate corresponding to a token of the dataset was
among the ones considered by the system. The
resulting ratio came to 0.87, which means that
most of the times we had had the chance to select
the correct normalization form for a given non-
standard token but the system failed to make the
selection, and is also a consistent figure with re-
spect to those shown on Table 1. This was not a
big surprise for us, mainly because it is a well-
known problem we have been aware of since we
started working on (Spanish) tweet normalization.
Therefore, we can conclude that the performance
bottleneck of our system is still the candidate se-
lection process, which is heavily influenced by the
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language model in use.
In this respect, tuning experiments were also

made by extending our unconstrained configura-
tion through the addition of the Web 1T 5-gram v1
English language model as a knowledge source.
Only unigrams and bigrams could be used be-
cause of unsolved memory limitations. However,
in contrast with previous experiments performed
for Spanish, the resulting performance was unsat-
isfactory. Because of this, the use of these lan-
guage models for our final submission was dis-
missed. According to our analysis, the cause for
this seems to be the great differences, at both the
lexical and syntactical levels, between the texts
used to build this model, which could be con-
sidered as “regular” texts, and those correspond-
ing to tweets, which agrees with the observations
of Chrupała (2014). As illustrative examples of
this type of expressions we can take “I like them
girls” and “Why you no do that?”, which are lex-
ically correct but not syntactically valid, so lan-
guage models built using regular texts will not rec-
ognize them. In the case of our previous experi-
ments on Spanish, this difference was not so clear.

5 Conclusions and Future work

We have presented in this work the tweet normal-
ization system used by our group to participate in
the W-NUT 2015 Normalization Task which, in
turn, is an adaptation of another existing Spanish
tweet normalization system.

Within the scope of this task, it became clear
that most of the normalization mistakes made by
our system occurred during the candidate selec-
tion stage, as it was unable to determine the correct
normalization term obtained in previous stages
from the set of candidates available. The reason
for it is that we do not have at this very moment
enough training data to build a representative lan-
guage model of the target domain (normalized text
of English tweets).

Furthermore, there is another type of normal-
ization phenomena which, at this moment, can-
not be correctly handled by our system: n-1 map-
pings. This is due to the initial approach we took
for this system, which only considered 1-1 and 1-
n mappings, but not n-1 mappings, together with
our time limitations.

All that being said, as future lines of work we
are considering the following improvements to our
system:

• Obtaining a representative language model of
the target domain by using a larger normal-
ized tweet corpus. This corpus will be com-
prised of tweets without non-standard words,
so we can still capture the morphosyntactic
structure of these texts (Yang and Eisenstein,
2013).

• Using POS tags and syntactic information to
improve the candidate selection process.

• Integrating a classifier in the extraction pro-
cess of the final normalization candidates,
taking as features aspects such as the syn-
tactic and morphosyntactic information ob-
tained, their probability according to the lan-
guage model, whether they were selected or
not by the Viterbi algorithm, their string and
phonetic differences with respect to the orig-
inal form, etc.

• Keeping the canonical lexicon updated using
resources like Wikipedia, since the language
model construction process relies heavily
upon a good lexical reference in order to cor-
rectly discard non-standard words.

Moreover, we intend to study the application of
tweet normalization, for both Spanish and English
tweets, in opinion mining tasks (Vilares et al.,
2015).
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