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Abstract 

User generated content often contains 
non-standard words that hinder effective 
automatic text processing. In this paper, 
we present a system we developed to per-
form lexical normalization for English 
Twitter text. It first generates candidates 
based on past knowledge and a novel 
string similarity measurement and then 
selects a candidate using features learned 
from training data. The system has a con-
strained mode and an unconstrained 
mode. The constrained mode participated 
in the W-NUT noisy English text normal-
ization competition (Baldwin et al., 2015) 
and achieved the best F1 score. 

1 Introduction 

User generated content, such as customer re-
views, forum discussions, text messages and 
Twitter text, is of great value in applications like 
understanding users, trend discovery and 
crowdsourcing. For example, by reading the 
Twitter text posted by a user, a company can 
learn the user’s preferences and connections and 
use the information for targeted advertising. For 
another example, by reading Amazon customer 
reviews about a certain product, a shopper can 
collect a lot of product information that is not 
available from manufacturers and retailers. Un-
fortunately, user generated content often contains 
ungrammatical sentence structures and non-
standard words, which hinders automated text 
processing. 

In this paper, we present a solution that at-
tempts to perform lexical normalization (Han et 
al., 2011) for English Twitter text based on train-

ing text with human annotation (Baldwin et al., 
2015). The solution has a constrained mode and 
an unconstrained mode. Both modes have the 
same architecture and components. Both use the 
annotated training data and CMU’s ark POS tag-
ger (Gimpel et al., 2011). The difference between 
them is parameter settings and the usage of a ca-
nonical lexicon dictionary by the unconstrained 
mode.  

This paper is organized as follows: Section 2 
describes the architecture and components shared 
by the constrained and unconstrained modes. 
Section 3 lists what resources are used by each 
system. In Section 4, we describe the different 
settings of the constrained and unconstrained 
modes and compare their performance. Section 5 
concludes the paper and discusses future work. 

2 Architecture and Components of the 
System 

Given a tokenized English tweet T = (t1, t2, …, 
tn), where ti is the i-th token and n is the total 
number of tokens, our normalization system pro-
cesses one token at a time and has two compo-
nents: candidate generation and candidate evalu-
ation. To normalize token ti, the system first gen-
erates a small set of candidate canonical forms. 
Then it calculates a confidence score for each 
candidate and selects the one with the highest 
confidence score as the canonical form of token 
ti. How to generate candidates and how to calcu-
late confidence scores are learned from training 
data.  

2.1 Candidate Generation 

The candidates of a token ti include: 
• The token itself 
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• All tokens that are considered canonical 
forms of ti in the training data (static map-
ping dictionary) 

• A split into multiple canonical forms if the 
token ti is not a canonical form (for exam-
ple, “loveyourcar” à “love your car”) 

• Top-m most similar canonical forms found 
in training data (see subsection 2.2 for de-
tails of similarity measurement)  

Figure 1 shows an example of training data 
and a new tweet for normalization. Table 1 
shows a portion of the static mapping dictionary 
learned from the training data. 

For token “ur” in the new tweet, the token it-
self is “ur”. All of its possible canonical forms 
present in the training data are “you are” and 
“your”. Let m = 1, the most similar canonical 
form is “your”. Therefore, the candidates of “ur” 
include “ur”, “you are” and “your”. For token 
“looove” in the new tweet, the token itself is 
“looove”. It is absent in the training data, so it 
does not have its own canonical form available 
as candidates. Among all the canonical forms 
present in training data, canonical form “love” is 
most similar to “looove”. Therefore, the candi-
dates of “looove” include “looove” and “love”. 

 

 
Figure 1: An Example of Training Data and a New 
Tweet for Normalization 

Key (token) Value (canonical forms) 
“ur” “your”, “you are” 
“so” “so” 
“niiice” “nice” 
“luv” “love” 
“car” “car” 
“welcme” “welcome” 
Table 1: Static Mapping Dictionary Learned from 
Training Data 

2.2 Similarity Index 

We measure similarity between two strings by 
first representing each string with a set of simi-
larity features and then evaluating similarity with 
Jaccard Index (Levandowsky et al., 1971) of the 
two similarity feature sets.  

The similarity features of a string s include n-
grams and k-skip-n-grams in s. In this paper, an 
n-gram in string s is defined as a contiguous se-
quence of n characters in s. A k-skip-n-gram in 
string s is a generalization of n-gram with gaps 
between characters and is defined as a sequence 
of n characters where the maximum distance be-
tween two characters is k. We prepend (append) 
a “$” to n-grams that appear at the beginning 
(end) of the string. We use “|” to indicate gaps in 
skip-grams. For example, Table 2 shows the sim-
ilarity feature sets of “love”, “looove”, “car” and 
“cat”, with n=2 and k=1. 

 
String Similarity Feature Set 
“love” “$lo”, “ov”, “ve$”, “l|v”, “o|e” 
“looove” “$lo”, “oo”, “ov”, “ve$”, “l|o”, “o|o”, “o|v”, “o|e” 
“car” “$ca”, “ar$”, “c|r” 
“cat” “$ca”, “at$”, “c|t” 
Table 2: An Example of Similarity Features (n=2, k=1) 

Let the similarity feature set of a string s be 
f(s), then we measure string similarity between s1 
and s2 by: 
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠!, 𝑠!

= 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 𝑓 𝑠! , 𝑓 𝑠!

=
|𝑓(𝑠!) ∩ 𝑓(𝑠!)|
|𝑓(𝑠!) ∪ 𝑓(𝑠!)|

 

For example, in Table 2, “love” and “looove” 
share similarity features {“$lo”, “ov”, “ve$”, 
“o|e”}. The union of their similarity feature sets 
is {“$lo”, “oo”, “ov”, “ve$”, “l|v”, “l|o”, “o|o”, 
“o|v”, “o|e”}. The similarity score between 
“love” and “looove” is 4/9 = 0.44.  

Different weights can be assigned to different 
similarity features when calculating similarity 
scores because n-grams at different positions 
have different importance for word recognition 
(White et al., 2008). For example, in the example 
shown in Table 2, we can assign weight 3 to bi-
grams at the beginning and end of strings and 
weight 1 to other features, and then the similarity 
score between “love” and “looove” becomes 
8/13 = 0.615. 

The similarity feature set calculation can use 
multiple (n, k) configurations instead of just one. 
For example, the similarity feature set can be 
composed of bigrams, trigrams, 1-skip-bigrams 
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and 2-skip-bigrams together. If k = 0, it means no 
skip-gram is used. 

This similarity measurement penalizes text ed-
its such as insertion, deletion and substitution. 
Compared with Levenshtein distance (Le-
venshtein, 1966), one disadvantage of our simi-
larity measurement is that two different strings 
may have 1.0 similarity score because the simi-
larity feature set can only capture local character 
order information. For example, strings “aaabaa” 
and “aaaabaa” have exactly the same similarity 
feature set {“$aa”, “ab”, “ba”, “aa$”, “a|a”, “a|b”, 
“b|a”} and thus have 1.0 similarity score. Includ-
ing skip-gram and using a larger n in similarity 
feature calculation can mitigate this problem but 
cannot prevent it. Fortunately, this should be 
very rare when the similarity measurement is 
applied to two real world twitter tokens because 
such cases require the strings to be long and con-
tain repetitive n-grams and skip-grams. One ad-
vantage of our similarity measurement over Le-
venshtein distance is that it takes into account the 
string length when penalizing text edits. The 
same text edit has a bigger impact when it occurs 
in a short string than in a long string because of 
the denominator in Jaccard Index. Another ad-
vantage of our similarity measurement is that it 
better handles repetition characters, which is 
commonly used in Twitter. For example, for our 
similarity measurement, both “looove” and 
“loooooove” are equally similar to “love”. For 
Levenshtein distance, “loooooove” takes a much 
heavier penalty than “looove”.1 The biggest ad-
vantage of our similarity measurement over Le-
venshtein distance is the lower computational 
complexity. Let the length of a string s be l(s). 
The feature set size of s is bounded by O(l(s)). 
Then the complexity of calculating Levenshtein 
distance between s1 and s2 is O(l(s1)l(s2)), which 
is quadratic when two strings have similar 
length. On the contrary, the complexity of calcu-
lating our similarity measurement is 
O(l(s1)+l(s2)), which is linear.2  

We index all the canonical forms in the train-
ing data based on similarity features to facilitate 
                                                
1 Certain preprocessing can mitigate this problem for Le-
venshtein distance. For example, all single character repeti-
tions get reduced to two before Levenshtein distance is cal-
culated. But it does not handle repetition of multiple charac-
ters, e.g. “lolol”. 
2 The linear complexity depends on using hash table to cal-
culate set union and intersection. Another implementation is 
sorting the similarity features first and then calculating un-
ion and intersection, which has O(l*log(l)) complexity (l is 
the longer string length of the two strings) and is still better 
than quadratic complexity of Levenshtein distance.  

finding top-m canonical forms that are most 
similar to the query token. Given a query token, 
we can quickly narrow down our search space to 
canonical forms that share at least one similarity 
feature with the query token. Further efficiency 
improvement can be achieved by approximating 
the denominator in Jaccard Index based on string 
lengths or by imposing restrictions on the mini-
mum number of similarity features to be shared 
by query token and results.  

2.3 Candidate Evaluation 

Given a tweet T, one of its token ti and one of the 
token’s candidate c, we train a binary classifier 
that predicts whether c is the correct canonical 
form of ti in the tweet T and outputs a confidence 
score for the prediction. Among the candidates 
that the classifier predicts to be the correct ca-
nonical forms, we select the one with the highest 
confidence score as the canonical form of ti. In 
our implementation of the system, we used a 
random forest classifier (Breiman, 2001) mainly 
because its training speed is faster and its per-
formance is relatively insensitive to parameter 
values, but other binary classification algorithm 
should also work. 

This step is mostly feature engineering and we 
used the following features: 

• Support and confidence 

We calculate the support of token ti (number 
of times ti appears) and confidence of token ti 
being normalized to candidate c (percentage 
of times ti is normalized to c) according to 
training data and use them as features for 
classification. For example, in the training da-
ta shown above, the support of token “ur” is 3 
and the confidence of normalizing “ur” to 
“you are” is 2/3 = 0.67. The confidence of 
normalizing “ur” to “your” is 1/3 = 0.33. If 
the token ti is absent in the training data, e.g. 
“looove”, then the support and confidence are 
both zero. If the token ti is present but the 
normalization from ti to c is absent in training 
data, then only the confidence is zero. These 
features are context free and the intuition is 
that the higher the support and confidence are 
(high support is necessary in case of small 
sample), the more likely that c is the correct 
canonical form of ti. 

• String information 

We calculate the string similarity score (Jac-
card Index of feature sets) between token ti 
and candidate c and use it as a feature for 
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classification. String similarity score is a good 
feature for difference between token and its 
canonical form caused by misspelling (for ex-
ample, “seperate” à “separate”), but it is not 
a good feature for difference caused by ab-
breviation (for example, “lol” à “laughing 
out loud”). Therefore, we also add string 
length and difference in string length between 
ti and c so that classifier can choose to ignore 
string similarity score when necessary.  

All string information features are context 
free. 

• POS tagging information 

One of the motivations of text normalization 
is to facilitate subsequent tasks, such as part-
of-speech tagging and named entity recogni-
tion. Therefore, good text normalization 
should make the subsequent tasks easier. We 
observed that in the training data, in 90% of 
the cases where a token is normalized to an-
other token, the canonical form has higher 
POS tagging confidence, based on the ark 
POS tagger (Gimpel et al., 2011), than the 
original. Therefore we use change in POS 
tagging confidence at position i in tweet T be-
fore and after normalizing ti to c as a feature 
for classification.  

We also include change in mean POS tagging 
confidence in tweet T because changing one 
token can affect the confidence of tagging 
other tokens. In addition to change in POS 
tagging confidence, we use POS tags of to-
kens ti-1 and ti as features (tag is empty if ti is 
the first token) because there can be patterns 
of consecutive POS tags and some patterns 
are much more frequent than others.  

All POS tagging features use context infor-
mation. 

The importance of these classification features 
are evaluated in Section 4. 

To train the classifier, we generate candidates 
for each token in training data and label each pair 
according to human annotation. If the candidate 
is the correct canonical form of the token in the 
tweet, then the pair is labeled as class 1; other-
wise the pair is labeled as class 0. Feature vectors 
with features described above are calculated for 
each pair. Then a random forest binary classifier 
is learned. When the classifier is learned, the 
class (label) weights are adjusted inversely pro-
portional to class frequencies in the data because 

the data is imbalanced and majority of the obser-
vations are in class 0. 

3 Resources Employed 

We implemented two modes for our normaliza-
tion system: a constrained mode and an uncon-
strained mode.3 The constrained mode uses only 
the training data train_data_20150430.json and 
the ark twitter POS tagger (Gimpel et al., 2011). 
The unconstrained mode uses the canonical Eng-
lish lexicon dictionary scowl.american.70, in 
addition to all resources used by the constrained 
mode. 

4 Settings and Evaluation 

For both the constrained and unconstrained 
modes, we use only bigrams and 1-skip-bigrams 
as similarity features. The differences between 
the two modes are listed below. 

For the constrained mode:  
• It uses best-scoring canonical forms from 

the similarity index as candidates. 

• It uses similarity index for candidate gen-
eration only when the token contains re-
petitive characters (same character occu-
pying consecutive positions).4   

• It builds a similarity index based on all 
canonical forms present in the training da-
ta.  

• Dictionary and feature learning and classi-
fier training are based on the same data 
set. 

For the Unconstrained mode:  

• It uses top-3 best-scoring canonical forms 
from the similarity index as candidates.  

• It builds a similarity index based on all 
canonical forms in the training data and all 
lexicons in the dictionary 
scowl.american.70.  

• It always uses the similarity index for can-
didate generation.  

                                                
3 The unconstrained mode was developed when we were 
writing this paper, after the annotation for the test data set 
was revealed. Only the constrained mode was submitted for 
the competition. 
4 This is because a similarity index based on smaller vocab-
ulary leads to less reliable candidates. For example, in the 
example shown in Figure 1, the similarity index returns 
“car” as a candidate of “cat” because “car” is the most simi-
lar canonical form in training data. In a larger vocabulary, 
“cat” itself should be the most similar canonical form. 
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• Dictionary and feature learning and classi-
fier training are based on different data 
sets. 

For the constrained mode, dictionaries (includ-
ing static mapping dictionary and similarity in-
dex), classification feature calculation and classi-
fier training are based on the same data set. It 
causes overfitting because the dictionaries and 
the support and confidence features leak label 
information. However, our cross-validation re-
sults show that learning dictionaries, support and 
confidence features, and classifier on the same 
data set generates better generalization as well. It 
leads to better F1 score than splitting the data set 
into two parts and learning dictionaries and fea-
tures on one part and learning the classifier on 
the other part. This is because having large dic-
tionaries is crucial for candidate generation and 
the correct canonical form cannot be found if it is 
not among the candidates. Using all the available 
data instead of splitting it allows the system to 
learn larger dictionaries and more than makes up 
for the overfitting problem. 

For the unconstrained mode, dictionaries and 
features are learned on 67% of the available data 
and the classifier is learned on 33% of the avail-
able data (random split). This is different from 
constrained mode because the unconstrained 
mode already has a very large canonical form 
dictionary in scowl.american.70 and the accura-
cy of selecting the correct canonical form be-
comes the bottleneck.  

We used the data sets provided by the WNUT 
2015 lexical normalization competition (de-
scribed in (Baldwin et al., 2015)) for evaluation. 
During our development of the systems, only the 
training data file train_data_20150430.json was 
used for any parameter selection and design de-
cisions. We used cross-validation to estimate 
system performance. The constrained and uncon-
strained modes have separate classifier training. 

Table 3 shows the performance of the con-
strained mode with different sets of classification 
features based on the test data file test_truth.json 
concealed from development. It can be seen that 
the support and confidence features are the most 
important for achieving high F1 score. Without 
the support and confidence features, the F1 score 
of the constrained mode decreases by 0.0521. 
The POS tagging features constitute the second 
most important feature set. Without POS tagging 
features, the F1 score goes down by 0.0129. The 
string features are the least important set of fea-

tures as they lead to very marginal improvement 
in F1 score. 
 
 Precision Recall F1 Score 
Constrained w/ all features 0.9061 0.7865 0.8421 
Constrained w/o support and 
confidence features 

0.9423 0.6803 0.7901 

Constrained w/o POS tag-
ging features 

0.902 0.7673 0.8292 

Constrained w/o string fea-
tures 

0.9102 0.7825 0.8416 

Table 3: Importance of Classification Features 

In Table 4, we report the evaluation results 
based on the test data file test_truth.json con-
cealed from development. For constrained mode, 
we list the top-two results by teams 
NCSU_SAS_NING (Ning.cm) and 
NCSU_SAS_WOOKHEE (Wookhee.cm). For 
unconstrained mode, we list the top result by 
team IHS_RD (IHS_RD.um) and the result by 
our own unconstrained mode (Ning.um), which 
was developed after the competition ended. 

 
Perfor-
mance 

Constrained Mode Unconstrained Mode 
Ning.cm Wookhee.cm Ning.um IHS_RD.um 

Precision 0.9061 0.9136 0.9339 0.8469 
Recall 0.7865 0.7398 0.7582 0.8083 
F1 Score 0.8421 0.8175 0.837 0.8272 
Table 4: Competition Evaluation Results 

It can be seen that our normalization system has 
the best F1 score in both constrained mode and 
unconstrained mode. In fact, our constrained 
mode has the best F1 score overall, better than 
our unconstrained mode, which seems counterin-
tuitive. Besides, the unconstrained mode is ex-
pected to achieve higher recall than the con-
strained mode because of its much larger dic-
tionary, but the evaluation results show that the 
unconstrained mode has lower recall and higher 
precision than the constrained mode. The follow-
ing three factors lead to the inferior F1 score and 
recall by our unconstrained mode: 

The much larger canonical form dictionary 
used by the unconstrained mode contains many 
rarely used words and having such words as can-
didates causes the candidate evaluation compo-
nent to be more conservative in selecting candi-
dates other than the original tokens (higher preci-
sion and lower recall). A potential solution is to 
use a smaller dictionary of most frequently used 
words instead of a large dictionary or to use a 
dictionary with word frequency based on a large 
corpus. 

Even if we exclude the rare words, the mere 
increase in number of candidates per token 
makes selecting the correct candidate more chal-
lenging. For example, our unconstrained mode 
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successfully suggests “Brooklyn” as a candidate 
for token “Brklyn”, which our constrained mode 
is incapable of, but the candidate evaluation 
component fails to select “Brooklyn” as the cor-
rect canonical form. A potential solution is to 
include more context information for candidate 
evaluation. For example, text likelihood estimat-
ed by a CRF model before and after normaliza-
tion can be added as classification features. Hav-
ing word frequency as a feature can also be help-
ful. 

The binary class labeling in the candidate 
evaluation component does not differentiate 
normalization without change (e.g. “car” à 
“car”) from normalization with change (e.g. “ur” 
à “your”). As a result, we are unable to tune 
parameters to favor normalization with change in 
order to achieve a better trade-off between preci-
sion and recall (higher recall and slightly lower 
precision), which means higher F1 score. A po-
tential solution is to change the candidate evalua-
tion component into a two-level classification. 
The first level classifies whether the normaliza-
tion needs any change. If no, then the token itself 
is output as the normalization result. If yes, then 
the second level classification assigns a confi-
dence score to each candidate that is different 
from the token and outputs the one with the 
highest score as the result. 

5 Conclusions and Future Work 

In this paper, we present a system to perform 
lexical normalization for English Twitter text, 
with a constrained mode and an unconstrained 
mode. Our constrained mode achieves the top F1 
score in the W-NUT noisy text normalization 
competition and outperforms other participants’ 
unconstrained modes. Our unconstrained mode 
currently has slightly lower recall and F1 score 
than the constrained mode, but it has a lot more 
room for improvement as discussed in the evalu-
ation section. Future work includes implement-
ing the ideas to improve the unconstrained mode 
and exploring semi-supervised and unsupervised 
text normalization. One potential solution for 
unsupervised text normalization is first clustering 
tokens based on context (e.g. Brown clustering 
(Brown et al., 1992)) and then choosing the most 
frequent token in each cluster as the canonical 
form for all tokens in that cluster. 
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