
Proceedings of the ACL 2015 Workshop on Noisy User-generated Text, pages 87–92,
Beijing, China, July 31, 2015. c©2015 Association for Computational Linguistics

NCSU-SAS-Ning: Candidate Generation and Feature Engineering for
Supervised Lexical Normalization

Ning Jin
Text Analytics R&D
SAS Institute, Inc.

Cary, NC, USA
Ning.Jin@sas.com

Abstract

User generated content often contains
non-standard words that hinder effective
automatic text processing. In this paper,
we present a system we developed to per-
form lexical normalization for English
Twitter text. It first generates candidates
based on past knowledge and a novel
string similarity measurement and then
selects a candidate using features learned
from training data. The system has a con-
strained mode and an unconstrained
mode. The constrained mode participated
in the W-NUT noisy English text normal-
ization competition (Baldwin et al., 2015)
and achieved the best F1 score.

1 Introduction

User generated content, such as customer re-
views, forum discussions, text messages and
Twitter text, is of great value in applications like
understanding users, trend discovery and
crowdsourcing. For example, by reading the
Twitter text posted by a user, a company can
learn the user’s preferences and connections and
use the information for targeted advertising. For
another example, by reading Amazon customer
reviews about a certain product, a shopper can
collect a lot of product information that is not
available from manufacturers and retailers. Un-
fortunately, user generated content often contains
ungrammatical sentence structures and non-
standard words, which hinders automated text
processing.

In this paper, we present a solution that at-
tempts to perform lexical normalization (Han et
al., 2011) for English Twitter text based on train-

ing text with human annotation (Baldwin et al.,
2015). The solution has a constrained mode and
an unconstrained mode. Both modes have the
same architecture and components. Both use the
annotated training data and CMU’s ark POS tag-
ger (Gimpel et al., 2011). The difference between
them is parameter settings and the usage of a ca-
nonical lexicon dictionary by the unconstrained
mode.

This paper is organized as follows: Section 2
describes the architecture and components shared
by the constrained and unconstrained modes.
Section 3 lists what resources are used by each
system. In Section 4, we describe the different
settings of the constrained and unconstrained
modes and compare their performance. Section 5
concludes the paper and discusses future work.

2 Architecture and Components of the
System

Given a tokenized English tweet T = (t1, t2, …,
tn), where ti is the i-th token and n is the total
number of tokens, our normalization system pro-
cesses one token at a time and has two compo-
nents: candidate generation and candidate evalu-
ation. To normalize token ti, the system first gen-
erates a small set of candidate canonical forms.
Then it calculates a confidence score for each
candidate and selects the one with the highest
confidence score as the canonical form of token
ti. How to generate candidates and how to calcu-
late confidence scores are learned from training
data.

2.1 Candidate Generation

The candidates of a token ti include:
• The token itself

87

• All tokens that are considered canonical
forms of ti in the training data (static map-
ping dictionary)

• A split into multiple canonical forms if the
token ti is not a canonical form (for exam-
ple, “loveyourcar” à “love your car”)

• Top-m most similar canonical forms found
in training data (see subsection 2.2 for de-
tails of similarity measurement)

Figure 1 shows an example of training data
and a new tweet for normalization. Table 1
shows a portion of the static mapping dictionary
learned from the training data.

For token “ur” in the new tweet, the token it-
self is “ur”. All of its possible canonical forms
present in the training data are “you are” and
“your”. Let m = 1, the most similar canonical
form is “your”. Therefore, the candidates of “ur”
include “ur”, “you are” and “your”. For token
“looove” in the new tweet, the token itself is
“looove”. It is absent in the training data, so it
does not have its own canonical form available
as candidates. Among all the canonical forms
present in training data, canonical form “love” is
most similar to “looove”. Therefore, the candi-
dates of “looove” include “looove” and “love”.

Figure 1: An Example of Training Data and a New
Tweet for Normalization

Key (token) Value (canonical forms)
“ur” “your”, “you are”
“so” “so”
“niiice” “nice”
“luv” “love”
“car” “car”
“welcme” “welcome”
Table 1: Static Mapping Dictionary Learned from
Training Data

2.2 Similarity Index

We measure similarity between two strings by
first representing each string with a set of simi-
larity features and then evaluating similarity with
Jaccard Index (Levandowsky et al., 1971) of the
two similarity feature sets.

The similarity features of a string s include n-
grams and k-skip-n-grams in s. In this paper, an
n-gram in string s is defined as a contiguous se-
quence of n characters in s. A k-skip-n-gram in
string s is a generalization of n-gram with gaps
between characters and is defined as a sequence
of n characters where the maximum distance be-
tween two characters is k. We prepend (append)
a “$” to n-grams that appear at the beginning
(end) of the string. We use “|” to indicate gaps in
skip-grams. For example, Table 2 shows the sim-
ilarity feature sets of “love”, “looove”, “car” and
“cat”, with n=2 and k=1.

String Similarity Feature Set
“love” “$lo”, “ov”, “ve$”, “l|v”, “o|e”
“looove” “$lo”, “oo”, “ov”, “ve$”, “l|o”, “o|o”, “o|v”, “o|e”
“car” “$ca”, “ar$”, “c|r”
“cat” “$ca”, “at$”, “c|t”
Table 2: An Example of Similarity Features (n=2, k=1)

Let the similarity feature set of a string s be
f(s), then we measure string similarity between s1
and s2 by:
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠!, 𝑠!

= 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 𝑓 𝑠! , 𝑓 𝑠!

=
|𝑓(𝑠!) ∩ 𝑓(𝑠!)|
|𝑓(𝑠!) ∪ 𝑓(𝑠!)|

For example, in Table 2, “love” and “looove”
share similarity features {“$lo”, “ov”, “ve$”,
“o|e”}. The union of their similarity feature sets
is {“$lo”, “oo”, “ov”, “ve$”, “l|v”, “l|o”, “o|o”,
“o|v”, “o|e”}. The similarity score between
“love” and “looove” is 4/9 = 0.44.

Different weights can be assigned to different
similarity features when calculating similarity
scores because n-grams at different positions
have different importance for word recognition
(White et al., 2008). For example, in the example
shown in Table 2, we can assign weight 3 to bi-
grams at the beginning and end of strings and
weight 1 to other features, and then the similarity
score between “love” and “looove” becomes
8/13 = 0.615.

The similarity feature set calculation can use
multiple (n, k) configurations instead of just one.
For example, the similarity feature set can be
composed of bigrams, trigrams, 1-skip-bigrams

88

and 2-skip-bigrams together. If k = 0, it means no
skip-gram is used.

This similarity measurement penalizes text ed-
its such as insertion, deletion and substitution.
Compared with Levenshtein distance (Le-
venshtein, 1966), one disadvantage of our simi-
larity measurement is that two different strings
may have 1.0 similarity score because the simi-
larity feature set can only capture local character
order information. For example, strings “aaabaa”
and “aaaabaa” have exactly the same similarity
feature set {“$aa”, “ab”, “ba”, “aa$”, “a|a”, “a|b”,
“b|a”} and thus have 1.0 similarity score. Includ-
ing skip-gram and using a larger n in similarity
feature calculation can mitigate this problem but
cannot prevent it. Fortunately, this should be
very rare when the similarity measurement is
applied to two real world twitter tokens because
such cases require the strings to be long and con-
tain repetitive n-grams and skip-grams. One ad-
vantage of our similarity measurement over Le-
venshtein distance is that it takes into account the
string length when penalizing text edits. The
same text edit has a bigger impact when it occurs
in a short string than in a long string because of
the denominator in Jaccard Index. Another ad-
vantage of our similarity measurement is that it
better handles repetition characters, which is
commonly used in Twitter. For example, for our
similarity measurement, both “looove” and
“loooooove” are equally similar to “love”. For
Levenshtein distance, “loooooove” takes a much
heavier penalty than “looove”.1 The biggest ad-
vantage of our similarity measurement over Le-
venshtein distance is the lower computational
complexity. Let the length of a string s be l(s).
The feature set size of s is bounded by O(l(s)).
Then the complexity of calculating Levenshtein
distance between s1 and s2 is O(l(s1)l(s2)), which
is quadratic when two strings have similar
length. On the contrary, the complexity of calcu-
lating our similarity measurement is
O(l(s1)+l(s2)), which is linear.2

We index all the canonical forms in the train-
ing data based on similarity features to facilitate

1 Certain preprocessing can mitigate this problem for Le-
venshtein distance. For example, all single character repeti-
tions get reduced to two before Levenshtein distance is cal-
culated. But it does not handle repetition of multiple charac-
ters, e.g. “lolol”.
2 The linear complexity depends on using hash table to cal-
culate set union and intersection. Another implementation is
sorting the similarity features first and then calculating un-
ion and intersection, which has O(l*log(l)) complexity (l is
the longer string length of the two strings) and is still better
than quadratic complexity of Levenshtein distance.

finding top-m canonical forms that are most
similar to the query token. Given a query token,
we can quickly narrow down our search space to
canonical forms that share at least one similarity
feature with the query token. Further efficiency
improvement can be achieved by approximating
the denominator in Jaccard Index based on string
lengths or by imposing restrictions on the mini-
mum number of similarity features to be shared
by query token and results.

2.3 Candidate Evaluation

Given a tweet T, one of its token ti and one of the
token’s candidate c, we train a binary classifier
that predicts whether c is the correct canonical
form of ti in the tweet T and outputs a confidence
score for the prediction. Among the candidates
that the classifier predicts to be the correct ca-
nonical forms, we select the one with the highest
confidence score as the canonical form of ti. In
our implementation of the system, we used a
random forest classifier (Breiman, 2001) mainly
because its training speed is faster and its per-
formance is relatively insensitive to parameter
values, but other binary classification algorithm
should also work.

This step is mostly feature engineering and we
used the following features:

• Support and confidence

We calculate the support of token ti (number
of times ti appears) and confidence of token ti
being normalized to candidate c (percentage
of times ti is normalized to c) according to
training data and use them as features for
classification. For example, in the training da-
ta shown above, the support of token “ur” is 3
and the confidence of normalizing “ur” to
“you are” is 2/3 = 0.67. The confidence of
normalizing “ur” to “your” is 1/3 = 0.33. If
the token ti is absent in the training data, e.g.
“looove”, then the support and confidence are
both zero. If the token ti is present but the
normalization from ti to c is absent in training
data, then only the confidence is zero. These
features are context free and the intuition is
that the higher the support and confidence are
(high support is necessary in case of small
sample), the more likely that c is the correct
canonical form of ti.

• String information

We calculate the string similarity score (Jac-
card Index of feature sets) between token ti
and candidate c and use it as a feature for

89

classification. String similarity score is a good
feature for difference between token and its
canonical form caused by misspelling (for ex-
ample, “seperate” à “separate”), but it is not
a good feature for difference caused by ab-
breviation (for example, “lol” à “laughing
out loud”). Therefore, we also add string
length and difference in string length between
ti and c so that classifier can choose to ignore
string similarity score when necessary.

All string information features are context
free.

• POS tagging information

One of the motivations of text normalization
is to facilitate subsequent tasks, such as part-
of-speech tagging and named entity recogni-
tion. Therefore, good text normalization
should make the subsequent tasks easier. We
observed that in the training data, in 90% of
the cases where a token is normalized to an-
other token, the canonical form has higher
POS tagging confidence, based on the ark
POS tagger (Gimpel et al., 2011), than the
original. Therefore we use change in POS
tagging confidence at position i in tweet T be-
fore and after normalizing ti to c as a feature
for classification.

We also include change in mean POS tagging
confidence in tweet T because changing one
token can affect the confidence of tagging
other tokens. In addition to change in POS
tagging confidence, we use POS tags of to-
kens ti-1 and ti as features (tag is empty if ti is
the first token) because there can be patterns
of consecutive POS tags and some patterns
are much more frequent than others.

All POS tagging features use context infor-
mation.

The importance of these classification features
are evaluated in Section 4.

To train the classifier, we generate candidates
for each token in training data and label each pair
according to human annotation. If the candidate
is the correct canonical form of the token in the
tweet, then the pair is labeled as class 1; other-
wise the pair is labeled as class 0. Feature vectors
with features described above are calculated for
each pair. Then a random forest binary classifier
is learned. When the classifier is learned, the
class (label) weights are adjusted inversely pro-
portional to class frequencies in the data because

the data is imbalanced and majority of the obser-
vations are in class 0.

3 Resources Employed

We implemented two modes for our normaliza-
tion system: a constrained mode and an uncon-
strained mode.3 The constrained mode uses only
the training data train_data_20150430.json and
the ark twitter POS tagger (Gimpel et al., 2011).
The unconstrained mode uses the canonical Eng-
lish lexicon dictionary scowl.american.70, in
addition to all resources used by the constrained
mode.

4 Settings and Evaluation

For both the constrained and unconstrained
modes, we use only bigrams and 1-skip-bigrams
as similarity features. The differences between
the two modes are listed below.

For the constrained mode:
• It uses best-scoring canonical forms from

the similarity index as candidates.

• It uses similarity index for candidate gen-
eration only when the token contains re-
petitive characters (same character occu-
pying consecutive positions).4

• It builds a similarity index based on all
canonical forms present in the training da-
ta.

• Dictionary and feature learning and classi-
fier training are based on the same data
set.

For the Unconstrained mode:

• It uses top-3 best-scoring canonical forms
from the similarity index as candidates.

• It builds a similarity index based on all
canonical forms in the training data and all
lexicons in the dictionary
scowl.american.70.

• It always uses the similarity index for can-
didate generation.

3 The unconstrained mode was developed when we were
writing this paper, after the annotation for the test data set
was revealed. Only the constrained mode was submitted for
the competition.
4 This is because a similarity index based on smaller vocab-
ulary leads to less reliable candidates. For example, in the
example shown in Figure 1, the similarity index returns
“car” as a candidate of “cat” because “car” is the most simi-
lar canonical form in training data. In a larger vocabulary,
“cat” itself should be the most similar canonical form.

90

• Dictionary and feature learning and classi-
fier training are based on different data
sets.

For the constrained mode, dictionaries (includ-
ing static mapping dictionary and similarity in-
dex), classification feature calculation and classi-
fier training are based on the same data set. It
causes overfitting because the dictionaries and
the support and confidence features leak label
information. However, our cross-validation re-
sults show that learning dictionaries, support and
confidence features, and classifier on the same
data set generates better generalization as well. It
leads to better F1 score than splitting the data set
into two parts and learning dictionaries and fea-
tures on one part and learning the classifier on
the other part. This is because having large dic-
tionaries is crucial for candidate generation and
the correct canonical form cannot be found if it is
not among the candidates. Using all the available
data instead of splitting it allows the system to
learn larger dictionaries and more than makes up
for the overfitting problem.

For the unconstrained mode, dictionaries and
features are learned on 67% of the available data
and the classifier is learned on 33% of the avail-
able data (random split). This is different from
constrained mode because the unconstrained
mode already has a very large canonical form
dictionary in scowl.american.70 and the accura-
cy of selecting the correct canonical form be-
comes the bottleneck.

We used the data sets provided by the WNUT
2015 lexical normalization competition (de-
scribed in (Baldwin et al., 2015)) for evaluation.
During our development of the systems, only the
training data file train_data_20150430.json was
used for any parameter selection and design de-
cisions. We used cross-validation to estimate
system performance. The constrained and uncon-
strained modes have separate classifier training.

Table 3 shows the performance of the con-
strained mode with different sets of classification
features based on the test data file test_truth.json
concealed from development. It can be seen that
the support and confidence features are the most
important for achieving high F1 score. Without
the support and confidence features, the F1 score
of the constrained mode decreases by 0.0521.
The POS tagging features constitute the second
most important feature set. Without POS tagging
features, the F1 score goes down by 0.0129. The
string features are the least important set of fea-

tures as they lead to very marginal improvement
in F1 score.

 Precision Recall F1 Score
Constrained w/ all features 0.9061 0.7865 0.8421
Constrained w/o support and
confidence features

0.9423 0.6803 0.7901

Constrained w/o POS tag-
ging features

0.902 0.7673 0.8292

Constrained w/o string fea-
tures

0.9102 0.7825 0.8416

Table 3: Importance of Classification Features

In Table 4, we report the evaluation results
based on the test data file test_truth.json con-
cealed from development. For constrained mode,
we list the top-two results by teams
NCSU_SAS_NING (Ning.cm) and
NCSU_SAS_WOOKHEE (Wookhee.cm). For
unconstrained mode, we list the top result by
team IHS_RD (IHS_RD.um) and the result by
our own unconstrained mode (Ning.um), which
was developed after the competition ended.

Perfor-
mance

Constrained Mode Unconstrained Mode
Ning.cm Wookhee.cm Ning.um IHS_RD.um

Precision 0.9061 0.9136 0.9339 0.8469
Recall 0.7865 0.7398 0.7582 0.8083
F1 Score 0.8421 0.8175 0.837 0.8272
Table 4: Competition Evaluation Results

It can be seen that our normalization system has
the best F1 score in both constrained mode and
unconstrained mode. In fact, our constrained
mode has the best F1 score overall, better than
our unconstrained mode, which seems counterin-
tuitive. Besides, the unconstrained mode is ex-
pected to achieve higher recall than the con-
strained mode because of its much larger dic-
tionary, but the evaluation results show that the
unconstrained mode has lower recall and higher
precision than the constrained mode. The follow-
ing three factors lead to the inferior F1 score and
recall by our unconstrained mode:

The much larger canonical form dictionary
used by the unconstrained mode contains many
rarely used words and having such words as can-
didates causes the candidate evaluation compo-
nent to be more conservative in selecting candi-
dates other than the original tokens (higher preci-
sion and lower recall). A potential solution is to
use a smaller dictionary of most frequently used
words instead of a large dictionary or to use a
dictionary with word frequency based on a large
corpus.

Even if we exclude the rare words, the mere
increase in number of candidates per token
makes selecting the correct candidate more chal-
lenging. For example, our unconstrained mode

91

successfully suggests “Brooklyn” as a candidate
for token “Brklyn”, which our constrained mode
is incapable of, but the candidate evaluation
component fails to select “Brooklyn” as the cor-
rect canonical form. A potential solution is to
include more context information for candidate
evaluation. For example, text likelihood estimat-
ed by a CRF model before and after normaliza-
tion can be added as classification features. Hav-
ing word frequency as a feature can also be help-
ful.

The binary class labeling in the candidate
evaluation component does not differentiate
normalization without change (e.g. “car” à
“car”) from normalization with change (e.g. “ur”
à “your”). As a result, we are unable to tune
parameters to favor normalization with change in
order to achieve a better trade-off between preci-
sion and recall (higher recall and slightly lower
precision), which means higher F1 score. A po-
tential solution is to change the candidate evalua-
tion component into a two-level classification.
The first level classifies whether the normaliza-
tion needs any change. If no, then the token itself
is output as the normalization result. If yes, then
the second level classification assigns a confi-
dence score to each candidate that is different
from the token and outputs the one with the
highest score as the result.

5 Conclusions and Future Work

In this paper, we present a system to perform
lexical normalization for English Twitter text,
with a constrained mode and an unconstrained
mode. Our constrained mode achieves the top F1
score in the W-NUT noisy text normalization
competition and outperforms other participants’
unconstrained modes. Our unconstrained mode
currently has slightly lower recall and F1 score
than the constrained mode, but it has a lot more
room for improvement as discussed in the evalu-
ation section. Future work includes implement-
ing the ideas to improve the unconstrained mode
and exploring semi-supervised and unsupervised
text normalization. One potential solution for
unsupervised text normalization is first clustering
tokens based on context (e.g. Brown clustering
(Brown et al., 1992)) and then choosing the most
frequent token in each cluster as the canonical
form for all tokens in that cluster.

Reference
T. Baldwin, M. Catherine, B. Han, Y.B. Kim, A. Rit-

ter and W. Xu. 2015. Shared Tasks of the 2015

Workshop on Noisy User-generated Text: Twitter
Lexical Normalization and Named Entity Recogni-
tion. In Proc. of WNUT.

L. Breiman. 2001. Random Forests. Machine Learn-
ing, 45(1), 5-32.

P. Brown, P. deSouza, R. Mercer, V. Della Pietra, J.
Lai. 1992. Class-Based n-gram Models of Natural
Language. Computational Linguistics, vol. 18, pp.
467–479.

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D.
Mills, J. Eisenstein, M. Heilman, D. Yogatama, J.
Flanigan, and N. A. Smith. 2011. Part-of-speech
tagging for Twitter: Annotation, features, and ex-
periments. In Proc. of ACL.

B. Han and T. Baldwin. 2011. “Lexical normalisation
of short text messages: Makn sens a #twitter”. In
Proc. of ACL.

M. Levandowsky and D. Winter. 1971. Distance be-
tween sets. Nature 234 (5): 34–35.

V. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions, and reversals. Soviet
Physics Doklady 10 (8): 707–710.

S. White, R. Johnson, S. Liversedge, K. Rayner. 2008.
Eye Movements When Reading Transposed Text:
The Importance of Word-Beginning Letters. Jour-
nal of experimental psychology Human perception
and performance.

92

