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Abstract 

The use of social network services and 
microblogs, such as Twitter, has created 
valuable text resources, which contain 
extremely noisy text. Twitter messages 
contain so much noise that it is difficult 
to use them in natural language pro-
cessing tasks. This paper presents a new 
approach using the maximum entropy 
model for normalizing Tweets. The pro-
posed approach addresses words that are 
unseen in the training phase. Although 
the maximum entropy needs a training 
dataset to adjust its parameters, the pro-
posed approach can normalize unseen da-
ta in the training set. The principle of 
maximum entropy emphasizes incorpo-
rating the available features into a uni-
form model. First, we generate a set of 
normalized candidates for each out-of-
vocabulary word based on lexical, pho-
nemic, and morphophonemic similarities. 
Then, three different probability scores 
are calculated for each candidate using 
positional indexing, a dependency-based 
frequency feature and a language model. 
After the optimal values of the model pa-
rameters are obtained in a training phase, 
the model can calculate the final proba-
bility value for candidates. The approach 
achieved an 83.12 BLEU score in testing 
using 2,000 Tweets. Our experimental re-
sults show that the maximum entropy ap-
proach significantly outperforms previ-

ous well-known normalization approach-
es. 

1 Introduction 

The advent of Web 2.0 and electronic communi-
cations has enabled the extensive creation and 
dissemination of user-generated content (UGC). 
The UGC collections provide invaluable data 
sources in order to mine and extract beneficial 
information and knowledge, while, at the same 
time, resulting in less standardized language 
(Clark & Araki, 2011; Daugherty, Eastin, & 
Bright, 2008). 

However, such content diverges from standard 
writing conventions. As shown by experts 
(Bieswanger, 2007; Thurlow & Brown, 2003), 
this divergence is due to the usage of a variety of 
coding strategies, including digit phonemes (you 
too → you2), phonetic transcriptions (you → u), 
vowel drops (dinner → dnnr), misspellings (con-
venience → convineince), and missing or incor-
rect punctuation marks  (If I were you, I'd proba-
bly go. → If I were you Id probably go). These 
alterations are due to three main parameters: 1) 
The small allowance of characters, 2) the con-
straints of the small keypads, and 3) using UGC 
in informal communications between friends and 
relatives. 

Whatever their causes, these alterations con-
siderably affect any standard natural language 
processing (NLP) system, due to the presence of 
many out of vocabulary (OOV) words, also 
known as non-standard words (NSWs) and un-
known words. Therefore, a text normalization 
process must be performed before any conven-
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tional NLP process is implemented (Sproat et al., 
2001). As defined by Liu, Weng, Wang, and Liu 
(2011), “Text message normalization aims to 
replace the non-standard tokens that carry signif-
icant meanings with the context-appropriate 
standard words.” 

This paper proposes a novel normalization ap-
proach for Twitter messages. Twitter is the most 
popular microblogging service in the world for 
news-casting, sharing thoughts, and staying in 
touch with friends. Since its initial founding in 
2006, it has gathered hundreds of millions of reg-
istered users. Tweets refer to messages sent on 
Twitter, which is restricted to 140 characters, 20 
characters less than the 160 allowed by SMS. 
Because of this limitation, users have to tran-
scribe Tweets with as much brevity as possible. 

The normalization bears a resemblance to 
spelling correction. The ultimate goal of which is 
the detection and correction of OOV words. The 
spelling correction methods only focus on mis-
spelled words while normalization systems con-
sider all forms of OOV words, such as represent-
ing sounds phonetically (e.g. by the way → btw) 
and shortened forms (e.g. university →  uni). 
Thus, normalization approaches should address a 
higher volume of OOV words compared to 
spelling correction approaches that lead to more 
complexity. 

To address this complexity, we use maximum 
entropy (Berger, Pietra, & Pietra, 1996; Och & 
Ney, 2002) for utilizing and incorporating more 
probability functions. Our approach is based on 
the hypothesis that integrating more probability 
functions will boost the performance of the 
method; however, the available information and 
number of probability functions for (OOV word, 
standard word) pairs are always limited. Maxi-
mum entropy (Maxent) provides a criterion for 
integrating probability distributions based on 
partial knowledge. The Maxent produces the 
lowest biased estimation on the given infor-
mation, that is, it is maximally neutral regarding 
missing information. When defining some un-
known events with a statistical model, we should 
always select the one that has maximum entropy. 
Although the Maxent has already been used in 
the normalization sphere (e.g. Pennell and Liu 
(2010) utilized Maxent to classify deletion-based 
abbreviations), this paper explains how to em-
ploy Maxent for selecting the best-normalized 
candidate. 

We have developed a method that does not re-
quire annotated training data and it normalizes 
unseen data. Most of the normalization ap-

proaches substantially depend on the manually 
annotated data, while the labeled data is costly 
and time consuming to prepare. We generate 
normalized candidates for each detected OOV 
based on lexical, phonemic, and morphophone-
mic variations. In addition, since our target da-
taset encompasses Twitter messages from Singa-
poreans and code-switching between Malay and 
English is frequent in the dataset, a Malay-
English dictionary is utilized to generate candi-
dates for Malay words. Finally, maximum entro-
py presents a backbone to combine several con-
ditional probabilities of normalized candidates. 

The remainder of this paper is organized as 
follows: Section 2 gives a survey of different 
approaches of normalizing noisy text. Section 3 
describes the preprocessing stage. Section 4 il-
lustrates the candidate generation stage. The pro-
posed candidate selection method is demonstrat-
ed in Section 5. Finally, Section 6 concludes this 
paper with a summary and future works. 

2 Related work 

The normalization approaches can be categorized 
into four groups. The first group is called statisti-
cal machine translation (SMT) paradigm that 
addresses the normalization problem as a statisti-
cal machine translation task. This paradigm was 
first introduced by Aw, Zhang, Xiao and Su 
(2006) to normalize SMS text that translates a 
source language (UGC) to a target language 
(standard language). This paradigm has since 
been re-examined, expanded and improved by 
other researchers (Lopez Ludeña, San Segundo, 
Montero, Barra Chicote, & Lorenzo, 2012). For 
example, Kaufmann and Kalita (2010) used the 
SMT-like approach to normalize English Tweets. 

To normalize SMS language, a supervised 
noisy channel model was introduced by 
Choudhury, Saraf, Jain, Sarkar, and Basu (2007) 
that used a hidden Markov model (HMM). This 
approach mimics the spell checking task that 
tries to handle the normalization problem via 
noisy channel models that study the UGC text as 
a noisy version of standard language. This para-
digm has been scrutinized and enhanced by other 
researchers (Liu et al., 2011; Xue, Yin, & 
Davison, 2011a). For example, Cook and 
Stevenson (2009) modified this approach to de-
sign an unsupervised method using probabilistic 
models for only three common abbreviation 
types: stylistic variation, prefix clipping, and 
subsequence abbreviation. In addition, Beaufort, 
Roekhaut, Cougnon, and Fairon (2010) merged 
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the SMT-like and the spell checking approaches 
to normalize French SMSs. 

The third group is the dictionary based nor-
malization approach, which is an easy-to-use and 
fast solution. This approach requires a dictionary 
whose entries are OOV and standard form pairs. 
It has been proven that using a colloquial dic-
tionary can outperform some state-of-the-art and 
complex approaches (Clark & Araki, 2011; 
Saloot, Idris, & Mahmud, 2014). However, its 
performance highly relies on the size of the dic-
tionary. Therefore, Han, Cook, and Baldwin 
(2012) introduced a method to automatically 
compile a large dictionary. To address the short-
comings of the dictionary approach, Oliva, 
Serrano, Del Castillo, and Igesias (2013) intro-
duced a special Spanish phonetic dictionary, in 
which each entry is formed by a coded consonant 
string, vowels strings, and their positions in the 
word, for normalizing Spanish SMS texts. 

The fourth group resembles automatic speech 
recognition (ASR) systems. This paradigm con-
sists of three steps: 1) converting the text to 
strings of phonemes via letter-to-phone rules, 2) 
converting the strings of phonemes to words via 
pronunciation dictionaries, and 3) choosing the 
most probable words. The ASR-like approach 
has been merged with other approaches to boost 
its performance. Kobus, Yvon, and Damnati 
(2008) combined ASR-like and SMT-like ap-
proaches to normalize French SMSs. Lin, 
Bilmes, Vergyri, and Kirchhoff (2007) used this 
approach to detect OOV words in switchboard 
data. 

Han and Baldwin (2011) illustrated a lexical 
method for normalizing Twitter messages. After 
detecting OOVs, ill-formed words, and generat-
ing a set of candidates, the best candidate is se-
lected using a variety of metrics: lexical edit dis-
tance, phonemic edit distance, longest common 
subsequence (LCS), affix substring, language 
model, and dependency-based frequency fea-
tures. The method achieved a 93.4 BLEU score 
in normalizing 549 English Tweets. This inspired 
us to design a normalization method that has 
three major stages: preprocessing, candidate gen-
eration, and candidate selection. 

3 Preprocessing 

First, we perform some initial text refining on the 
tweets. For example, consecutive whitespace 
characters are trimmed to single whitespace, and 
extra whitespaces are removed from the begin-
ning and end of Tweets. The initial stage of most 

NLP tasks is the tokenization. Existing tokeniza-
tion methods can perform accurately when the 
text is thoroughly clean, such as news feeds and 
book datasets. For example, the PTB-Tokenizer 
is a fast, deterministic, and efficient tokenization 
method. On the other hand, UGC text demands 
special methods due to irregularities in its 
whitespaces and punctuation. As suggested by 
Lopez Ludeña et al. (2012), we employ a 
straightforward word separating method, which 
performs tokenization based on whitespace char-
acters. 

One of the most important primary steps in 
unsupervised normalization systems is to detect 
OOV words. Hanspell and GNU Aspell are two 
well-known spell checker systems, however, 
Aspell performance is more accurate on the 
noisy text (Clark & Araki, 2011). The Aspell 
dictionary is utilized to distinguish between 
OOV and standard English words. In addition, 
we used seven regular expression rules, which 
were introduced by Saloot, Idris, and Aw (2014). 
This helps to detect proper nouns, email and 
URL addresses, Twitter special symbols, and 
digits. The potential errors in the OOV word de-
tection step would not affect the performance of 
the normalization system since the detected OOV 
word will be included in the candidate set. 

4 Candidate generation 

For each given OOV word, a set of normalized 
candidates is generated via four different mod-
ules. The first module executes a lexical candi-
date generation, which is extensively utilized in 
spell checker systems. It calculates candidates 
within a distance of 𝑇 edit operations of the de-
tected OOV words. Han and Baldwin (2011) 
stated that when 𝑇 is less than or equal to two, 
the level of recall is high enough. The edit dis-
tance is the number of applied edits in changing 
one word to another. An edit could be a deletion, 
transposition, alteration, or insertion. Studies in 
spelling correction found that one lexical edit 
distance covers 80% to 95% of errors, and two 
lexical edit distances cover 98% of them. There-
fore, here we use lexical variations with less than 
or equal to two edit distances. 

For a word of length 𝑛 characters, 54𝑛 + 25 
combinations will be generated with one lexical 
edit distance using four reshaping strategies: 1) 
Deletion strategy eliminates characters in all pos-
sible positions (e.g. aer →  er, ar, ae), which 
generates 𝑛 combinations. 2) Transposition strat-
egy switches two adjacent characters (e.g. aer → 
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ear, are), which generates 𝑛 − 1  combinations. 
3) Alteration strategy substitutes each character 
with all English alphabets (e.g. aer → ber, cer, 
der, eer, fer, ger, her, etc.), which generates 26𝑛 
combinations. 4) Insertion strategy presumes that 
a letter is dropped, thus adding all the alphabets 
between characters (e.g. aer → aaer, baer, caer, 
daer, eaer, faer, gaer, haer, etc.), which gener-
ates 26(𝑛 + 1)  combinations. Finally, from the 
achieved combinations, standard words will be 
selected using the Aspell dictionary. However, 
many OOV words in Twitter are quite far from 
their target in term of edit distance especially in 
terms of deletions and substitutions. Therefore, 
we generated more candidates via three other 
methods. 

Similar to the speech recognition systems, the 
second module generates candidates based on 
phoneme sounds. First, grapheme to phoneme 
conversion is performed using the Phonetisaurus 
tool (Novak, Yang, Minematsu, & Hirose, 2011). 
Phonetisaurus is an open-source phonetizer that 
is designed in the form of a weighted finite state 
transducer (WFST). After selecting the 10 best 
phoneme sequences, it looks up the phonemes in 
a pronouncing dictionary – Carnegie Mellon 
University (CMU) dictionary. The CMU is a ma-
chine-readable pronunciation dictionary that con-
tains over 134,000 words including OOV words 
such as proper nouns and acronyms. Due to the 
existence of a large number of OOV words in the 
CMU dictionary, we filter out the OOVs using 
the Aspell dictionary. 

The third module, as proposed by Saloot, 
Idris, and Aw (2014), is a combination of the two 
previous modules. First, it lexically generates 
candidates within one edit distance of the given 
OOV word, and then sends the candidates to the 
phoneme module. Since our testing dataset con-
sists of English Tweets posted by Singaporeans, 
code-switching between Malay and English is 
frequent in the text. Therefore, our last module 
translates OOV words to English (if any). We 
searched for the tokens in the Smith Malay-
English Dictionary (Smith & Padi, 2006), and 
inserted the meanings in the candidate set. 

Table 1 displays the average number of gener-
ated candidates for each module. The lowest rate 
is associated with the Malay dictionary module. 
Two lexical edit operations generate the highest 
number of candidates, which indicates the high-
est recall and lowest precision. The rank of com-
bination and phoneme modules are second and 
third, respectively. 

 

No. module Average number of 
candidates 

1. Two lexical edit 
distance 

70 

2. Combination 50 
3. Phoneme 20 
4. Malay dictionary 3 
Table 1: The average number of generated can-
didates for five letter words. 

5 Candidate selection 

The main contribution of this work is to present a 
novel candidate selection method. The candidate 
selection stage consists of two steps: 1) assigning 
a variety of probability scores to candidates, and 
2) integrating probability scores to select the best 
candidate. Our candidate selection method re-
quires a training dataset. The training and testing 
datasets are collected from an extensive English 
Twitter corpus posted by Singaporeans (Saloot, 
Idris, Aw, & Thorleuchter, 2014). Three linguis-
tic experts manually normalized 7,000 Tweets, 
while using inter-normalization agreement as an 
indicator. The experts were instructed to produce 
a text that is as close to standard English as pos-
sible, but leaves the Twitter special symbols (e.g. 
#topic and @username) as is. The dataset was 
split into two parts: 5,000 messages for the train-
ing phase, and 2,000 messages for the testing 
phase. 

5.1 Calculation of probability scores 

In order to select the most suitable candidates, 
we calculate their conditional probability scores 
using, positional indexing, a dependency-based 
frequency feature, and a language model (LM). 

Inspired by work on a normalization diction-
ary (Han et al., 2012), the first method to calcu-
late the probability score of the candidates is the 
positional indexing, which is widely used in in-
formation retrieval systems. The positional in-
dexing deals with positional locations of term 
occurrences inside documents. To compile a po-
sitional index dataset, a method illustrated in 
Manning and Raghavan (2009) is applied on a 
cleansed portion of our Twitter corpus. Table 2 
refers to an example of our achieved positional 
index dataset. Each Twitter message is consid-
ered as a single document, and, hence, a unique 
document ID is assigned to each document. The 
frequency value indicates the total number of 
appearances of a word in a document. The posi-
tion values express the locations of the word in 
the document. 
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Vocab Document ID. Frequency Position 
have 1 2 4,9 

4 3 5, 11, 18 
are 5 1 2 

12 2 2, 9 
14 2 2, 11 

Table 2: An example of the positional indexes 
obtained. 

 
A probability score is assigned to the normalized 
candidate according to a comparison between the 
position of the candidate and positional indexes 
in the dataset. We look for the candidate in the 
dataset where there is an occurrence of the can-
didate with its position index. After aggregating 
the number of occurrences, we normalize it be-
tween 0.0 and 1.0. 

The next probability calculation method is the 
dependency-based frequency, which is an aug-
mentation of the previous method. Inspired by a 
work on the lexical normalization of Tweets 
(Han & Baldwin, 2011), the noisy portion of our 
training dataset is parsed to obtain a dependency 
bank using our adapted version of the Stanford 
dependency parser (Marneffe, MacCartney, & 
Manning, 2006). Since our aim is not to perform 
actual dependency parsing, the dependency types 
are not extracted. A cleansed corpus is not uti-
lized because the percentage of IV words is high 
enough in the corpus, and in the probability-
measuring phase, OOV words are already detect-
ed. For example, from a sentence such as “I will 
go to London by next week,” (next, go +3) is ob-
tained, indicating that next appears two words 
after go. The aggregations of all the dependency 
scores, which are called confidence scores, are 
stored in the dependency bank. A five-gram de-
pendency bank is prepared without using a root 
node (head-word), that is, the process is iterated 
for all words in the sentence. 

A probability score between 0.0 and 1.0 is as-
signed to each candidate. A relative position 
score in the form of (candidate word, context 
word, position) is calculated for each candidate 
within a context window of two words on either 
side. The obtained relative position of a candi-
date is compared with the existing confidence 
score in the dependency bank. 

The third method of probability measurement 
calculates the probabilities based on a language 
model. The cleansed part of our training dataset, 
which consists of more than 55,000 words, is fed 
into SRILM (Stolcke, 2002) to compile a bidirec-
tional trigram LM by employing the Kneser-Ney 

smoothing algorithm. To calculate the probabil-
ity of each candidate, we used a beam search de-
coder through the Moses decoder (Koehn et al., 
2007). 

5.2 Selecting the most probable candidate 

Previous works on spelling correction and nor-
malization used the source channel model, which 
is also known as the noisy channel model and 
Naïve Bayes (Beaufort et al., 2010; Kernighan, 
Church, & Gale, 1990; Mays, Damerau, & 
Mercer, 1991; Toutanova & Moore, 2002; Xue, 
Yin, & Davison, 2011b). In the noisy channel 
approach, we observe the conversion of standard 
words to noisy words in a training phase in order 
to build a model. In the prediction phase, the de-
coder can select the most probable candidate 
based on the obtained model. The candidate se-
lection is accomplished based on only two pa-
rameters: the LM and error model, which is 
computed as follows: 
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Where 𝑇  is a target word, 𝑂  is an observed 
word, ( )OTfm ,  is a feature function, 𝑀  is a 
number of total feature functions, and λ is a La-
grange multiplier of each function. In our case, 
𝑀 equals three, in which 𝑓1 is the positional in-
dexing, 𝑓2  is the dependency-based frequency 
feature, and 𝑓3  is the LM probability. The 
Maxent requires λ being determined in the train-
ing phase before the actual usage. 

6 Experimental results and discussion 

We evaluate our approach in terms of BLEU 
score (Papineni, Roukos, Ward, & Zhu, 2002), 
since BLEU has become a well-known and ade-
quate evaluation metric in normalization studies 
(Contractor, Faruquie, & Subramaniam, 2010; 
Schlippe, Zhu, Gebhardt, & Schultz, 2010). The 
achieved baseline for the testing dataset is 42.01 
BLEU score, that is, the volume of similarity 
between the testing text and the reference text 
(manually normalized text) in term of BLEU 
score. 

In the training phase, we performed maximum 
likelihood training (Papineni, Roukos, & Ward, 
1998; Streit & Luginbuhl, 1994) for λ1, λ2 and λ3 
between 0.0 and 1.0. Figure 1 shows the toler-
ance of the performance while transition of λ1 
and λ2 (when λ3 is fixed to 1.0). Figure 1 depicts 
that the value of performance achieves the high-
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est when the λ1 and λ2 are close to 0.63 and 0.9, 
respectively. It is found that the best performance 
is achieved by 0.6, 0.9, and 1.0 values for λ1, λ2, 
and λ3, respectively. This means that LM has the 

highest impact on the candidate selection, and 
that dependency-based frequency has a higher 
impact on candidate selection than positional. 

 

 
Figure 1: The training of Maxent for lambda settings. 

 
We divided our dataset into six equal sets in or-
der to perform 6-fold cross validation. As shown 
in Table 3, the average of the obtained BLEU 
scores in six evaluation rounds was 83.12. The 
evaluation proves that our approach boosts the 
BLEU score by 41.11 (i.e. from 42.01 to 83.12). 
Since previous normalization studies used differ-
ent data sources in their experiments, a direct 
comparison between our accuracy values is not 
meaningful. Therefore, we re-examined one of 
the state-of-the-art approaches using our dataset. 

 
6-fold cross validation BLEU score 
Round 1 80.99 
Round 2 81.57 
Round 3 84.82 
Round 4 83.91 
Round 5 83.90 
Round 6 83.55 
Average 83.12 
Table 3: Normalization results for 6-fold cross 
validation test. 

 
The statistical machine translation (SMT) is a 
cutting-edge approach that handles the normali-
zation problem as a statistical machine transla-
tion task; it was first introduced by Aw, Zhang, 
Xiao, and Su (2006). The SMT-like approach 
translates a source language (UGC) to a target 
language (standard language). The experiment 
was performed using Moses (Koehn et al., 2007) 
for statistical translation, Giza++ (Och & Ney, 
2003) for word alignment, and SRILM (Stolcke, 
2002) for LM compiling. The SMT system is 
trained using our Twitter aligned dataset. The 
optimum results were achieved using a trigram 
LM and Backoff smoothing (Jelinek, 1990): 
78.81 BLEU score. 

Table 4 indicates some statistics about our 
testing dataset. The OOV words are those detect-
ed by our OOV detection module. The BLEU 
score of raw text is an important measure to ana-
lyze the difficulty of the task. It is important to 
note that the dataset used in our experiment con-
tains an above average number of OOV words 
compared to the datasets in other related papers. 
The dataset used by Kobus et al. (2008) consists 
of 32% OOV words, which is slightly lower than 
34% of our dataset. In addition, Aw et al. (2006) 
used a dataset with a baseline BLEU score of 
57.84, which indicates that the raw text is much 
more similar to the manual translated text (refer-
ence text) than the ones used in our experiment. 

 
Avg. length of words (character) 5 
Avg. number of words 11 
Total No. of tokens 19,759 
OOV words 34.02% 
BLEU score of raw text 42.01 

Table 4: Statistics of testing dataset. 
 

As shown in Table 4, the average length of 
words is five characters, which makes the nor-
malization task more difficult. For example, the 
candidate set for the OOV word “yoor” contains 
59 words, as shown in Table 5. The large number 
of candidates causes difficulty for candidate se-
lection because more options lead to more possi-
bilities and more computational cost. Further-
more, the generated candidates are lexically, syn-
tactically, and semantically very akin to each 
other. For example, for the OOV word “yoor”, 
“our” might be mistakenly selected instead of 
“your”. There are a smaller number of potential 
candidates for lengthy OOV words. As shown in 
Table 5, the number of candidates for the OOV 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Lambda 2

Lambda 1

Performance
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word “acessibility” is only 14, which is less than 
average, thereby making candidate selection eas-
ier. Moreover, there is a distinct difference be-
tween the meanings of candidates, which is an 
easy situation for our context-based probability 
functions to select the correct one. Although our 
approach obtained promising results on this da-
taset, it works better on long words. 

 
OOV word  Candidate set No. of 

candidates 
acessibility accessibility, accessi-

bly, basicity, bicy-
clists, bicyclist, itali-
cizes, abilities, bicy-
clist, sibilates, stabi-
lize, silicates, celiba-
cy, bicycles, and bi-
cycle. 

14 

yoor your, you, door, our, 
or, yoga, yak, yuck, 
yule, moon, tour, 
poor, …  

59 

Table 5: Example of candidate sets for OOV 
words. 

 
Our approach and SMT-like system attained 
BLEU scores of 83.12 and 78.81, respectively. 
This result proves that if we integrate three prob-
ability scores via Maxent, promising normaliza-
tion accuracy can be obtained. This result con-
firms that a normalization system constructed 
based on the Maxent principle can surpass state-
of-the-art systems. However, several drawbacks 
of our method were disclosed by inspecting the 
output of the system. The most noticeable one is 
that the approach fails when tackling very noisy 
text, that is, ample usage of OOV words in a text. 
We altered our dataset to have higher levels of 
noise using an approach introduced by Gadde, 
Goutam, Shah, Bayyarapu, and Subramaniam 
(2011), which artificially generates OOV words. 
If the percentage of OOV words crosses 45%, 
the accuracy of the method drastically drops to a 
BLEU score of less than 65. Another shortcom-
ing of our approach is that it is not able to ad-
dress combined words and abbreviations (e.g. 
alot → a lot, btw → by the way) because candi-
date generation module forms only single words 
for each OOV. 

7 Conclusion 

In this paper, we have presented a normalization 
approach based on the maximum entropy model. 

This approach provides a unified layout for in-
corporating different sources of features to nor-
malize Twitter messages. Our proposed approach 
consists of three stages: preprocessing, candidate 
generation, and candidate selection. The ap-
proach is robust to normalize unseen words since 
its candidate generation stage does not practice 
machine-learning methods. In the preprocessing 
stage, after trimming erroneous whitespaces and 
tokenization, OOV words are detected via the 
GNU Aspell dictionary. Normalized candidates 
are generated for each OOV word in the second 
stage regarding to lexical, phonemic, and mor-
phophonemic similarities. Since code-switching 
between Malay and English is very common in 
our dataset, the potential English translation of 
OOV words is also added to the candidate set. 

In the third stage, three conditional probability 
scores are assigned to each candidate: 1) posi-
tional indexing considers the probability of posi-
tional locations of term occurrences inside doc-
uments, 2) dependency-based frequency 
measures the probability of prevalence of the 
dependency relation of words to each other, and 
3) the language model indicates the probability 
of distribution of the sequence of words. Finally, 
the best candidate is selected. Maximum entropy 
integrates the obtained probability scores to es-
timate the ultimate probability of each candidate. 

The approach is examined using 7,000 parallel 
Twitter messages, which is split into 5,000 mes-
sages for training and 2,000 for testing. The re-
sult is promising whereby we achieve a BLEU 
score of 83.12 against the baseline BLEU, which 
scores 42.01. We have compared our approach 
with a SMT-like approach using the same da-
taset. The accuracy of the SMT-like was lower 
than our approach (i.e. 78.81 BLEU score for the 
SMT-like). For future work, we will examine the 
Maxent normalization approach with more prob-
ability functions, such as distributional clustering 
and semantic features. 
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