Incremental Adaptation Strategies
for Neural Network Language Models

Aram Ter-Sarkisov, Holger Schwenk, Loic Barrault and Fethi Bougares
School of Computer Science, University of Maine,
Le Mans, France
tersarkisovl@lium.univ-lemans.fr

Abstract

It is today acknowledged that neural net-
work language models outperform back-
off language models in applications like
speech recognition or statistical machine
translation. However, training these mod-
els on large amounts of data can take sev-
eral days. We present efficient techniques
to adapt a neural network language model
to new data. Instead of training a com-
pletely new model or relying on mixture
approaches, we propose two new methods:
continued training on resampled data or
insertion of adaptation layers. We present
experimental results in an CAT environ-
ment where the post-edits of professional
translators are used to improve an SMT
system. Both methods are very fast and
achieve significant improvements without
over-fitting the small adaptation data.

1 Introduction

A language model (LM) plays an important role
in many natural language processing applications,
namely speech recognition and statistical machine
translation (SMT). For a very long time, back-off
n-gram models were considered to be the state-of-
the-art, in particular when large amounts of train-
ing data are available.

An alternative approach is based on the use of
high-dimensional embeddings of the words and
the idea to perform the probability estimation in
this space. By these means, meaningful interpola-
tions can be expected. The projection and proba-
bility estimation can be jointly learned by a neu-
ral network (Bengio et al., 2003). These mod-
els, also called continuous space language models
(CSLM), have seen a surge in popularity, and it
was confirmed in many studies that they system-
atically outperform back-off n-gram models by a

48

significant margin in SMT and speech recogni-
tion. Many variants of the basic approach were
proposed during the last years, e.g. the use of
recurrent architectures (Mikolov et al., 2010) or
LSTM (Sundermeyer et al., 2012). More recently,
neural networks were also used for the transla-
tion model in an SMT system (Le et al., 2012;
Schwenk, 2012; Cho et al., 2014), and first trans-
lations systems entirely based on neural networks
were proposed (Sutskever et al., 2014; Bahdanau
etal., 2014).

However, to the best of our knowledge, all these
systems are static, i.e. they are trained once on a
large representative corpus and are not changed or
adapted to new data or conditions. The ability to
adapt to changing conditions is a very important
property of an operational SMT system. The need
for adaptation occurs for instance in a system to
translate daily news articles in order to account for
the changing environment. Another typical appli-
cation is the integration of an SMT system in an
CAT! tool: we want to improve the SMT systems
with help of user corrections. Finally, one may
also want to adapt a generic SMT to a particular
genre or topic for which we lack large amounts
of specific data. Various adaptation schemes were
proposed for classical SMT systems, but to the best
of our knowledge, there is only very limited works
involving neural network models.

We are interested in a setting where an LM
needs to be adapted to a small amount of data
which is representative of a domain change, so that
the overall system will perform better on this do-
main in the future. Our task, which corresponds
to concrete needs in real-world applications, is the
translation of a document by an human over sev-
eral days. The human translator is assisted by an
SMT system which proposes translation hypothe-
sis to speed up his work (post editing). After one
day of work, we adapt the CSLM to the transla-

!Computer Assisted Translation

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 48-56,
Beijing, China, July 26-31, 2015. ©2015 Association for Computational Linguistics

tions already performed by the human translator,
and show that the SMT system performs better on
the remaining part of the document.

In this paper, we use the open-source MateCat
tool? and a closely integrated SMT system?® which
is already adapted to the task (translation of le-
gal documents). For each source sentence, the
system proposes an eventual match in the transla-
tion memory and a translation by the SMT system.
The human translator can decide to either post-edit
them, or to perform a new translation from scratch.
After one day of work, we want to use all the post-
edited sentences to adapt the SMT systems, so that
the translation quality is improved for the next day.
This means that the SMT system will be adapted to
the specific translation project. One important par-
ticularity of the task is that we have a very small
amount of adaptation data, usually around three
thousand words per day.

This paper is organized as follows. In the next
two sections, we summarize basic notions of sta-
tistical machine translation and continuous space
language models. We then present our tasks and
results. The paper concludes with a discussion and
directions of future research.

2 Related work

Popular approaches to adapt the LM in an SMT
system are mixture models, e.g. (Foster and Kuhn,
2007; Koehn and Schroeder, 2007) and data selec-
tion. In the former case, separate LMs are trained
on the available corpora and are then merged into
one, the interpolation coefficients being estimated
to minimize perplexity on an in-domain develop-
ment corpus. This is known as linear mixture
models. We can also integrate the various corpus-
specific LMs as separate feature functions in the
usual log-linear model of an SMT system.

Data selection aims at extracting the most rele-
vant subset of all the available LM training data.
The approach proposed in (Moore and Lewis,
2010) has turned out to be the most effective one in
many settings. Adaptation of the LM of an SMT
models in an CAT environment was also investi-
gated in several studies, e.g. (Bach et al., 2009;
Bertoldi et al., 2012; Cettolo et al., 2014).

Adaptation to new data was also investigated in
the neural network community, usually by some
type of incremental training on a (subset) of the

Zhttps://www.matecat.com/
3http://www.statmt.org/moses/

49

data. Curriculum learning (Bengio et al., 2009),
which aims in presenting the training data in a
particular order to improve generalization, could
be also used to perform adaptation on some new
data. There are a couple of papers which investi-
gate adaptation in the context of a particular ap-
plication, namely image processing and speech
recognition. One could for instance mention a re-
cent work which investigated how to transfer fea-
tures in convolutional networks (Yosinski et al.,
2014), or research to perform speaker adaptation
of a phoneme classifier based on TRAPS (Trmal
et al., 2010).

There are also a few publications which investi-
gate adaptation of neural network language mod-
els, most of them very recent. The insertion of an
additional adaption layer to perform speaker adap-
tation was proposed by Park et al. (Park et al.,
2010). Earlier this idea was explored in (Yao et
al., 2012) for speech recognition through an affine
transform of the output layer. Adaptation through
data selection was studied in (Jalalvand, 2013)
(selection of sentences in out-of-domain corpora
based on similarity between sentences) and (Duh
et al., 2013) (training of three models: n-gram,
RNN and interpolated LM on two SMT systems:
in-domain data only and all-domain). Several vari-
ants of curriculum learning are explored by Shi
et al. to adapt a recurrent LM to a sub-domain,
again in the area of speech recognition (Shia et
al., 2014). Finally, one of the early applications of
RNN was in (Kombrink et al., 2011): it was used
to rescore the n-best list, speed-up the rescoring
process, adapt an LM and estimate the influence
of history.

3 Statistical Machine Translation

In the statistical approach to machine translation,
all models are automatically estimated from exam-
ples. Let us assume that we want to translate a sen-
tence in the source language s to a sentence in the
target language t. Then, the fundamental equation
of SMT is, applying Bayes rule:
t* = arg max P(t|s) = arg max P(s|t)P(t)
(1
The translation model P(s|t) is estimated from bi-
texts, bilingual sentence aligned data, and the lan-
guage model P(t) from monolingual data in the
target language. A popular approach are phrase-

based models which translate short sequences of
words together (Koehn et al., 2003; Och and

Neural Network

—em T T T T s s s hY
: ability estimati inserted output
I Input probability estimation adaptation layer layer I
I _ |
| projection \ I
- layer ol
| : \ |
1
‘\
I L
: 1Y I
| N 1) \‘ |
| —H 1" \‘ |
@| shared i/ !
I projections’ |
| d I
| tanh tanh tanh |
o
| hidden layers |
4

— e e e e e e e e — — — — — — — — —

Figure 1: Basic architecture of an CSLM and in-
sertion of an adaptation layer (dashed red).

Ney, 2003). The translation probabilities of these
phrase pairs are usually estimated by simple rel-
ative frequency. The LM is normally a 4-gram
back-off model. The log-linear approach is com-
monly used to consider more models (Och, 2003),
instead of just a translation and language model:

M
*
tr = arg max Z Amhm (s, t),

m=1

2)

where h,,(s,t) are so-called feature functions.
The weights \,, are optimized during the tuning
stage. In the Moses system, fourteen feature func-
tions are usually used.

Automatic evaluation of an SMT system re-
mains an open question and many metrics have
been proposed. In this study we use the BLEU
score which measures the n-gram precision be-
tween the translation and a human reference trans-
lation (Papineni et al., 2002). Higher values mean
better translation quality.

4 Continuous Space Language Model

The basic architecture of an CSLM is shown in
Figure 1. The words are first projected onto a con-
tinuous representation, the remaining part of the
network estimates the probabilities. Usually one
tanh hidden and a softmax output layer are used,
but recent studies have shown that deeper archi-
tecture perform better (Schwenk et al., 2014). We
will use three tanh hidden and a softmax output
layer as depicted in Figure 1. This type of architec-
ture is now well known and the reader is referred
to the literature for further details, e.g. (Schwenk,
2007).

50

All our experiments were performed with the
open-source CSLM toolkit* (Schwenk, 2013),
which was extended for our purposes. A major
challenge for neural network LMs is how to handle
the words at the output layer since a the softmax
normalization would be very costly for large vo-
cabularies. Various solutions have been proposed:
short-lists (Schwenk, 2007), a class decomposi-
tion (Mikolov et al., 2011) or an hierarchical de-
composition (Le et al., 2011). In this work, we
use short-lists, but our adaptation scheme could be
equally applied to the other solutions.

4.1 Adaptation schemes

As mentioned above, the most popular and most
successful adaptation schemes for standard back-
off LMs are data selection and mixture models.
Both could be also applied to CSLMs. In practice,
this would mean that we train a completely new
CSLM on data selected by the adaptation process,
or that we train several CSLMs, e.g. a generic
and task-specific one, and combine them in lin-
ear or log-linear way. However, full training of an
CSLM usually takes a substantial amount of time,
often several hours or even days in function of the
size of the available training data. Building several
CSLMs and combining them would also increase
the translation time.

Therefore, we propose and compare CSLM
adaptation schemes which are very efficient: they
can be performed in a couple of minutes. The un-
derlying idea of both techniques is not to train new
models, but to slightly change the existing CSLM
in order to account for the new training data. In
the first method, we perform continued training
of the CSLM with a mixture of the new adapta-
tion data and the original training data. In the
second method, adaptation layers are inserted
in the neural network as outlined in red in Fig-
ure 1. This additional layer is initialized with the
identity matrix and only the weights of this layer
are updated. This idea was previously proposed in
framework of a speech recognition system (Park
et al., 2010). We build on this work and explore
different variants of this technique. An interest-
ing alternative is to keep the original architecture
of the NN and to only modify one layer, e.g. the
weights between two tanh layers in Figure 1. This
variant will be explored in future work.

“The CSLM toolkit is available at http://www-lium.univ-
lemans.fr/"cslm/

Corpus En/German | En/French
All data:

Bitexts 129M 512M
Monolingual 643M 1300M
After data selection:

Bitexts 49M 26M
Monolingual 44M 178M

Table 1: Statistics of the available resources (num-
ber of tokenized words)

5 Task and baselines

Our task is to improve an SMT system which is
closely integrated into an open-source CAT tool
with the post-edits provided by professional hu-
man translators. This tool and algorithms to up-
date standard phrase-based SMT systems, includ-
ing back-off language models, were developed in
the framework of the European project MateCat
(Cettolo et al., 2014). We consider the transla-
tion of legal texts from English into German and
French. The available resources for each language
pair are summarized in Table 1.

Each SMT system is based on the Moses toolkit
(Koehn et al., 2007) and built according to the fol-
lowing procedure: first we perform data selection
on the parallel and monolingual corpora in order
to extract the data which is the most representative
to our development set. In our case, we are inter-
ested in the translation of legal documents. Data
selection is now a well established method in the
SMT community. It is performed for the language
and translation model using the methods described
in (Moore and Lewis, 2010) and (Axelrod et al.,
2011) respectively.

We train a 4-gram back-off LM and a phrase-
based system using the standard Moses parame-
ters. The coefficients of the 14 feature functions
are optimized by MERT to maximize the BLEU
score on the development data. This system is
then used to create up to 1000 distinct hypotheses
for each source sentence. We then add a 15th fea-
ture function corresponding to the log probability
generated by CSLM for each hypothesis and the
coefficients are again optimized. This is usually
referred to as n-best list rescoring. We call this fi-
nal system domain-adapted since it is optimized
to translate legal documents. This system is then
used to assist human translators to translate a large
document in the legal domain.

51

Typically, we will process day by day: after
one day of work, all the human translations (cre-
ated from scratch or by post-editing the hypothe-
ses from the SMT system) are injected into the
system and we hope that SMT will perform better
on the rest of the document to be translated, e.g.
on the second day of work. This procedure can be
repeated over several days when the document is
rather large (see section 5.2). Usually humans are
able to translate approximately 3 000 words per
day. We call this procedure project-adaptation.

5.1 Results for the English/German system

The 4-gram back-off LM built on the selected data
has a perplexity of 151.1 on the domain-specific
development data. Given the fact that an CSLM
can be very efficiently trained on long context win-
dows, we used a 28-gram in all experiments. By
these means we hope to capture the long range de-
pendencies of German. The projection layer of the
CSLM was of dimension 320, followed by three
tanh hidden layers of size 1024 and a softmax out-
put layer of 32k neurons (short-list). This short-
list accounts for around 92 % of the tokens used
in the corpus. The initial learning rate was set
to 0.06 and exponentially decreased over the it-
erations. The network converged after 7 epochs
with a perplexity of 96.6, i.e. a 36% relative re-
duction. The total training time is less than 7 hours
on a Nvidia K20x GPU. Table 2 (upper part) gives
the BLEU score of these baseline domain-adapted
systems.

To analyze our project adaptation techniques we
have split another legal document into two part,
“Day 1” and “Day 2”. The first part, “Day 1”7,
containing around 3.2K words, is used to adapt
the SMT system and the CSLM, aiming to im-
prove the translation performance on the second
part, named “Day 2”. Note that the performance
on “Day 1”7 itself, after adaptation, is of limited
interest since we could quite easily overtrain the
model on this data. On the other hand, it is infor-
mative to monitor the performance on the domain-
generic development set. Ideally, we will improve
the performance on “Day 2”, i.e. future text of the
same project than the adaptation data, with only a
slightly loss on the generic development data.

Various adaptation schemes are compared in Ta-
ble 4. The network is adapted on the data from
Day I and we want to improve performance on
Day 2. At the same time, we do not want to

LM BLEU score

Approach Adaptation Dev | Day1l | Day2
Domain adapted:

Back-off n/a 26.18 | 27.53 | 19.31

CSLM n/a 26.89 | 27.14 | 20.28
Project adapted;

Back-off data selection 25.76 | (28.45) | 20.14

none 26.45 | (28.65) | 20.57

CSLM | continued training | 26.27 | (33.10) | 21.12

additional layers | 26.39 | (31.94) | 21.26

Table 2: Comparative BLEU scores for the English/German systems. Italic values in parenthesis are for
information only. They are biased since the reference translations are used in training.

Percentage of Generic data Day 1 data | # examples | training time
adaptation data (44M words) (3.2k words) | per epoch per epoch
Domain-adapted CSLM:

none | 193M#2%) | na | 193M 3250 sec
Project-adapted CSLM:

14% 19 356 (0.042%) 3220 22 576 3.5 sec

25% 9 696 (0.021%) 3220 12916 2.0 sec

45% 3899 (0.008%) 3220 7119 1.1 sec

62% 1967 (0.004%) 3220 5187 0.6 sec

T7% 1 003 (0.002%) 3220 4223 0.5 sec

Table 3: English/German system: number of examples (28-grams) seen by the CSLM at each epoch.
For the domain adapted system, we randomly resample about 42% of the examples at each epoch. For
the project-adapted system, we experimented with various mixtures between generic and project specific
data (Day 1). We don’t want to train on Day 1 data only since this would result in strong over-fitting.

overfit the data and keep good performance on
the domain-specific Dev set. To achieve this, we
continued training of the networks with a mix-
ture of old and new data. All the adaptation data
was always used (Day I, 3.2k words) and small
fractions of the domain-selected data were ran-
domly sampled at each epoch, so that the adapta-
tion data accounts for 14, 25, 45, 62 and 77 % re-
spectively. Since the networks are trained on very
small amounts of data (4 - 23k words), the overall
adaptation process takes only a few minutes. The
statistics of the data used at each epoch is detailed
in Table 3. We will show below that it is impor-
tant to perform the adaptation of the CSLM with a
mixture of generic and adaptation data to prevent
overfitting.

We experiment along the following lines:

1. different resampling coefficients of adapta-
tion and generic data according to Table 3.

2. network topologies:

a) continue training of the original network
updating all the weights.

b) insert one or two hidden layers with
1024 neurons using linear or hyper-
bolic tangent activation functions re-
spectively. These additional layers are
initialized with the identity matrix and
only these layers are updated using
backpropagation function.

We record the perplexity of the adapted CSLM
on Day 2 (~ 11K words), which is then used as
a guideline for selecting the best networks to inte-
grate into an SMT system (marked with an asterisk
in the Table 4). Lowest perplexity was obtained by
keeping the baseline network topology (upper part
of Table 4) when Day I data constituted 14 % of
the incremental training data set: the perplexity on
Day 2 decreases from 126.1 to 94.6, with a minor
increase on the Dev set (96.6—98.7). Using larger

52

Network Updated | Activation | Addtl. | Percentage of Perplexity

architecture layers function | params | adapt. data | Day 2 | Dev

Original network architecture: '
1024-1024-1024 - Tanh - - 126.1 | 96.6

without adaptation
14% 94.6" | 98.7
1024-1024-1024 25% 103.7 | 97.3
with incremental training All Tanh - 45% 1029 | 989
62% 102.7 | 100.2
Insertion of an adaptation layer:

inserted . 14% 106.0 | 974
1024-1024-1024-1024 one only Linear IM 5% 1049 | 995
inserted . 14% 103.8 | 98.8
1024-1024-1024-1024 one only Linear IM 5% 979 | 102.5
inserted : 14% 101.2 | 100.8
1024-1024-1024-1024 one only Linear IM 5% 1002 | 104.1
inserted 14% 105.7 | 96.8
1024-1024-1024-1024 one only Tanh IM 5% 1046 | 989
inserted 14% 103.5 | 964
1024-1024-1024-1024 one only Tanh IM 5% 1006 | 934
inserted 14% 101.5 | 95.1*
1024-1024-1024-1024 one only Tanh IM 5% 1013 | 974

Table 4: Perplexities of CSLMs with one new hidden layer adapted to Day . Bold values in the architec-
ture column are the new hidden layers. Bold values in the last two columns are the best perplexities for
the respective test corpora. Tanh is a shorthand notation for the hyperbolic tangent activation function.
Percentage is the proportion of Day I data in the total corpora (see Table 3). All networks have been

trained for 50 iterations.

fractions of Day I leads to over-fitting of the net-
work: the perplexity on Day 2 and the generic Dev
set increases.

The lower part of Table 4 summarizes the re-
sults when inserting one adaptation layer, with a
linear or tanh activation function, at three differ-
ent slots respectively. For each configuration, we
explored five different proportions of the baseline
corpora and Day I (cf. Table 3), but for clarity,
we only report the most interesting results. The
overall tendency was that using more than 25%
of Day I systematically leads to over-fitting of
the network. Several conclusions can be made:
a) an tanh adaptation layer outperforms a linear
one; b) it is better to insert the adaptation layer at
the end of the network; c) updating the weights
of the inserted layer only overfits less than in-
cremental training the whole network (comparing
the last block in Table 4 with the second block):
the perplexity on Day [decreases substantially
(126.1—101.5) and we observe a slight improve-

53

ment on the Dev set (96.6—95.1).

Finally, Table 2 lower part gives the BLEU
scores of the project-adapted systems. When no
CSLM is used, the BLEU score on Day 2 increases
from 19.31 to 20.14 (+0.83). This is achieved
by adapting the translation and back-off LM (de-
tails of the algorithms can be found in (Cettolo
et al., 2014)). Both CSLM adaptation schemes
obtained quite similar BLEU scores: 21.12 and
21.26 respectively, the insertion of one additional
tanh layer having a slight advantage. Overall,
the adapted CSLM yields an improvement of 1.12
BLEU (20.14 to 21.26) while it was about 1 point
BLEU for the domain-adapted system (19.31 to
20.28). This nicely shows the effectiveness of our
adaptation scheme, which can be applied in a cou-
ple of minutes.

5.2 Results for the English/French system

A second set of experiments was performed to
confirm the effectiveness of our adaptation proce-

dure on a different language pair: English/French.
In the MT community it is well known that the
translation into German is a very hard task which
is reflected in the low BLEU scores around 20 (see
Table 2). On the other hand, our baseline SMT
system for the English/French language pair has a
BLEU score well above 40. One may argue that
it is more complicated to further improve such a
system.

In addition, we investigate adaptation of the
SMT system and the CSLM over five consecutive
days: the human translator works for one day and
corrects the SMT hypothesis, these corrections are
used to adapt the system for the second day. Hu-
man corrections are again inserted into the system
and a new system for the third day is built, and
so on. With this adaptation scheme we want to
verify whether our methods are robust or quickly
overfit the adaptation data. The number of words
for each day are about three thousand. A 16-gram
CSLM for the French target language with a short-
list of 12k was used. Training was performed for
15 epochs.

Day || Day 1 | Days 1-2 | Days 1-3 | Days 1-4
1 39% | 279 % 21.6 % 17.7 %
2 - 29.6 % 22.9 % 18.8 %
3 - - 223 % 18.1 %
4 - - - 17.4 %

Table 6: English/French task: proportion of each
day in the adaptation data set, e.g. at the end of
Day 2, we create an adaptation corpus which con-
sists of 27.9% and 29.6% of data from Day 1 and
Day 2 respectively, the remaining portions are ran-
domly resampled in the training data.

For this task, we only used the incremental
learning method (see Table 4) as it yielded the low-
est perplexity in the English/German experiment.
The data from the five consecutive days is com-
ing from one large document which is assumed
to be from one domain only. Therefore, we de-
cided to always use all the available data from the
preceding days to adapt our models. For instance,
after the third day, the data from Day 1, 2 and 3
is used to build a new system for the fourth day.
The proportions of each day in the corpus used to
continue the training of the CSLM are given in Ta-
ble 6 (note that every day’s proportion decreases,
but their combined share increases from 39% to
68%). The perplexities of the various CSLMs are

54

given in Table 7.
Data || CSLM baseline | CSLM adapted
Day 1 2339 -
Day 2 175.6 130.3
Day 3 153.0 130.2
Day 4 189.4 169.4
Day 5 189.2 167.7

Table 7: English/French task: perplexities of base-
line and adapted CSLM (on all preceding days),
e.g. the CSLM tested on Day 4 is the baseline
CSLM that had been adapted with Days 1-3.

One first observation is the rather high perplex-
ity of the models on each day. This shows the im-
portance of project adaptation even when domain
related data is available. Adaptation allows to de-
crease the perplexity by more than 10% relative
for each day. While the perplexities vary between
the project days, they are reduced in every case,
which demonstrates the effectiveness of the adap-
tation method.

In order to evaluate the impact of the CSLM
adaptation on the SMT system, we performed var-
ious translation experiments. The results are pro-
vided in Table 5. The BLEU scores of the var-
ious systems using the baseline and the adapted
CSLMs are presented. We run tests with three
different human translators - for the sake of clar-
ity, we provide detailed results for one translator
only. The observed tendencies are similar for the
two other translators. First of all, one can see
that the CSLM improves the BLEU score of the
baseline systems between 2.3 to 3.4 BLEU points,
e.g. for Day 2 from 44.07 to 46.61. Adapting the
whole SMT system to the new data improves sig-
nificantly the translation quality, e.g. from 46.61
to 52.01 for Day 2, without changing the CSLM.
The proposed adaptation scheme of the CSLM
achieves additional important improvements, in
average 2.6 BLEU points. This gain is relatively
constant for all days.

For comparison, we also give the BLEU scores
when using four reference translations: the one of
the three human translators and one independent
translation which was provided by the European
Commission.

We still observe some small gains although
three out of four translations were not used in the
adaptation process. This shows that our adaptation
scheme not only learns the particular style of one

Approach Day 1 Day 2 Day 3 Day 4 Day 5
Baseline SMT system:

back-off LM 48.84/63.69 | 44.07/62.13 | 46.88/67.14 | 43.22/64.74 | 47.77/67.07
CSLM 52.25/67.04 | 46.61/65.64 | 49.73/70.70 | 45.68/68.61 | 50.06/69.70
Adapted SMT system:

baseline CSLM 52.01/66.68 | 57.35/75.31 | 54.99/71.88 | 59.11/74.49
adapied CSLM wa | SHOU6TIT | 60.23/75.90 | 571917205 | 6183521 |
Improvement obtained

by adapted CSLM 2.60/1.29 2.88/0.56 2.20/0.17 2.72/0.72

Table 5: BLEU scores obtained by a baseline SMT (without and with an CSLM) and a project-adapted
SMT with baseline (unadapted) CSLM and adapted CSLM. The first value in every cell is the BLEU
score obtained with respect to the reference translation of the human translator; the second one is cal-

culated with respect to all the 3 references created by the professional translators (i.e.

post-edition) and an independent reference.

translator, but also achieves more generic im-
provements. This also shows that the adaptation
process is beneficial for improving state-of-the-art
systems which already perform very well on cer-
tain tasks.

6 Conclusions

In this paper, we presented a thorough study of
different techniques to adapt a continuous space
language model to small amounts of new data. In
our case, we want to integrate user corrections so
that a statistical machine translation system per-
forms better on similar texts. Our task, which cor-
responds to concrete needs in real-world applica-
tions, is the translation of a document by an human
over several days. The human translator is assisted
by an SMT system which proposes translation hy-
pothesis to speed up his work (post editing). After
one day of work, we adapt the CSLM to the trans-
lations already performed by the human translator,
and show that the SMT system performs better on
the remaining part of the document.

We explored two adaptation strategies: contin-
ued training of an existing neural network LM, and
insertion of an adaptation layer with the weight
updates being limited to that layer only. In both
cases, the network is trained on a combination
of adaptation data (3—15k words) and a portion
of similar size, randomly sampled in the original
training data. By these means, we avoid over-
fitting of the neural network to the adaptation data.
Overall, the adaptation data is very small — less
than 50k words — which leads to very fast training
of the neural network language model: a couple of
minutes on a standard GPU.

55

obtained by

We provided experimental evidence of the ef-
fectiveness of our approach on two large SMT
tasks: the translation of legal documents from En-
glish into German and French respectively. In both
cases, significantly improvement of the translation
quality was observed.

References

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain adaptation via pseudo in-domain data
selection. In EMNLP, pages 355-362.

Nguyen Bach, Roger Hsiao, Matthias Eck, Paisarn
Charoenpornsawat, Stephan Vogel, Tanja Schultz,
Ian Lane, Alex Waibel, and Alan W. Black. 2009.
Incremental Adaptation of Speech-to-Speech Trans-
lation. In NAACL, pages 149—-152, Boulder, US-
CO.

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural
machine translation by jointly learning to align and
translate. In NIPS workshop on Modern Machine
Learning and Natural Language Processing.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. JMLR, 3(2):1137-1155.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Nicola Bertoldi, Mauro Cettolo, Marcello Federico,
and Christian Buck. 2012. Evaluating the Learn-
ing Curve of Domain Adaptive Statistical Machine-
Translation Systems. In Workshop on SMT, pages
433-441, Montréal, Canada.

Mauro Cettolo, Nicola Bertoldi, Marcello Federico,
Holger Schwenk, Loic Barrault, and Christophe Ser-
van. 2014. Translation project adaptation for MT-

enhanced computer assisted translation. Machine

Translation, 28(2):127-150.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In EMNLP, pages
1724-1734.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Ha-
jime Tsukada. 2013. Adaptation data selection us-
ing neural language models: Experiments in ma-
chine translation. In ACL (2), pages 678—683.

George Foster and Roland Kuhn. 2007. Mixture-
model adaptation for SMT. In EMNLP, pages 128—
135.

Shahab Jalalvand. 2013. Improving language model
adaptation using automatic data selection and neural
network. In RANLP, pages 86-92.

Philipp Koehn and Josh Schroeder. 2007. Experiments
in domain adaptation for statistical machine transla-
tion. In Second Workshop on SMT, pages 224-227,
June.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based machine translation.
In HLT/NACL, pages 127-133.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL, demonstration session.

Stefan Kombrink, Tomas Mikolov, Martin Karafiat,
and Lukds Burget. 2011. Recurrent neural network

based language modeling in meeting recognition. In
INTERSPEECH, pages 2877-2880.

Hai-Son Le, I. Oparin, A. Allauzen, J-L. Gauvain, and
F. Yvon. 2011. Structured output layer neural net-
work language model. In ICASSP, pages 5524—
5527.

Hai-Son Le, Alexandre Allauzen, and Francois Yvon.
2012. Continuous space translation models with
neural networks. In NAACL.

Tomas§ Mikolov, Martin Karafiat, Luka$ Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech, pages 1045-1048.

Tomas Mikolov, A. Deoras, D. Povey, L. Burget, and
J. Cernocky. 2011. Strategies for training large
scale neural network language models. In ASRU,
pages 196-201.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In ACL,
pages 220-224.

56

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignement
models. Computational Linguistics, 29(1):19-51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In ACL, pages 160—
167.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. In ACL, pages 311-318.

Junho Park, Xunying Liu, Mark J. F. Gales, and Phil C.
Woodland. 2010. Improved neural network based

language modelling and adaptation. In Interspeech,
pages 1041-1044.

Holger Schwenk, Fethi Bougares, and Loic Barrault.
2014. Efficient training strategies for deep neural
network language models. In NIPS workshop on
Deep Learning and Representation Learning.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech and Language, 21:492—
518.

Holger Schwenk. 2012. Continuous space translation
models for phrase-based statistical machine transla-
tion. In Coling, pages 1071-1080.

Holger Schwenk. 2013. CSLM - a modular open-
source continuous space language modeling toolkit.
In Interspeech, pages 1198-1202.

Yangyang Shia, Martha Larsona, and Catholijn M.
Jonkera. 2014. Recurrent neural network language
model adaptation with curriculum learning. Com-
puter Speech & Language, 33(1):136—154.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Interspeech.

I. Sutskever, O. Vinyals, and Q. Le. 2014. Sequence
to sequence learning with neural networks. In NIPS,
pages 3104-3112.

Jan Trmal, Jan Zelinka, and Ludek Miiller. 2010.
Adaptation of a feedforward articifical neural net-
work using a linear transform. In Text, Speech and
Dialogue, pages 423-430.

Kaisheng Yao, Dong Yu, Frank Seide, Hang Su,
Li Deng, and Yifan Gong. 2012. Adaptation
of context-dependent deep neural networks for au-
tomatic speech recognition. In Spoken Language
Technology Workshop (SLT), 2012 IEEE, pages
366-369. IEEE.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In NIPS, pages 3320-3328.

