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Abstract

Inferring semantic relevance among enti-
ties (e.g., entries of Wikipedia) is impor-
tant and challenging. According to the in-
formation resources, the inference can be
categorized into learning with either raw
text data, or labeled text data (e.g., wik-
i page), or graph knowledge (e.g, Word-
Net). Although graph knowledge tends to
be more reliable, text data is much less
costly and offers a better coverage.

We show in this paper that different re-
sources are complementary and can be
combined to improve semantic learning.
Particularly, we present a joint learning ap-
proach that learns vectors of entities by
leveraging resources of both text data and
graph knowledge. The experiments con-
ducted on the semantic relatedness task
show that text-based learning works well
on general domain tasks, however for tasks
in specific domains, joint learning that in-
volves both text data and graph knowledge
offers significant improvement.

1 Introduction

With the development of deep learning and the
establishment of large knowledge bases, knowl-
edge embedding has gained much interest in nat-
ural language processing. In general, knowledge
can be represented by some entities that represent
semantic concepts, plus the relations among them.
Knowledge embedding involves representing enti-
ties of knowledge bases in a low-dimensional con-
tinuous space so that the relations among them
can be well represented. The embedding can be
conducted with different objectives with different
tasks in concern. This paper focuses on the se-
mantic learning task which intends to optimize the
semantic relevance among entities by knowledge
embedding, e.g., inferring appropriate knowledge
(entity) vectors.

According to the information resource that is
used to learn with, knowledge embedding can be
classified into three categories: raw text learning,
labeled text learning and graph knowledge learn-
ing. In the raw text learning, the entities are treated
as words or phrases, and the local word contex-
t information in the raw text is used to drive the
embedding. Various approaches of word/phrase
embedding belong to this category (Huang et al.,
2012; Mikolov et al., 2013). In the labeled text
learning, the embedding is based on the descrip-
tion text associated to each entity. A simple ap-
proach belonging to this category derives the vec-
tor of an entity by averaging the word vectors of
the description associated to the entity. Essential-
ly, the knowledge used in this learning is the co-
occurrence statistics of the words in the descrip-
tions. Finally, in the graph knowledge learning,
the relations among entities labeled by people are
used to direct the embedding. Representative ap-
proaches of this category include TransE (Bordes
et al., 2013) and NTN (Socher et al., 2013).

Different information resources possess their
respective advantages and disadvantages. Raw
text is totally unstructured and unsupervised (no
data annotated). The training data is easy to be col-
lected and in most cases, it offers good entity cov-
erage. The shortcoming, however, is that the use-
ful information is often buried in noise and there-
fore it is not trivial to extract the desired informa-
tion. Finally, the learning purely relies on word
occurrence statistics, which often under-estimates
entities that are infrequent in the training data.

labeled text offers a text description for each en-
tity, so it is more supervised than raw text in the
sense that some human-specified annotations are
involved. However, the supervision is rather weak,
since the relations among entities are not explicit-
ly annotated but implicitly encoded within word
co-occurrences of entity descriptions. A particular
advantage of the labeled text learning is that the
entities that are difficult to learn with raw text be-
cause of their limited occurrences can be learned
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by referring to the words in the descriptions, for
instance by averaging the vectors of the words.

Finally, graph knowledge is the most structured
and supervised information resource. It is annotat-
ed by people and therefore is much more clean and
reliable, and the relations among entities can be far
beyond the ones that are represented by word local
contexts as in raw text. Additionally, the learning
does not rely on word statistics and so is most-
ly suitable for new and infrequent entities, for in-
stance those in a specific domain. An obvious dis-
advantage of graph knowledge is the high cost in
data annotation and the low coverage of the enti-
ties and relations. The emergence of large-scale
public knowledge bases such as Freebase and Ya-
go partly solved the problem, however for many
infrequent entities, the annotations are far from
satisfactory and most of the relations are missing.

Due to the respective advantages and disadvan-
tages of different information resources, it is nat-
ural to combine them to provide better knowl-
edge embedding. A number of researches have
been conducted in this direction. For example,
Yu and Dredze (2014) proposed a method to em-
ploy graph knowledge to improve word embed-
ding, and Weston et al. (2013) used text data to
assist new relation discovery for graph knowledge
bases. Nevertheless, there is not a satisfactory
framework to learn with multiple and heteroge-
neous information resources. Particularly, there is
limited investigation on to what extent heteroge-
neous information can be complementary and how
they contribute in different situations.

This paper presents a joint learning approach
that learns entity vectors by leveraging resources
of both raw and labeled text as well as graph
knowledge. We first present a joint text learn-
ing approach which learns word and entity vec-
tors together with both raw and labeled text. This
is similar to the paragraph vector (PV) model (Le
and Mikolov, 2014) though a different training ap-
proach is adopted in our study. This joint text
learning approach is then combined with the graph
knowledge learning to form a joint text and graph
learning, by integrating the cost functions of the
two learning methods.

The experiments are conducted with three in-
formation resources: Wikipedia as the raw and la-
beled text, WordNet and Yago as the graph knowl-
edge. The entity relatedness task is selected to e-
valuate the performance of the learning methods.
Two scenarios have been conducted, one is based
on WordNet and the other is based on Yago. The

test on WordNet is a general domain task while the
test on Yago is a specific domain task. The experi-
mental results show that the joint text learning of-
fers consistent improvement compared to learning
with raw text only. When involving graph knowl-
edge, the performance on the general domain task
does not show apparent improvement, however on
the specific domain task, a significant performance
improvement has been observed. These results
confirm the importance of learning with heteroge-
neous information resources.

The rest of the paper is organized as follows:
Section 2 briefly describes the related works, Sec-
tion 3 presents the joint learning approach. The
experiments are presented in Section 4, and some
discussions are in Section 5. Section 6 concludes
the paper.

2 Related work

Many researches have been conducted to learn se-
mantic relevance from raw text data, labeled text
data or graph knowledge bases. Most of the stud-
ies learn from single information resource.

For raw text learning, various unsupervised
learning algorithms have been proposed to learn
word representations from large-scale raw tex-
t (Huang et al., 2012; Mikolov et al., 2013; Pen-
nington et al., 2014). These methods hypothesize
that statistics of word co-occurrences in contexts
involve rich semantic and syntactic information
and can be utilized to embed words and/or phras-
es.

Some approaches have been presented to
learn with raw text and labeled text together.
Gabrilovich and Markovitch (2007) introduced the
explicit semantic analysis which represents a word
by its distribution over the labeled wikipedia pages
instead of the latent concepts as in LSA (Deer-
wester et al., 1990) and LDA (Blei et al., 2003). Its
great performance owes to learning from the com-
bination of raw text and labeled text (wiki pages
labeled by entries) resources. Recently, paragraph
vector (PV) was also applied to semantic relevance
tasks (Dai et al., 2014), which infers word vectors
and paragraph vectors together, as the joint text
learning presented in this study.

In the field of relevance learning with graph
knowledge, early studies focused on measuring
word similarity based on the graph theory, for in-
stance, (Rada et al., 1989; Wu and Palmer, 1994;
Resnik, 1995). Recent studies focus on vari-
ous distributed representation models which em-
bed entities and relations of large knowledge graph
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databases into a low-dimensional continuous s-
pace (Bordes et al., 2013; Socher et al., 2013; Fan
et al., 2015).

Various approaches have been proposed to uti-
lize heterogeneous resources. Recently, Riedel et
al. (2013) demonstrated that text data can help dis-
covering new relation in graph completing task.
Weston et al. (2013) used text data for the same
purpose while they used word vectors that may
leverage text resources more effectively.

Most recently, joint learning approaches have
been proposed to learn from heterogeneous re-
sources. Yu and Dredze (2014) learned word vec-
tors by considering not only the word context in
text data but also relations in knowledge bases.
Their training algorithm draws close the words
that are proximate in both text and the knowledge
graph. Xu et al. (2014) considered relation types
in the joint training process. Faruqui et al. (2014)
learned lexicon knowledge by forcing each word
in the lexicon to be close to the corresponding pre-
trained word vector. These studies demonstrat-
ed that learning word vectors with both text data
and graph knowledge is beneficial to semantic rel-
evance learning.

This study is an extension to the existing join-
t learning methods. Particularly, we also learn
knowledge embedding from descriptions(labeled
text). This is contrary to most of the existing
researches which learn the knowledge only from
context and knowledge graph. Additionally, a new
joint learning framework is presented in this work,
which integrates text and graph learning as a uni-
fied learning processing. Moreover, the contribu-
tions of different resources in different situations
will be investigated.

3 Method

This section first presents the joint text learning
approach which learns entity vectors based on the
descriptions that are extracted from Wikipedia.
Then the graph knowledge learning is described.
Finally the joint text and graph learning is pre-
sented which learns with both text data and graph
knowledge.

3.1 Joint text learning

Learning entity vectors with raw text can be sim-
ply implemented by treating entities as words (or
phrases) and learning them together with other
words. There are a number of approaches to learn-
ing word vectors (Huang et al., 2012; Mikolov
et al., 2013; Pennington et al., 2014). In this

study, the skip-gram model implemented in the
word2vec tool1 is adopted.

The simple approach to learning with labeled
text is to average the vectors of words involved
in the description of the current entity e. This is
formulated by:

ve =
1
|De|

∑
w∈De

vw

where ve denotes the vector of entity e, and vw

denotes the vector of word w. De represents set of
word tokens within the description of e, and |De|
represents the size of De.

A better approach is to learn word and entity
vectors simultaneously. The training is based on
negative sampling (Mikolov et al., 2013), with the
cost function defined as follows:

Ltxt =
∑
e∈E

K∑
i=1

max{0, γtxt − vT
e vwi + vT

e vw′
i
}

where E is the set of entities to learn, and γtxt is
the boundary margin which has been empirically
set to 0.5 in this study. (wi, w

′
i) is a pair of word-

s for which wi is sampled from the description of
entity e, and w′i is sampled from a proposal distri-
bution. wi is constrained to be different each time
of sampling for a particular entity. K is the num-
ber of samples for each entity. In our study, K is
set to 30 unless the description is shorter than 30
words. The proposal distribution for sampling w′i
is set to be the unigram distribution of all the word-
s involved in the descriptions of all the entities. We
call this model the joint text learning model. The
stochastic gradient descendent (SGD) algorithm is
employed to optimize Ltxt with respect to the en-
tity and word vectors.

Note that this model is similar to PV-DBOW,
a distributed bag-of-words model proposed by Le
and Mikolov (2014). In PV-DBOW, paragraphs
are represented by paragraph vectors (PV) and are
trained together with word vectors. The PVs cor-
respond to the entity vectors in our model. A main
difference between our model and the PV-DBOW
model is that the cost function of our model is
based on the hinge loss, while PV-DBOW uses the
softmax function. This new cost function provides
almost the same performance but offers a lower
computation complexity because we don’t need to
count the sum of distances of the whole dictionary
(which is what softmax does).

1http://code.google.com/p/word2vec
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In the experiments, word vectors that are pre-
trained with raw text are used to initialize the en-
tity vectors. This pre-training leads to a big im-
provement compared with random initialization,
as will be shown in Section 4.

3.2 Graph knowledge learning
As mentioned in Section 1, knowledge bases such
as WordNet and Yago contain plenty of entities
and their relations, leading to complex knowledge
graphs. Since these entities and relations are an-
notated by people, graph knowledge is highly reli-
able and can be used to embed entities. Note that
different knowledge bases contain different types
of relations. For WordNet, nearly half of the re-
lations are the hypernym-hyponym (is-a) relation,
and for Freebase, the relation types are much more
complicated. Although it is possible to learn d-
ifferent relations (Bordes et al., 2013), this study
does not consider it since our focus is semantic re-
latedness instead of relation prediction. More dis-
cussions about relation type learning will be given
in Section 5.

For this reason, only entity vectors are learned
(the global relation vector can be absorbed in-
to the entity vectors). This is similar to the un-
structured model in Bordes’s early work (Bordes
et al., 2013), except that distance between vectors
is measured by inner product in our model, while
Bordes’s work used Euclidean distance. We make
this choice for two reasons: firstly, to make the
graph knowledge learning consistent with the join-
t text learning so that their results are comparable,
and more importantly they can be combined into a
joint text and graph learning as will be presented
in the next section; secondly, word vectors trained
with raw text can be used to pre-train (initialize)
the entity vectors, which has been demonstrated to
be highly effective, as will be seen in Section 4.

Similar to the text learning, the negative sam-
pling approach is used to train the model. Denote
the related entity pairs defined by the knowledge
base by P = {Pi;Pi = (eli, e

r
i )}. For each pair

Pi, the negative sampling corrupts the pair by re-
placing either the left entity eli or the right entity
eri with a randomly selected entity. The learning
optimizes the following hinge loss function:

Lgrh =
∑
Pi∈P

max{0, γgrh − vel
i

T ver
i
+ ve′l

i

T ve′r
i
}

where γgrh is the boundary margin which is em-
pirically set to 1.0 in this study, and (e′li, e′

r
i ) is

the corrupted version of (eli, e
r
i ) (only one entity

corrupted). Again, the SGD algorithm is used to
optimize Lgrh with respect to the entity vectors.

3.3 Joint text and graph learning

The joint text learning and the graph knowledge
learning can be combined. In fact, the two learning
approaches are based on the same measure space
(the inner product space) and the objective func-
tions are both hinge loss; additionally, both the
learning methods train the model using SGD and
negative sampling. This means that they are high-
ly consistent and can be easily combined without
much change, except that the objective function is
modified to integrate the loss derived from both
text and graph knowledge. This is formulated by:

Ljoint = Ltxt + βLgrh (1)

where β is a hyper-parameter that is set to balance
the contributions of the text data and the graph
knowledge. The SGD algorithm is employed to
optimize Ljoint with respect to the entity vectors
and the vectors of words that are involved in the
entity descriptions. In practice, an iterative strat-
egy is adopted in this work, which performs the
joint text learning and the graph knowledge train-
ing alternatively and iteratively, with their respec-
tive negative sampling schemes applied.

4 Experiments

This section reports the experimental settings and
results. The semantic relatedness task was cho-
sen in the study, which measures semantic relat-
edness among entities and compare the measure-
ments with human-specified scores. We start by
presenting the databases, and then report the re-
sults on a general domain task and a specific do-
main task. The data sets and codes are available
online. 2

4.1 Databases

Training data
Three information resources are used in the ex-
periments: Wikipedia as the raw and labeled tex-
t, Wordnet and Yago as the graph knowledge.
Wikipedia3 is a free-access, free content internet
encyclopedia which at present contains more than
4.7 millions of English entries. Wikipedia itself
offers plenty of information, including the main

2http://git.cslt.org/zhangdx/
jointsemanticlearning

3http://wikipedia.org
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content in plain text (description), category infor-
mation, links to other entries, and info-boxes. On-
ly the plain text and the entry name (title) of de-
scriptions are used in this study. WordNet (Fell-
baum, 1998) is a well-known semantic knowledge
base which contains 117k English words and the
associated information such as brief text descrip-
tions and relations. Yago (Fabian et al., 2007) is
another popular semantic knowledge base, derived
from Wikipedia, WordNet and GeoNames.

The training (entity vector embedding) is con-
ducted on two development data sets: a subset
of entities of WordNet that involves only noun-
s (WNet-N) and a subset of entities of Yago that
involves animal names (Yago-A). WNet-N can be
regarded as a data set in the general domain, while
Yago-A is a data set in a particular domain. For
each entity in the two data sets, the corresponding
wiki page is retrieved from Wikipedia, from which
the plain text is retrieved and used as the labeled
text for the entity. The plain text of all the entities
in WNet-N and Yago-A are used as raw text. More
details of the data sets are described as follows.

• WNet-N: A subset of WordNet which con-
tains 68569 entities and 70040 relation pairs.
All the entities are nouns and are words or
phrases in the general domain. 36519 enti-
ties find their text descriptions in Wikipedia
(labeled text), resulting in 111MB raw text.

• Yago-A: A subtree of Yago which contain-
s 39900 entities, 72936 relation pairs. All
the entities are Animal names, which means
the entities are domain-specific. 6415 enti-
ties find their text descriptions (labeled text),
resulting in 19MB raw text.

Note that both WNet-N and Yago-A maintain a
connected graph structure which means that for
any two entities in the graph, there is at least one
path that connects them. This enables the simple
connection-based relevance inference which de-
rives relateness of two entities as the connection
strength between them in the knowledge graph.
Section 5 will compare this simple approach with
our proposal.

Test data
As mentioned, this study chooses the seman-
tic relatedness task to evaluate the performance
of learned entity vectors. This task computes
the relevance (distance) of two entities and then
compares the resulting relevance score with the
human-specified score. The Spearman coefficient

is a widely-adopted metric to evaluate correlation
between two variables and is used in this study to
measure the consistence of the derived relevance
with the human specification.

To test the performance on WNet-N, a sub-
set of WordSimilarity-3534 is used. The
WordSimilarity-353 collection is a well-known
test set for semantic relatedness tasks, which con-
tains 353 word pairs and the relatedness scores of
all the pairs are manually annotated. After filtering
out the words that are absent from the entities of
WNet-N, the resulted 301 pairs are used as the test
set, named as Sim-301 in the following sections.

For the test on Yago-A, we propose a new test
set Animal-143, which contains 143 pairs of com-
mon animal names and 92 different animals in-
cluding mammals, birds, insects and marine ani-
mals. All the names are entities of Yago-A. The
relatedness score of each pair has been evaluated
by 9 persons, and the average is used as the hu-
man judgement. The range of score is from 0 to 3.
For instance, the score between antelope and swan
should probably be 0, and the score between cattle
and bison can be 3. Table 1 summarizes the data
sets used in the experiments.

4.2 Individual learning

The first experiment studies the performance of
learning with raw text, labeled text and graph
knowledge individually. As mentioned already,
the test are conducted on two data sets: WNet-
N and Yago-A, which represent a general domain
task and a specific domain task, respectively. The
impact of the dimension of the entity vectors is al-
so investigated. The results in terms of Spearman
coefficients are reported in Table 2.

For the raw text learning, the entities are treated
as words or word sequences (phrases). The vec-
tors of these words and word sequences are then
learned by the word2vector tool, together with
other words. The raw text data of WNet-N and
Yago-A are merged, and combined with addition-
al 200MB plain text to form a training data set to
conduct the word vector training. Using the tex-
t of both the two data sets is to demonstrate the
advantage that word vectors can be learned with
out-of-domain data. Note that multi-word entities
can be learned as phrase vectors (Mikolov et al.,
2013), though this is not considered in this study
since the two test sets Sim-301 and Animal-143
contain only single-word entities. The results with

4http://www.cs.technion.ac.il/˜gabr/
resources/data/wordsim353/
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Training Set Graph Knowledge labeled Text Raw Text Test Set
WNet-N 68569 entities 36519 entities 111MB Sim-301

70040 relations
Yago-A 39900 entities 6415 entites 19MB Animal-143

72936 relations

Table 1: Data sets for knowledge embedding and relatedness test.

raw text learning are reported in the row denoted
by ‘Word2vec’ in Table 2.

For the labeled text learning, the entity vectors
are derived as the mean vectors of the words in-
volved in the text descriptions. This approach in
fact involves both raw text learning (for word vec-
tors) and labeled text learning (vector average),
however the main knowledge source is the entity
labels of the descriptions. The results with labeled
text learning are reported in the row denoted by
‘LT-mean’ in Table 2.

Different from the mean-vector approach which
first trains word vectors and then derives entity
vectors, the joint text learning learns word vectors
and entity vectors together. Two configurations
are tested: in JT-rand, the entity vectors are ran-
domly initialized, while in JT-prt, the entity vec-
tors are initialized (pre-trained) by corresponding
word vectors. Note that all the multi-word enti-
ties can not be pre-trained as the phrase vectors
are not trained, however this does not much im-
pact the resulting performance since the test sets
do not involve multi-word entities.

For the graph knowledge learning, two configu-
rations have been tested as well: with and without
pre-training. For those entities that can’t be pre-
trained, random initialization is employed. The
results are reported in the rows denoted by ‘GR-
rand’ and ‘GR-prt’ in Table 2, for the configura-
tions with and without pre-training, respectively.

From the results, it can be observed that the
three learning approaches behave differently on
the two test sets. The text-based learning ex-
hibits clear advantage compared to graph knowl-
edge learning on the WNet-N test, however on
the Yago-A test, the graph knowledge learning is
superior. This can be explained by the fact that
WNet-N is in the general and involves popular en-
tities that can be well trained with raw and labeled
text, however for Yago-A, most of the entities are
domain-specific and so it is not easy to learn the
entities (and their relations) from unstructured tex-
t data. In this case, the human-specified knowl-
edge, i.e., the relations offered by the graph knowl-
edge, tends to provide the most valuable informa-

tion. On the other hand, the graph knowledge of
the general domain tends to be sparse and noisy,
which will be discussed in Sec 5, while the graph
knowledge of specific domains are generally less
sparse and also quite clean. This also leads to more
reliable inference with graph knowledge in specif-
ic domains.

Another observation is that the dimension of the
entity vectors indeed impacts the performance. A
larger dimension tends to perform better, at the
cost of higher complexity in model training. In
the following experiments, the dimension will be
set to 100.

It can be also observed that the mean vector (LT-
mean) approach does not work well, probably due
to the information loss with the simple average.
The joint text learning with pre-training (JT-prt)
outperforms both LT-mean and Word2Vec. As JT-
prt makes use of both raw text and labeled text,
this superiority confirms that learning with hetero-
geneous information resources is beneficial, and
the joint learning (JT-prt) is an appropriate way to
utilize heterogeneous information effectively.

Finally, it can be seen that the pre-training with
word vectors (trained with raw text) contributes
to both the text learning and the graph knowledge
learning: the pre-trained systems (JT-prt and GR-
prt) significantly outperform the random initial-
ized systems (JT-rand and GR-rand). This from
another perspective confirms the importance of in-
volving multiple and heterogeneous information
resources in knowledge embedding. In addition,
the poor performance of JT-rand is mainly due to
the incompleteness and bias of descriptions. And
the bad results on GR-rand are probably caused
by the loss of relation types in databases and also
the loss of the variation of length on edges since
every edge is trained equally. Thus, pre-training
method helps a lot since additional knowledge can
be added in and the incompleteness of both de-
scription and graph can be hugely solved.

4.3 Joint text and graph learning

This section reports the experiment with the joint
text and graph learning. From the experimental re-
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Model
Spearman Coefficient

WNet-N Yago-A
50 100 200 50 100 200

Word2vec 0.700 0.720 0.729 0.668 0.681 0.704
LT-mean 0.084 0.091 0.083 0.366 0.421 0.470
JT-rand 0.421 0.447 0.422 0.436 0.466 0.449
JT-prt 0.726 0.744 0.749 0.677 0.704 0.719
GR-rand 0.119 0.178 0.180 0.305 0.303 0.410
GR-prt 0.644 0.690 0.690 0.726 0.727 0.718

Table 2: Experimental results with raw text learning, labeled text learning, joint text learning and graph
knowledge learning. Bold numbers shows the highest performance in each column.

sults of the previous section, it has been found that
learning with multiple resources is helpful, even
if with the simple pre-training. The joint text and
graph learning takes into account both word con-
texts and relations when learning the entity vec-
tors, and so may utilize text data and graph knowl-
edge in a more effective way.

Figure 1 presents the experimental results with
the joint text and graph learning. The two curves
present the Spearman coefficients on WNet-N and
Yago-A respectively. The learning rate of the SGD
algorithm is set to 0.01, and the iteration number is
set to 200. The dimension of the entity vectors and
word vectors is set to 100. According to the cost
function (1), the learning is impacted by the hyper-
parameter β, so the results with various values of
β are reported in Figure 1.

From the results presented in Figure 1, very
different patterns on the two test sets are ob-
served: for WNet-N, the best β is close to 0.0,
which means that involving graph knowledge in
the learning simply reduce the performance. How-
ever for Yago-A, the best β is around 1.0, which
means that to achieve the best performance, the
contribution from text and graph resources should
be balanced. This discrepancy on the optimal β
can be explained in the same way as in the previ-
ous experiment, that Yago-A is a specific domain
test so that the entities can not be well trained by
either text data or graph knowledge, so the two
resources need to be utilized together, which is
where the joint training contributes. In practical
applications, people should increase the β when
domain becomes narrow.

4.4 Performance comparison

The joint text and graph learning with the indi-
vidual learning methods are compared in Table 3,
where the optimal values of β (0.0 for WNet-N
and 1.0 for Yago-A) have been applied. It can be
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Figure 1: Experimental results with joint text and
graph learning, with various values of β.

seen that the joint learning contributes significant-
ly to the specific domain task on Yago-A, while for
the general domain task on WNet-N, no improve-
ment is found. Nevertheless, since the individual
learning is a special case of the joint learning, the
latter should be not worse than the former, given
that the optimal β is applied.

Model Spearman Coefficient
WNet-N Yago-A

Word2vec 0.720 0.681
JT-prt 0.744 0.704
GR-prt 0.690 0.727
JTGR-prt 0.744 0.735

Table 3: Experimental results with joint text and
graph learning, where β has been optimized.

5 Discussion

5.1 Performance of graph knowledge
learning on different domains

In Section 4, it has been found that graph knowl-
edge training does not work well on the gener-
al domain task WNet-N (refer to Table 2). This
is possibly caused by the incompleteness of rela-
tions when domain becomes wider and the loss of
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the variation of length on edges in the knowledge
base since every edge is trained equally. Notice
that, the number of relation pairs in WNet-N is
close to Yago-A while entities in WNet-N is more
than entities in Yago-A. To further investigate the
problem, two simple ‘direct inference’ algorithms
are employed to conduct the tests on WNet-N and
Yago-A respectively. The first algorithm is based
on the shortest path between two entities in query,
and the second one is Wu&Palmer’s model (1994)
which considers not only the shortest path but al-
so the depth of their common parents. Note that
both these two models do not learn any entity vec-
tors but infer relatedness from the relations in the
knowledge base, so the results can reflect the qual-
ity of the knowledge base.

The results are presented in Table 4. It can be
seen clearly that both the shortest-path approach
and Wu&Palmer’s model show much better per-
formance on Yago-A than on WNet-N. These re-
sults provide strong evidence that the general do-
main is much more complicated, so that the lack of
graph knowledge and the problem caused by iden-
tical length of edges will easily hurt graph-based
inference.

It is also clear that the two direct inference ap-
proaches outperform the graph learning approach
when no pre-training applied, however with pre-
training, the graph learning approach is much
more superior, particularly for the WNet-N task.
This suggests that learning with broad domain
knowledge base is pretty hard, and extra informa-
tion from raw text is essentially important.

Model Spearman Coefficient
WNet-N Yago-A

Shortest path 0.312 0.638
Wu&Palmer 0.338 0.662
GR-random 0.178 0.303
GR-prt 0.690 0.727

Table 4: Experimental results with various graph-
based entity relateness inference methods.

5.2 Relation type learning
In our experiments, all the relations in the graph
knowledge bases are treated indifferently. One
may argue that different types of relations should
be distinguished and learned distinctively. This
is true for some tasks such as relation prediction;
however, for the semantic learning task, it is still
challenging to use relation information.

Table 5 presents the results with TransE as the
graph knowledge learning using all the relation

pairs from prolog of WordNet 3.0 which includes
15 types of relations. Note that TransE learns dif-
ferent types of relations as different relation vec-
tors. It can be seen that substituting with TransE
has very little effect on performance in both graph
knowledge learning (TransE-prt) and joint text and
graph learning (JTGR-TransE-prt).

Model Spearman
JT-prt 0.729
Gr-prt 0.723
TransE-prt 0.726
JTGR-prt 0.739
JTGR-TransE-prt 0.740

Table 5: Performance with TransE in graph knowl-
edge learning.

This can be explained as follows. Intuitively,
when people evaluate the relatedness of two enti-
ties, both the relation types and the number of re-
lations (directly and indirectly) between them are
considered. Although different relation types may
impact the judgement differently, learning relation
types may force entity vectors to learn to distin-
guish different types of relations. This is an extra
constraint that is irrelevant to our semantic relat-
edness task. If the constraint is too strong (TransE
for example), it may lead to biased learning. Still,
relations should be used, but maybe a weak con-
straint is more appropriate. This is one of the fu-
ture work.

6 Conclusions

This paper presented a joint text and graph learn-
ing method which can learn entity vectors with
text data and graph knowledge bases together.
We evaluated the proposed method on the se-
mantic relatedness task, and found that involving
both text data and graph knowledge does improve
performance. Particularly, the experimental re-
sults demonstrated that for general domain tasks,
the graph knowledge tends to be incomplete thus
learning with raw or labeled text is the most effec-
tive, however for specific domain tasks, the graph
knowledge tends to be more complete, that it can
contribute a lot to learning.
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