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Abstract

Recently there is a surge in interest in
learning vector representations of words
using huge corpus in unsupervised man-
ner. Such word vector representations,
also known as word embedding, have
been shown to improve the performance of
machine learning models in several NLP
tasks. However efficiency of such repre-
sentation has not been systematically eval-
uated in biomedical domain. In this work
our aim is to compare the performance
of two state-of-the-art word embedding
methods, namely word2vec and GloVe on
a basic task of reflecting semantic simi-
larity and relatedness of biomedical con-
cepts. For this, vector representations of
all unique words in the corpus of more
than 1 million full-length research arti-
cles in biomedical domain are obtained
from the two methods. These word vec-
tors are evaluated for their ability to reflect
semantic similarity and semantic related-
ness of word-pairs in a benchmark data
set of manually curated semantic similar
and related words available at http://
rxinformatics.umn.edu. We ob-
serve that parameters of these models
do affect their ability to capture lexico-
semantic properties and word2vec with
particular language modeling seems to
perform better than others.

1 Introduction

One of the crucial step in machine learning (ML)
based NLP models is how we represent word as
an input to our model. Most of earlier works were
treating word as atomic symbol and were assign-
ing one hot vector to each word. Length of the
vector in this representation was equal to the size

of the vocabulary and the element at the word in-
dex is 1 while the other elements are 0s. Two ma-
jor drawbacks with this representation are: first,
length of the vector is huge and the second, there
is no notion of similarity between words. The in-
ability of one-hot vector representation to embody
lexico-semantic properties prompted researchers
to develop methods which are based on the notion
that the “similar words appear in similar contexts”.
These methods can broadly be classified into two
categories (Turian et al., 2010), namely, distribu-
tional representation and distributed representa-
tion. Both group of methods works in unsuper-
vised manner with huge corpus. Distributional
representations are mainly based on co-occurrence
matrixO of words in the vocabulary and their con-
texts. Here, among other possibilities, contexts
can be documents or words within a particular
window. Each entry Oij in the matrix may indi-
cate either frequency of word i in the context j
or simply whether the word i has appeared in the
context j at least once. Co-occurrence matrix can
be designed in variety of ways (Turney and Pan-
tel, 2010). The major issue with such methods is
size of the matrix O and reducing its size gener-
ally tends to be computationally very expensive.
Nevertheless, the requirement of constructing and
storing the matrix O are always there. The second
group of methods are mainly based on language
modeling (Bengio et al., 2003). We discuss more
about these methods in the section 3.

Outside the biomedical domain, this kind of
representation has shown significant improvement
in the performance of many NLP tasks. For ex-
ample, Turian et al. (2010) have improved the per-
formance of chunking and named entity recogni-
tion by using word embedding also as one of the
features in their CRF model. In one study, Col-
lobert et al. (2011) have formulated the NLP tasks
of parts of speech tagging, chunking, named entity
recognition and semantic role labeling as multi-
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task learning problem. They have shown improve-
ment in the performance when word vectors are
learned together with other NLP tasks. Socher
et al. (2012) improved the performance of senti-
ment analysis task and semantic relation classifi-
cation task using recursive neural network. One
common step among these models is: learning of
word embedding from huge unannotated corpus
like Wikipedia, and later use them as features.

Motivated by the above results, we evaluate
performance of the two word embedding mod-
els, word2vec (Mikolov et al., 2013a; Mikolov et
al., 2013b) and GloVe (Pennington et al., 2014)
for their ability to capture syntactic as well as se-
mantic properties of words in biomedical domain.
We have used full-length articles obtained from
PubMed Central (PMC) open access subset1 as
our corpus for learning word embedding. For eval-
uation we have used publicly available validated
reference dataset (Pakhomov et al., 2010; Ped-
ersen et al., 2007) containing semantic similarity
and relatedness scores of around 500 word-pairs.
Our results indicate that the word2vec word em-
bedding is capturing semantic similarity between
words better than the GloVe word embedding in
the biomedical domain, whereas for the task of
semantic relatedness, there does not seem to be
any statistical significant difference among differ-
ent word-embeddings.

2 Related Work

In a recent study, Miñarro-Giménez et al. (2015)
have evaluated the efficiency of word2vec in find-
ing clinical relationships such as “may treat”, “has
physiological effect” etc. For this, they have
selected the manually curated information from
the National Drug File - Reference Terminology
(NDF-RT) ontology as reference data. They have
used several corpora for learning word-vector rep-
resentation and compared these different vectors.
The word-vectors obtained from the largest corpus
gave the best result for finding the ”may treat” re-
lationship with accuracy of 38.78%. The relatively
poor result obtained for finding different clinical
relationships indicates the need for more careful
construction of corpus, design of experiment and
finding better ways to include domain knowledge.

In another recent study, Nikfarjam et al. (2015)
have described an automatic way to find adverse
drug reaction mention in social media such as twit-

1http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

ter. Authors have shown that including word em-
bedding based features has improved the perfor-
mance of their classifier.

Faruqui and Dyer (2014) have developed an on-
line suit to analyze and compare different word
vector representation models on a variety of tasks.
These tasks include syntactic and semantic rela-
tions, sentence completion and sentiment analy-
sis. In another recent work, Levy et al. (2015)
have done extensive study on the effect of hyper-
parameters of word representation models and
have shown their influence on the performance on
word similarity and analogy tasks. However in
both the studies (Faruqui and Dyer, 2014; Levy
et al., 2015) the benchmark datasets available for
NLP tasks are not suitable for analyzing vector
representations of clinical and biomedical terms.

3 Word Embedding

As discussed earlier, word embedding or dis-
tributed representation is a technique of learn-
ing vector representation for all words present in
the given corpus. The learned vector representa-
tion is generally dense, real-valued and of low-
dimension. As contrast to one-hot vector repre-
sentation each dimension of the word-vector is
supposed to represent a latent feature of lexico-
semantic properties of the word. In our work
we considered two state of the art word embed-
ding techniques, namely, word2vec and GloVe.
Although in literature there exists several word-
embedding techniques (Hinton et al., 1986; Ben-
gio et al., 2003; Bengio, 2008; Mnih and Hin-
ton, 2009; Collobert et al., 2011), the selected two
word embedding techniques are very much com-
putationally efficient and are considered as state-
of-the art. We have summarized the basic princi-
ples of the two methods in subsequent sections.

3.1 word2vec Model

word2vec generates word vector by two different
schemes of language modeling: continuous bag
of words (CBOW) and skip-gram (Mikolov et al.,
2013a; Mikolov et al., 2013b). In the CBOW
method, the goal is to predict a word given the
surrounding words, whereas in skip-gram, given
a single word, window or context of words are
predicted. We can say skip-gram model is op-
posite of CBOW model. Both models are neural
network based language model and take huge cor-
pus as an input and learn vector representation for
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each words in the corpus. We used freely avail-
able word2vec2 tool for our purpose. Apart from
the choice of architecture skip-gram or CBOW,
word2vec has several parameters including size of
context window, dimension of vector, which effect
the speed and quality of training.

3.2 GloVe Model

GloVe (Pennington et al., 2014) stands for Global
Vectors. In some sense, GloVe can be seen as a
hybrid approach, where it considers global context
(by considering co-occurrence matrix) as well as
local context (such as skip-gram model) of words.
GloVe try to learn vector for wordswx andwy such
that their dot product is proportional to their co-
occurrence count. We used freely available glove3

tool for all analysis.

4 Materials and Methods

4.1 Corpus Data and Preprocessing

PubMed Central R© (PMC) is a repository of
biomedical and life sciences journal literature at
the U.S. National Institutes of Health’s National
Library of Medicine (NIH/NLM). We have down-
loaded the gzipped archived files of full length
texts of all articles in the open access subset 4

on 19th April, 2015. This corpus contains around
1.25 million articles having around 400 million to-
kens altogether.

In pre-processing step of the corpus, we mainly
perform following two operations-

• we put all numbers in different groups based
on number of digits in them. For example, all
single digit numbers are replaced by the to-
ken “number1”, all double digit numbers by
the token “number2” and so on.

• each punctuation mark is considered as sepa-
rate token.

4.2 Reference Dataset

Pakhomov et al. (2010) have constructed a ref-
erence dataset of semantically similar and re-
lated word-pairs. These words are clinical and
biomedical terms obtained from control vocabu-
laries maintained in the Unified Medical Language
System(UMLS). This reference dataset contains

2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/glove/
4http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

566 pairs of UMLS concepts which were man-
ually rated for their semantic similarity and 587
pairs of UMLS concepts for semantic relatedness.
We removed all pairs in which at least one word
has less than 10 occurrences in the entire corpus
as such words are removed while building vocabu-
lary from the corpus. After removing less frequent
words in both reference sets, we obtain 462 pairs
for semantic similarity having 278 unique words,
and 465 pairs for semantic relatedness having 285
unique words. In both cases, each concept pair is
given a score in the range of 0−1600, with higher
score implies similar or more related judgments
of manual annotators. The semantic relatedness
score span the four relatedness categories: com-
pletely unrelated, somewhat unrelated, somewhat
related, closely related.

4.3 Experiment Setup

We generate the word vectors using the two word
embedding techniques under different settings of
their parameters and compare their performance in
semantic similarity and relatedness tasks. Dimen-
sion of word-vector is varied under the two differ-
ent language models, CBOW and SKIP-GRAM,
for word2vec word embedding. For GloVe, only
dimension of word vector is changed. For each
model, word vectors of 25, 50, 100, and 200 di-
mensions are generated. Due to limited comput-
ing power, we could not go for higher dimensions.
For window size, we did not perform any experi-
ment and simply considered 9 as window size for
all models.

4.4 Evaluation

As discussed earlier, both reference data have pro-
vided a score for each word-pair in them. We
calculate cosine similarity between the two words
of each pair present in the reference data using
learned word vectors. Now, each word pair has
two scores: one given in the dataset and the other
cosine similarity based on learned word vectors.
We calculate Pearson’s correlation between these
two scores.

Further we visualize a limited number of manu-
ally selected words for qualitative evaluation. For
this we use the t-SNE (van der Maaten and Hinton,
2008) tool to project our high dimensional word
vectors into two-dimensional subspace. t-SNE is
being widely used for this purpose.
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Dimension Semantic Similarity Semantic Relatedness
CBOW Skip GloVe CBOW Skip GloVe

25 0.32 0.39 0.28 0.30 0.34 0.27
50 0.36 0.44 0.34 0.33 0.38 0.36
100 0.42 0.48 0.41 0.39 0.43 0.41
200 0.46 0.52 0.42 0.41 0.45 0.42

Table 1: Correlation between cosine similarity and the score provided in the benchmark dataset.

5 Results and Discussion

Table 1 shows the correlation values in all cases.
We observe that increasing the dimension of word
vectors improve their ability to capture semantic
properties of words. The above results indicate
that less than d = 200 dimension will likely to
be a bad choice for any NLP tasks. Due to the lim-
ited computing power, we could not complete our
experiments with 500 and 1000 dimensional vec-
tor representations. We have also calculated the
Spearman and Kendall-Tau’s correlation in each
case and have observed similar trends in all cases.

Skip-gram model seems to be better than both
CBOW and GloVe models in the semantic sim-
ilarity task for all dimensions. However this
does not seem to be the case with the relatedness
task. So we perform the statistical significance
test to check whether correlation corresponding to
word2vec skip-gram model is significantly higher
than correlation corresponding to other two mod-
els. In the statistical test, we evaluate the null-
hypothesis “ correlation corresponding to alternate
model (CBOW or GloVe) is equal to that corre-
sponding to the skip-gram model” at significance
level α = 0.05. We use cocor (Diedenhofen and
Musch, 2015) package for statistical comparison
of dependent correlations.

It turns out that for the semantic similarity task,
word2vec skip-gram model is significantly better
(i.e., correlation is higher corresponding to skip-
gram word vectors) than word2vec-CBOW (p-
value: 0.01) and GloVe (p-value: 0.0007) models.
On the other hand correlation in skip-gram model
is not found significantly higher than the correla-
tions in the other two models for the semantic re-
latedness task. The above observation is made for
the 200 dimensional vectors. But we can not say
the same for results obtained by lower dimensional
vectors. For example, in case of 25-dimensional
vectors, correlation obtained by skip-gram model
is significantly higher than that obtained by GloVe
model for both tasks. However similar observation

was made in case of comparison between CBOW
and skip-gram as in 200 dimensional case.

We further look at nearest neighbors of some
manually selected words. If word-vectors truly
represent latent features of lexical-semantic prop-
erties of words, then their nearest neighbors
must be related words. We tested this hypoth-
esis on a small set of manually selected seed-
words and their nearest neighbors. We selected
8 seed-words representing disease, disorder, or-
gan and treatment: eye (organ), liver (internal
organ), fever (disorder/symptom), tumour (dis-
ease/disorder), thyroid (gland), cough (symptom),
surgery (procedure/treatment), leg (external or-
gan), aids (disease). Table 2 shows the 10 near-
est neighbors of some of the seed-words (simi-
lar results are observed for other seed-words) as
picked by the three methods. As it can be seen
from the table that the nearest neighbors are very
much related to the seed-words. Not only words
like “coughs”, “coughing”, but also words like
“wheezing”, “dyspnea” are within the top-10 near-
est neighbors of “cough”. The first set of exam-
ples indicates ability of the learned word-vectors
to capture lexical properties of words, whereas the
later set of words shows vectors’ ability to capture
semantic properties as well.

Next we visualize (Figure 1) the 4 seed-words
(shown in Table 2) and their 25 nearest neighbors
using t-SNE. Here we have shown the result ob-
tained from the word2vec skip gram model (di-
mension = 200) only. Due to space constraints
we have not shown the results of other methods
but similar observation was made for the other
methods. t-SNE projects high-dimensional vec-
tors into R2 by preserving the local structure of
high-dimensional space.

Figure 1 clearly shows the ability of
the learned word-vectors to automatically
group similar words together. This again
provides another evidence of the vectors’
ability to represent semantic properties.
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seed
word

CBOW Skip GloVe

eye eye, eyes, eyeball, hemifield,
hemibody, forelimb, eyebrow,
midline, head, face

eye, eyes, face, head, ocular,
mouth, pupillary, fovea, angle,
Eye

eye, eyes, SEFsupplementary,
ocular, visual, vision, cornea,
optic, retina, ear

cough cough, coughing, breath-
lessness, Cough, dyspnea,
wheezing, wheeze, hemopty-
sis, coughs, haemoptysis

cough, breathlessness, expec-
toration, coughing, wheezing,
dyspnea, phlegm, shortness,
haemoptysis, sore

cough, coughing, shortness,
breathlessness, TDITransition,
dyspnea, wheezing, sore, bron-
chitis, expectoration

surgery surgery, operation, decom-
pression, dissection, resection,
parathyroidectomy, stenting,
surgeries, esophagectomy,
resections

surgery, surgical, operation,
procedure, esophagectomy,
surgeries, laparoscopic,
elective, reintervention, post-
operative

surgery, surgical, BCSBreast-
conserving, surgeries, oper-
ative, eBack, postoperative,
PSMPositive, operation, resec-
tion

tumour tumour, tumor, tumoral, tu-
moural, glioma, melanoma,
PDAC, HNSCC, tumors, neo-
plastic

tumour, tumor, tumors, tu-
mours, malignant, metastatic,
metastasis, metastases, tu-
moral, melanoma

tumour, tumor, Tprimary,
tumors, VHLVon-Hippel-
Lindau, tumours, metastatic,
metastasis, malignant,
EHSEngelbreth-Holm-Swarm

Table 2: 10 Nearest neighbors of selected seed-words.
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Figure 1: t-SNE projection of 100 biomedical words after applying word2vec skip-gram model. These words are nearest
neighbors of the 4 seed-words ’eye’, ’cough’, ’surgery’, and ’tumour’. All nearest neighbors of a particular seed-word are in
closer proximity of each other than the nearest-neighbors of other seed-words.

6 Conclusion and Future Work

In this study, we have shown that while word2vec
with skip-gram model gave the best performance
compared to other models in the semantic simi-
larity task, none of the model significantly out-

performed others in the semantic relatedness task.
Our results indicate that word-vectors should be
at least of dimension 200, irrespective of the em-
bedding model. However, further systematic eval-
uation of all models on more complex NLP tasks,
such as medical concept and relation extraction, is
required to find out which model will work best.
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