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Abstract

Disease-symptom relationships are of pri-
mary importance for biomedical informat-
ics, but databases that catalog them are
incomplete in comparison with the state
of the art available in the scientific lit-
erature. We propose in this paper a
novel method for automatically extract-
ing disease-symptom relationships from
text, called SPARE (standing for Syntac-
tic PAttern for Relationship Extraction).
This method is composed of 3 successive
steps: first, we learn patterns from the de-
pendency graphs; second, we select best
patterns based on their respective qual-
ity and specificity (their ability to iden-
tify only disease-symptom relationships);
finally, the patterns are used on new texts
for extracting disease-symptom relation-
ships. We experimented SPARE on a cor-
pus of 121,796 abstracts of PubMed re-
lated to 457 rare diseases. The quality of
the extraction has been evaluated depend-
ing on the pattern quality and specificity.
The best F-measure obtained is 55.65%
(for speci f icity ≥ 0.5 and quality ≥ 0.5).
To provide an insight on the novelty of
disease-symptom relationship extracted,
we compare our results to the content
of phenotype databases (OrphaData and
OMIM). Our results show the feasibility of
automatically extracting disease-symptom
relationships, including true relationships
that were not already referenced in pheno-
type databases and may involve complex
symptom descriptions.

1 Introduction

Disease-Symptom (D-S) relationships are of ma-
jor importance for biomedical informatics since

they provide a fine-grained description of disease
that could be used to guide medical diagnosis
in clinical care. However, biomedical databases
that catalog D-S relationships such as OrphaData
and OMIM are incomplete in comparison with the
state of the art available in the scientific literature
(Köhler et al., 2014). In addition, extracting this
information manually from the literature by ex-
perts requires a lot of time and effort, which moti-
vates the need for developing automatic methods.

Our study focuses on extracting symptoms in
relation with rare diseases (RDs). These are dis-
eases that affect a small percentage of the popula-
tion, ranging from 1/1,000 to 1/200,000. As their
number is relatively important (between 6,000 and
8,000 (Mazzucato et al., 2014)), RDs have re-
ceived a particular attention in the medical do-
main.

In this context, we propose an automatic
method, called SPARE (Syntactic PAttern for Re-
lationship Extraction), for D-S relationship extrac-
tion based on shortest path patterns generated from
the dependency graphs (DGs) of texts. We applied
SPARE to the extraction of D-S relationships asso-
ciated with rare diseases. Because symptoms as-
sociated with rare diseases may be uncommon and
complex (i.e., they can not be expressed with one
word or a simple expression), we particularly fo-
cus on enabling the recognition of symptoms that
are not listed in phenotype databases or ontolo-
gies.

As a result, objectives of this work are three-
fold: (1) learning patterns specific for diseases-
symptom relationships extraction; (2) identifying
symptom description that is pointed by specific
pattern; and (3) extracting D-S relationships.

This article is organized as follow: we intro-
duce D-S relationship relative issues in section 2.
Section 3 presents main methods for relationship
extraction. In section 4, we detail the SPARE
method. Section 5 describes experiments and re-
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sults. Finally, we discuss and conclude about the
results described in the article.

2 Disease-Symptom Relationships

OrphaData and OMIM are two examples of
databases that catalog D-S relationships. Orpha-
Data1 is the database accessible from Orphanet,
the portal for rare diseases and orphan drugs. It
includes description of symptoms (clinical signs)
of rare disease. OMIM2 (Online Mendelian Inher-
itance in Man) is a database for genetic diseases.
It contains disease descriptions that include a list
of symptoms named “clinical synopsis”.

Due to the fact that their content is manually cu-
rated by experts, OrphaData and OMIM are high
quality resources. However, these resources do not
contain a complete list of relationships between
diseases and symptoms that exist in the biomed-
ical literature. As shown in Table 1, among the
8,644 diseases listed by OrphaData only 2,689 dis-
eases (31.11%) are associated with clinical signs
and symptoms. Indeed, one can use cross refer-
ences between OrphaData and OMIM3 to asso-
ciate OrphaData diseases to symptoms described
in OMIM. Nevertheless, even when considering
these additional symptoms, only 4,856 (56.18%)
OrphaData diseases have symptoms. The rest,
3,788 OrphaData diseases, is not related to any
symptom. This motivates us to extract these re-
lations from the literature.

#Diseases
#Diseases associated

with symptoms
#Symptoms #D-S Relations

OrphaData 8,644 2,689 1,273 52,503
OMIM 23,929 23,910 46,369 432,760

Table 1: Information about OrphaData and OMIM
databases

Recognizing diseases and symptoms in texts is
a preliminary step for D-S relationships extraction.
Previous work on disease recognition achieved
good results (Leaman and Lu (2014) obtained
78.25% F-Measure, 76.3% recall and 80.3% pre-
cision). Less works aimed at recognizing symp-
toms. Their performances are low in comparison
with those of disease recognition. For example,
Martin et al. (2014) used HPO4 (Köhler et al.,

1OrphaData website: http://www.orphadata.org/
2OMIM website: http://www.omim.org/
34,162 OrphaData diseases have cross references to

OMIM diseases.
4HPO (The Human Phenotype Ontology) provides a

structured and controlled vocabulary for the phenotypic fea-
tures of diseases.

2014) for symptom extraction and obtained 36.8%
F-Measure, 23.7% recall and 82.2% precision.

Extracting D-S relationships automatically is
a challenging task mainly due to the following
two reasons: first, there is no complete dictionary
of symptoms to guide their recognition; second,
symptoms are complex entities that are hard to
recognize in text. Indeed, HPO, which contains
11,021 phenotypes terms, covers only symptoms
related to genetic diseases. Thus, a simple “exact
match” approach to recognize HPO symptoms in
text would give a low recall: “serositis” in exam-
ple 2.1 is not known as a symptom in HPO.

In addition, Named Entity Recognition (NER)
tools recognize symptoms with low recall. This is
the case of MetaMap (Aronson, 2001), a tool that
annotates texts with concepts from UMLS (Bo-
denreider, 2004). In example 2.2 MetaMap an-
notates “Familial Mediterranean Fever” as disease
but does not annotate “fever” or “attacks of fever”
as a symptom.

Ex 2.1. “<disease>Familial Mediterranean Fever</disease> is

characterized by serositis”

Ex 2.2. “<disease>Familial Mediterranean Fever</disease>

(FMF) is an autosomal recessive disorder characterized by

attacks of fever”

Recognizing the full description of symptoms
is another challenge for symptom recognition, in
particular with rare diseases where symptom de-
scription can be complex phrases. Some cases of
partial annotations occur when HPO or MetaMap
annotates only a part of the entity. For instance,
example 2.3 shows that “pure spasticity of the
lower limbs” is a symptom but MetaMap annotates
only “spasticity”.

Ex 2.3. “One patient with <disease>Krabbe disease</disease>

presented with pure <symptom>spasticity</symptom> of the

lower limbs”

The ambiguity between diseases and symptoms
is another factor of complexity as diseases play,
in some situations, the role of symptoms. For in-
stance, example 2.4 shows that “muscle wasting”
is recognized by MetaMap as a disease. However,
it can be considered as a symptom for “Duchenne
muscular dystrophy”.

Ex 2.4. “<disease>Duchenne muscular dystrophy</disease> is

characterized by <disease>muscle wasting</disease>”
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3 Related Works

Various works have proposed methods to extract
relationships from text. They are based on differ-
ent approaches such as statistics, pattern-based or
rule-based, and machine learning.

A co-occurrence method is a simple method to
identify relationships between two entities that co-
occur in the same sentence (Bunescu et al., 2006).
It is based on the hypothesis that if two entities
are mentioned frequently together, they are likely
to be in a relation. Approaches based on co-
occurrences of entities do not employ NER tech-
niques. The type and the direction of relation-
ships are not captured by these methods. Vari-
ous statistical measures are used to decide whether
the two entities co-cited together are in relation
or not (Lee et al., 2007; Ramani et al., 2005).
Examples of these measures are Pointwise Mu-
tual Information, Chi-Square or Log-Likelihood
Ratio (Manning and Schütze, 1999), which use
the co-occurrence statistics of the two entities to
hypothesize about the existence of a relationship
between them. Ramani et al. (2005) use ran-
dom co-citation model based on the hypergeomet-
ric distribution. Co-occurrence methods have been
successfully applied to the automated construction
of networks of biomolecules such as gene-protein
and gene regulatory networks (Šarić et al., 2006;
Friedman et al., 2001).

Pattern- and rule-based methods generate sym-
bolic patterns or rules to extract relationships, with
advantage that they are easy to interpret (Agichtein
and Gravano, 2000). These patterns or rules can be
generated manually (Divoli and Attwood, 2005)
or automatically by learning from annotated cor-
pus (Hakenberg et al., 2005). They are based on
different levels of linguistic information like lexi-
cal, syntactic or dependency information and dif-
ferent levels of structures like sequences, trees and
graphs. These methods tend to have a high preci-
sion but a low recall (Cellier et al., 2010; Béchet
et al., 2012; Liu et al., 2013; Martin et al., 2014;
Hassan et al., 2014).

Liu et al. (Liu et al., 2013) proposed a graph-
based approach to learn rules for event extraction
(that can be compared to relationship extraction).
The rules are represented by the information on
the shortest path between entities in an undirected
DG. Béchet et al. (2012) and Cellier et al. (2010)
proposed a method based on sequential pattern
mining to extract disease-gene and gene-gene re-

lationships. As the number of their patterns is very
large, they introduced constraints for patterns fil-
tration to reduce them. Close to our objectives,
Martin et al. (2014) used sequential patterns for
recognizing unidentified symptoms. Also, Hassan
et al. (2014) proposed a pattern-based method for
D-S relationship extraction, where diseases and
symptoms are previously recognized and anno-
tated by a NER tool. The patterns are learned from
shortest paths between diseases and symptoms in
directed DGs.

Machine Learning (ML) methods consider a re-
lationship extraction task as a classification prob-
lem. Two ML techniques are mainly employed:
feature-based and kernel-based methods. Feature-
based methods such as support vector machines or
conditional random fields have been employed by
(Krallinger et al., 2008; Bundschus et al., 2008)
for relationship extraction. Kernel methods use a
kernel function to measure the similarity between
a large amount of features e.g., sub-sequences,
trees, graphs (Zelenko et al., 2003; Zhang et al.,
2008; Airola et al., 2008).

Bunescu and Mooney (2005) proposed a short-
est path kernel method that uses the shortest path
between two entities in an undirected DG for re-
lationship extraction. This work is based on the
hypothesis that the relationship between two enti-
ties in the same sentence is typically captured by
the shortest path between them in the DG. Chowd-
hury et al. (2012) proposed a hybrid kernel that
uses different types of information (e.g., syntac-
tic, contextual, semantic) and their different rep-
resentations (i.e., flat features, tree structures and
graphs). This hybrid kernel helps improving the
results of relationship extraction.

4 Method

We describe in this section the SPARE method for
D-S relationship extraction. This method is com-
posed of three steps: first, learning patterns out of
DGs that include both a disease and a symptom;
second, selecting patterns in regard to their quality
(i.e., their capacity to identify true relationships)
and their specificity (i.e., their capacity to identify
only D-S relationships); third, using selected pat-
terns to extract D-S relationships from text.

The originality of the SPARE method relies
on measuring how syntactic patterns between dis-
eases and symptoms are specific to D-S relation-
ships. Using highly specific patterns allow us to
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consider the case where symptoms are not recog-
nized by NER tools, which consequently offers the
opportunity to discover new symptom descriptions
that can be potentially rare and complex.

SPARE is inspired from various previous works
such as using the shortest path between entities of
a DG as described by Bunescu et Mooney (2005),
then applied by Chowdhury et al. (2012) and Liu
et al. (2013). Similarly to Liu et al. (2013), we ex-
tract patterns represented by the whole subgraph
(i.e., all nodes and edges in the shortest path), but
unlike them, we keep edge directions. Hassan et
al. (Hassan et al., 2014) proposed a pattern-based
method for D-S relationship extraction. They as-
sume that diseases and symptoms are initially rec-
ognized by a NER tool. Here we relax patterns,
similarly to Blohm et al. (2011), and use speci-
ficity to consider cases of unrecognized symp-
toms.

The following subsections detail the three steps
of SPARE.

4.1 Learning Syntactic Patterns from DG
For pattern learning, only DGs of sentences that
contain at least one disease and one symptom are
considered as we are interested in extracting D-S
relationships. DGs are explored to find the shortest
paths between diseases and symptoms. Because
one sentence can mention several diseases and
symptoms, several shortest paths may be found.

Ex 4.1. “A 15-month-old girl with <disease>propionic

acidemia</disease> presented <symptom>muscular hypotonia

</symptom>”

Ex 4.2. “A 25-year-old woman with <disease>cystic

fibrosis</disease> developed <symptom>hemoptysis</symptom>”

Figures5 1(a) and 1(c) show the DGs generated
from sentences of examples 4.1 and 4.2 after the
replacement of the annotated entities (i.e., diseases
and symptoms) by generic words (i.e., DISEASE
and SYMPTOM) and other words by their lem-
mas. Figures 1(b) and 1(d) show the shortest paths
extracted from associated DGs. The whole short-
est path is kept, including all nodes, edges and di-
rections.

Next, patterns are generated on the basis of
shortest paths, using a generalization process. In
this process, two shortest paths (or more) can be
merged and represented in one generalized pat-
tern. Different shortest paths are aggregated to a

5DGs are processed by the Stanford Parser and drawn
with the Brat tool at http://nlp.stanford.edu:8080/corenlp/

(a)

(b)

(c)

(d)

Figure 1: (a,c) DGs and (b,d) Shortest paths be-
tween disease and symptom respectively extracted
from sentences of examples 4.1 and 4.2

pattern if those share the same edges and direc-
tions. Figure 2 illustrates this generalization pro-
cess considering the shortest paths obtained from
examples 4.1 and 4.2. If the values of the nodes in
the pattern are different, then they are replaced by
“*” (i.e., matching any token). A list of values ob-
served for each node is kept but for pattern docu-
mentation purpose only. The frequency of patterns
is measured by their support, i.e., how many sen-
tences in our learning corpus match this pattern.

Figure 2: Example of pattern generation from two
shortest paths
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This generalization affects the precision and the
recall of the patterns. Replacing the node value
in the shortest path by using “*” (i.e., any token)
makes the pattern more generic, and has the conse-
quence of increasing the recall of the patterns. On
the other side, we assume that edges (i.e., depen-
dency types of DGs) and directions of the pattern
guarantee its precision.

4.2 Pattern Selection
4.2.1 Quality-Based Selection
We classify patterns into two classes: positive and
negative patterns. This classification relies both
on the frequency and on the quality of patterns.
The quality of patterns requires an evaluation pro-
cedure, on the basis of an annotated corpus, to be
computed. The quality of a pattern is defined as:

quality =
|T |
|A| (1)

where T is the set of all true relationships and
A is the set of all (true and false) relationships
that are identified by the pattern. A relationship
is qualified as true if it is annotated in the cor-
pus, i.e., if the sentence is actually mentioning
the relationship. A pattern is considered positive
if its support is greater than or equal to a mini-
mum support denoted min_support and its quality
is greater than or equal to a minimum quality de-
noted min_quality.

4.2.2 Specificity-Based Selection
In order to measure how much a pattern is specific
to D-S relationships and not to other relationships,
a specificity measure of the pattern is defined. To
measure this specificity, we performed a new eval-
uation task for which we consider: (i) a novel set
of annotated sentences, not including one disease
and one symptom but including one disease and
another entity (e.g., a symptom, a gene, a treat-
ment or a living being); (ii) patterns from which
we removed the constraint on the symptom node
(i.e., SYMPTOM is replaced by “*”). The pattern
specificity is computed by the following formula:

speci f icity =
|DS|
|A| (2)

where DS is the set of true D-S relationships
extracted by the pattern and A is the set of all
(true and false) relationships that are extracted by
the pattern (including D-S, disease-gene, disease-
treatment and disease-living being relationships).

For example, if the pattern extracts 23 true D-
S relationships and 7 disease-any entity relation-
ships, then pattern specificity is 23/30. The speci-
ficity measure is used to select the patterns that are
the most specific to D-S relationships by selecting
those that have a specificity greater than or equal to
a minimum specificity denoted min_speci f icity.

Both quality and specificity are associated with
the precision of patterns (the ratio of true relation-
ships on all extracted relationships, see formula 3)
but are used in different contexts. The quality of
a pattern is calculated based on the extracted rela-
tionships (D-S relationships only) of the training
corpus. In order to keep the patterns that are able
to extract true relationships with high precision,
we restrict the pattern on disease and symptom
constraints. In contrast, the specificity of a pat-
tern is calculated using the relationships (D-S or
disease-any entity relationships) in the whole cor-
pus when the pattern is relaxed on the symptom
constrain. Specificity is used to keep the patterns
that are specific to D-S relationships only.

4.3 Relationship Extraction

4.3.1 Pattern Relaxation for Unknown
Symptoms

Patterns with speci f icity ≥ min_speci f icity are
relaxed on the symptom constraint, meaning that
one entity must be annotated as a disease, but there
is no requirement for the second entity to be anno-
tated as a symptom. This enables us to identify
symptoms that are not recognized by NER tools.
Similarly to the learning phase, DGs are gener-
ated from the text to explore for D-S relationships.
Then, a pattern matching between DGs and the
pattern set is applied to extract D-S relationships.

4.3.2 Extraction of Complex Symptoms

During pattern matching, the word that matches
with the node of the second entity (not con-
strained) is considered to be a symptom. Indeed,
it is considered to be a symptom if this word is
a leaf of the DG, but is considered as the “head”
of a more complex symptom description if it is
not a leaf. To extract the complete description of
the symptom, we explore the subtree that has, as a
head, the node that matched as a symptom. For ex-
ample, if a pattern matching is applied to the sen-
tence provided in example 4.3, we obtain a match
with the pattern presented in Figure 2. In this case,
the word that is considered to extract the symptom
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description is “attack”. Exploring the subtree rep-
resented in Figure 3(b) enables us to reconstruct
the full symptom that is involved in the relation-
ship. This reconstruction uses every word of the
subtree, dependency types plus the initial order
of words to reconstruct the symptom description,
“acute attack of fever” in our example. This exam-
ple illustrates the usefulness of DGs in identifying
and representing complex entities like symptoms.
Ex 4.3. “A patient with <disease>Familial Mediterranean

Fever</disease> suffered acute attacks of fever”

(a) DG of the sentence in example 4.3

(b) The subtree of a complex
symptom description

Figure 3: An example of complex symptom ex-
traction

5 Experiments

5.1 Data Preparation
5.1.1 Rare Disease Corpus
Our rare disease corpus is composed of 121,796
PubMed abstracts obtained by querying PubMed
with 457 rare diseases of OrphaData.6 These
diseases are selected because they fulfill follow-
ing criteria: (1) they are associated with symp-
toms (namely “clinical signs”) in OrphaData; (2)
they can be mapped to an OMIM disease throught
UMLS CUI; (3) their corresponding OMIM refer-
ence is annotated with symptoms (namely “clin-
ical synopsis”) in OMIM. This enables having a
corpus of a reasonable size and guarantees that the
selected diseases are associated with symptoms in
both OrphaData and OMIM. This set of diseases
and associated symptoms are used in subsection
5.5 to compare our relationships with the content
of OrphaData and OMIM.

5.1.2 Preprocessing
The 121,796 abstracts are first split into 907,088
sentences using LingPipe7. These sentences are

6The list of 457 rare diseases is available at
https://sourceforge.net/projects/spare2015/files/457-diseases

7LingPipe website: http://alias-i.com/lingpipe/

then annotated by MetaMap in order to label dis-
eases, symptoms, genes, treatments and living be-
ings with UMLS CUI. Finally, sentences that do
not contain diseases are filtered out. Therefore,
we obtained 301,599 sentences with at least one
disease.

5.2 Pattern Learning

To learn patterns for D-S relationship extraction,
2,341 sentences with at least one disease and one
symptom are kept. These sentences are split into
a learning corpus made of 90% of sentences (ran-
domly selected) and a testing corpus made of 10%
of sentences. Both corpora are manually anno-
tated by only one person to identify true and false
relationships: the annotation task mainly requires
linguistics and NLP skills. A true relationship is
counted when a pair D-S is found and a relation-
ship between them is actually mentioned in the
text; whereas a false relationship is listed when
the pair is found but no relationship is mentioned.
The sentence in example 5.1 shows instances
of both true and false relationships. “Schwartz
Jampel syndrome”-“blepharospasm” is a true re-
lationship, while “rare neuromuscular disorder”-
“blepharospasm” is false. Table 2 shows the size
of the learning and testing corpora in term of num-
ber of sentences, and of true and false relationships
in each corpus. We use the Stanford parser to gen-
erate a DG for each sentence (de Marneffe et al.,
2006). Shortest paths are computed from the 2,107
prepared DGs to generate 1,049 patterns. Figure 4
presents 7 examples of patterns generated.

Ex 5.1. “<disease>Schwartz Jampel syndrome</disease> is a

<disease>rare neuromuscular disorder</disease> characterized

by <symptom>blepharospasm</symptom>”

Corpus #Sentences #True Relations #False Relations
learning 2,107 2,680 2,294
testing 234 330 326

Table 2: Size and content of the learning and test-
ing corpora used for pattern learning and selection.

5.3 Pattern Selection

5.3.1 Quality-based Selection
Increasing the min_support value from 1, to 2,
then to 3, reduces the number of patterns from
1,049, to 257, then to 118. To avoid rare patterns
that can result from parser errors or complex sen-
tences, we fixed min_support = 2.
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Figure 4: 7 examples of patterns from our pattern
set and their support, quality and specificity.

We fixed min_quality = 0.5 to reduce our se-
lected patterns to 235. This choice is guided by
the F-measure that we computed for each quality
threshold, as presented in Figure 5. This optimal
F-measure is 56.97% (precision 87.97%, recall
42.12%) on the testing corpus. If used on the test-
ing corpus, these 235 patterns extract 139 true re-
lationships and 19 false relationships on a total of
330 relationships. Formulas for precision, recall
and F-measure are recalled hereafter:

precision =
all true extracted relations

all extracted relations
(3)

recall =
all true extracted relations

all relevant relations
(4)

F−measure = 2 ∗ precision ∗ recall
precision + recall

(5)

Figure 5: The effect of quality threshold on preci-
sion, recall and F-Measure values

5.3.2 Specificity-based Selection
For computing the pattern specificity, all sen-
tences that contain at least one disease and an-
other UMLS entity are selected. This pro-
duces 9,233 sentences. Then, all the 235 pre-
viously selected patterns are applied to the DGs
of these sentences, resulting in the extraction

of 5,197 D-S relationships and 391 disease-non
symptom relationships (182 disease-gene, 182
disease-treatment, 27 disease-living being rela-
tionships). Finally, the specificity of each pat-
tern is computed (see formula 2). Figure 6
shows that using min_speci f icity = 0.5 achieves
the best F-measure, 55.65% (precision = 89.87%
and recall = 40.3%), on the testing corpus. Fi-
nally we keep 220 patterns with quality≥ 0.5 and

Figure 6: The effect of specificity threshold on
precision, recall and F-Measure values

speci f icity≥ 0.5.8

5.4 Application of Relationships Extraction

We applied selected patterns to the whole cor-
pus9 (301,599 sentences with at least one disease).
The extracted relationships are divided into two
groups. The first group contains 4,886 D-S rela-
tionships where symptoms were previously rec-
ognized by MetaMap. The second group con-
tains 6,572 D-S relationships where symptoms
were not recognized by MetaMap. After man-
ual checking10, these extractions achieved respec-
tively 90.69% and 83.13% precision. The number
of distinct symptoms in the second group is 3,849.

5.5 Comparison with Phenotype Databases

5.5.1 Comparison Approach
The novelty of extracted relationships is evaluated
based on the comparison with D-S relationships
available in OrphaData, and in OMIM. Results
of the comparison are categorized into 3 groups:
matched, partial matched and new relationships.
To realize this comparison, it is required to map

8The list of 220 patterns is available at
http://sourceforge.net/projects/spare2015/files/220Patterns

9The whole corpus is used (including the training and
testing corpus) because the purpose of this task is to extract
as much as possible D-S relationships and then, to compare
them to the content of phenotype databases.

10The manual checking is done by only one person.
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diseases of extracted relationships to OMIM dis-
eases. Indeed, MetaMap provides, for each ex-
tracted disease, a UMLS CUI that may be mapped
to OMIM.

For symptom mapping, we implemented a sim-
ilarity measure to evaluate the similarity between
the extracted symptom and those referenced in
OMIM clinical synopsis and HPO. Our similarity
value is based on the Jaccard index and is com-
puted following formula:

Jaccard Index =
text_words∩ symp_words
text_words∪ symp_words

(6)

where text_words are the words of the extracted
symptom string and symp_words are the words
that are describing a symptom defined either in
OMIM or HPO.

Before computing the Jaccard index, each word
in the extracted symptom and HPO (or OMIM)
symptom is replaced by its lemma, stop words11

are removed and a list of synonyms from Word-
Net (Fellbaum, 1998) is associated with each
word. The synonym list of a word is used in case
of the word does not match with any other word.
The similarity value is then computed by the Jac-
card index. For each symptom, the first three clos-
est symptoms found in OMIM and HPO (six in to-
tal) are manually checked to select the best match
if exists. A label “exact”, “partial” or “new” is as-
signed to express if the match is exact or partial,
or if the symptom is not listed in OMIM and HPO,
thus considered as new.

5.5.2 Comparison Results
The relationships in the first group are compared
automatically to Orphadata and OMIM relation-
ships (because both their disease and symptom are
associated with a UMLS CUI). The number of
true D-S relationships is 4,431, including 803 re-
lationships available in OrphaData and 646 avail-
able in OMIM. The union of these 2 sets counts up
to 1,074 distinct D-S relationships already listed
in OrphaData, OMIM or in both. Consequently,
about 3,357 D-S relationships are potentially new
and must be added to phenotype databases.

Regarding the relationships in the second group,
the extracted symptoms are mapped to symptoms
in HPO and OMIM. In this step, 3,236 symptoms

11We considered stop words listed in http://xpo6.com/list-
of-english-stop-words/

(from 3,849 distinct symptoms in the relation-
ships) are mapped to HPO and OMIM symptoms.
The extracted relationship pairs are then compared
to relationships in HPO and OMIM, which results
in 1,422 matched relationships. As a result, we
identified 613 (3,849−3,236) new symptoms de-
scriptions that may be of interest in rare disease
studies and 4,041 (5,463−1,422) potentially new
D-S relationships1213.

6 Discussion

In SPARE, the choice of min_quality and
min_speci f icity have important consequences on
the results of the relationship extraction. Fig-
ures 5 and 6 show how the quality of the
extraction changes when these two values are
changed. In both cases, we observe relatively
few evolution of the F-Measure. In Figure 5,
min_quality between 0.35 and 0.5 achieve the best
F-measure of 56.97%. They give the same re-
sult because the number of extracted patterns with
min_quality between 0.35 and 0.5 is the same
(235 patterns). Consequently, we chose arbitrar-
ily min_quality = 0.5. As shown in Figure 6, we
chose min_speci f icity = 0.5 because it achieves
the best F-Measure. The result of F-Measure
is constant when min_speci f icity between 0 and
0.45 because the number of patterns in this inter-
val is the same.

We obtain a relatively good precision but a low
recall. We Consider that a larger corpus for learn-
ing patterns could enable us to increase the recall.
Our learning corpus is annotated manually with
true and false relationships and increasing its size
would require annotating additional relationships.

The corpus used in the learning task is relatively
small, subsequently it is not enough to train ML
methods. We propose to increase the size of the
annotated corpus in order to apply ML methods
on this corpus and compare with the results of our
SPARE method.

Studying the novelty of our extracted relation-
ships requires the comparison with the relation-
ships of phenotype databases. For now, this com-
parison is semi-automatic and partial matching re-
lies on a rather naive similarity measure. We

12A list of extracted D-S relationship examples is avail-
able at https://sourceforge.net/projects/spare2015/files/D-
SRelationsExamples.csv

13A list of extracted symptom examples is available
at https://sourceforge.net/projects/spare2015/files/symptom-
examples
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would like to develop a more systematic approach
by enabling a fine-grained comparison of pheno-
type descriptions. This could be achieved by nor-
malizing then, comparing DGs of symptom de-
scriptions.

SPARE method is a supervised classification
process, in which threshold is selected manually.
This selection can be computed automatically by
considering the best F-Measure value.

7 Conclusion

In this paper, we proposed a pattern-based method
that we call SPARE for extracting D-S relation-
ships. The patterns are learned from shortest paths
observed between the entities of interest (diseases
and symptoms) within DGs. Using only the short-
est path is simple and it captures the most impor-
tant features required to describe the relationship
between two entities. For extracting relationships
involving rare or complex symptoms, we selected
a subset of patterns that are specific to D-S rela-
tionships. In turn, a DG is helpful to extract and
define complex symptoms, that are not recognized
by other tools such as MetaMap. The novelty of
relationship extracted has been compared with re-
lationships listed in OrphaData and OMIM. This
shows the ability of the SPARE to discover exist-
ing and potentially new relationships and the abil-
ity to identify new and complex symptom as well.
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