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Abstract

This paper describes taking parsed
sentences, going to meaning repre-
sentations (the stopover), and then
back to parsed sentences (the round
trip). Keeping to the same lan-
guage tests the combined success
of building meaning representations
from parsed input and of generating
parsed output. Switching languages
when manipulating meaning repre-
sentations would achieve transla-
tion. Transfer shortfall is seen with
meaning representations built from
parsed parallel corpora data, with
English-Japanese as an example.

1 Introduction

Recent years have seen progress in the
development of open-domain semantic
parsers able to convert natural language in-
put to representations that preserve much
semantic content (see e.g., Schubert 2015
for an overview). This becomes relevant
for translation if there is also a way back
to a language string, that is, if there can
also be generation from meaning represen-
tations. This paper describes a full pipeline:
form (Historical) Penn-treebank parsed sen-
tences, a semantic parser is used to cre-
ate standard predicate logic based mean-
ing representations (see e.g., Dowty, Wall
and Peters 1981), which are converted to
PENMAN notation (Matthiessen and Bate-
man 1991) to form the basis for generation,
which proceeds as a manipulation of tree

structure to produce an output parsed tree
which can yield a language string.

The method is illustrated by round trip-
ping on English, so taking English parsed
sentences, going to meaning representa-
tions, and then back to parsed sentences of
English. It is equally possible to change
the front or back end of the pipeline, e.g.,
calculate a meaning representation for an
English sentence but use generation rules
designed for Japanese. With no modifica-
tion to the stopover meaning representation
this arrives at a result with English words
and concepts and yet Japanese parse struc-
ture. Obtaining meaning representations
from parsed parallel corpora is also illus-
trated to form the basis for capturing data
to inform the gap that remains between the
meaning representations needed to generate
sentences of one language from another.

The paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 in-
troduces the semantic parsing to start the
pipeline. Section 4 details changes for gen-
eration. Section 5 presents results of ex-
periments carried out round tripping on En-
glish data. Section 6 discusses the open
issue of what remains for translation from
one language to another, with an English to
Japanese example. Section 7 concludes.

2 Related work

There are many options for reaching what
might be called meaning representations.
Schubert (2015) is a recent overview of 12
distinct approaches, many with multiple im-
plementations. Of alternatives to section
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3, most closely related is the Boxer sys-
tem (Bos 2008), which is also part of a
pipeline taking parsed input (Boxer uses
CCG derivations), and which also imple-
ments results of Dynamic Semantics, such
as capturing donkey anaphora and handling
quantification (see e.g., Eijck and Visser
2012; Boxer uses DRT (Kamp and Reyle
1993), rather than SCT of section 3.2). A
notable difference in output is with the link-
ing of predicates: Boxer adopts, in con-
trast to classical DRT, a neo-Davidsonian
approach with information loss for how
adjuncts are anchored, posing difficulties
for transforming to the PENMAN notation
used for generation in section 4. Boxer,
the section 3 approach, as well as many
others, aim to capture compositional sen-
tence/discourse meaning by building rep-
resentations with model theoretic embed-
dings, rather than aiming for a more usage
directed “speaker meaning” (see e.g. Ben-
der et al 2015 for a viewpoint against con-
flating sentence/speaker meaning).

With the approach of this paper, after the
meaning representation is reached, much
is accomplished with tree transformations.
Schubert (2014) is an alternative to building
meaning representations from parsed tree-
bank data with only tree transformations,
and with a different tree transforming en-
gine (TTT; Purtee and Schubert 2012).

For semantic parsing directly to PEN-
MAN notation, there is JAMR (Flanigan et
al 2014), a semantic parser natively pro-
ducing Abstract Meaning Representations
(AMRs; Banarescu et al 2013). JAMR
replicates the (by design) limitations of
AMR (e.g., sentence outlook, absence of
quantification, absence of tense informa-
tion), and offers AMR advantages of devel-
oped predicate senses and semantic roles.

Generation from PENMAN notation is
also a well established research area, with
notably the Nitrogen system (Langkilde and
Knight 1998). Nitrogen relies on a statis-
tical component to filter results generated
from a base system with phrase structure

like rules. There are other systems with
generation from representations of argu-
ment structure or quasi-logical forms (e.g.,
Alshawi 1992, Humphreys et al 2001). The
generation of this paper follows a series of
transformation rules most similar to those
proposed in the generative grammar liter-
ature (e.g., Chomsky and Lasnik 1993),
which provides the theoretical foundation
underlying the treebank annotation of sec-
tion 3.1. To the knowledge of the author,
the system of this paper is the first to bring
together components to round trip on lan-
guages and evaluate the results based on a
metric measuring semantic analysis.

3 Reaching meaning
representations

The approach of this paper first requires a
way to reach meaning representations from
natural language input. Here, use is made of
Treebank Semantics (Butler and Yoshimoto
2012, Butler 2015), for the ease with which
it fits into the described pipeline, since it
takes as input the parsed trees that will be
generated as output, and for the quality of
meaning representations produced.

Treebank Semantics works by convert-
ing parsed constituent tree annotations into
expressions of a Dynamic Semantics lan-
guage (Scope Control Theory or SCT; But-
ler 2015) which is processed against a se-
quence based information state (cf. Ver-
meulen 2000, Dekker 2012) to return pred-
icate logic based representations. Section
3.1 outlines the treebank annotation, while
section 3.2 sketches reaching a meaning
representation from an example sentence.

3.1 Treebank annotation
The Treebank Semantics system accepts
parsed data conforming to the Annotation
manual for the Penn Historical Corpora
and the PCEEC (Santorini 2010). This
widely and diversely applied scheme forms
the basis of annotations for over 600,000
analysed sentences of English (Taylor et
al 2003, Kroch, Santorini and Delfs 2004,
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Kroch, Santorini and Delfs 2004), French
(Martineau et al 2010), Icelandic (Wallen-
berg et al 2011), Portuguese (Galves and
Britto 2002), Ancient Greek (Beck 2013),
Japanese (Butler et al 2012), and Chinese
(Zhou 2015) among other languages, and
has parsing systems to produce annotated
trees from raw language input (e.g., Kulick,
Kroch and Santorini 2014, Fang, Butler and
Yoshimoto 2014).

With the annotation scheme constituent
structure is represented with labelled brack-
eting and augmented with grammatical
functions and notation for recovering dis-
continuous constituents. A parse in tree
form for the sentence Pizza that I made was
delicious looks like:

✭✭✭✭✭ ❤❤❤❤❤
✭✭✭✭✭✭ ✥✥✥ ❤❤❤❤❤❤

✭✭✭✭✭ ❤❤❤❤❤

IP-MAT

NP-SBJ

N

Pizza

CP-REL

WNP-1

0

C

that

IP-SUB

NP-OB1

*T*-1

NP-SBJ

PRO

I

VBD

made

BED

was

ADJP

ADJ

delicious

.

.

Every word has a word level part-of-speech
label. Phrasal nodes (NP, PP, ADJP, etc.)
immediately dominate the phrase head (N,
P, ADJ, etc.), so that the phrase head
has as sisters both modifiers and comple-
ments. Modifiers and complements are dis-
tinguished by extended phrase labels mark-
ing function (e.g., CP-REL above encodes
that I made is a relative clause, and so a
modifier of the head noun Pizza). All noun
phrases immediately dominated by IP are
marked for function (NP-SBJ=subject, NP-
OB1=direct object, NP-TMP=temporal NP,
etc.). All clauses have extended labels to
mark function (IP-MAT=matrix clause, CP-
ADV=adverbial clause, etc.). There can be
additional annotation containing scope in-
formation to ensure an unambiguous parse
with respect to a default scope hierarchy.

3.2 Obtaining meaning representations

To obtain meaning representations, the first
step is to convert a labelled bracketed tree
into an expression to input to the SCT eval-

uation system. An SCT expression is built
exploiting the input phrase structure by lo-
cating any complement for the phrase head
to scope over, and adding modifiers as el-
ements that scope above the head. Dur-
ing construction information about binding
names is gathered and integrated with fn

fh => and fn lc => acting as lambda ab-
stractions. As a demonstration, the tree of
section 3.1 converts as follows:

val ex1 =

( fn fh =>

( fn lc =>

( some lc fh "entity"

( relc lc "q1"

( pro fh "I" "arg0"

( arg "q1" "arg1"

( past "event"

( verb lc "event"

["arg0", "arg1"] "made"))))

( nn lc "Pizza"))

"arg0"

( some lc fh "attrib" ( adj lc "delicious")

"attribute"

( past "event"

( verb lc "event" ["arg0"] "was")))))

["attribute", "arg1", "arg0"])

["event", "entity", "attrib"]

This conversion to ex1 notably trans-
forms into operations the part of speech tags
given by the nodes immediately dominat-
ing the terminals of the input constituent
tree (some (indefinite) nn (noun), verb, arg
(trace), etc.), as well as triggering opera-
tions for certain construction types (e.g.,
relc occurs because there is a relative
clause). Conversion also adds (i) infor-
mation about local binding names (e.g.,
"arg0" (logical subject role), "arg1" (log-
ical object role), "attribute"), and (ii) in-
formation about sources for fresh bindings
(e.g., "event", "entity" and "attrib")
for the introduction of variables of differ-
ent sorts. The created operations further re-
duce to primitives of the SCT language as
demonstrated with:

Hide ("event",

Close ("∃", ("entity","entity"),["event", "entity", "attrib"],

...

Lam ("q1", "arg1",

If (fn,

Use ("event",

If (fn,

Rel ([], [], "made", [At (T ("arg0", 0), "arg0"),

At (T ("arg1", 0), "arg1"),

At (T ("event", 0), "event")]),

...
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The SCT language primitives access and
possibly alter the content of a sequence
based information state that serves to re-
tain binding information by assigning (pos-
sibly empty) sequences of values to bind-
ing names, notably: Use (triggers quantifi-
cation introduction), Hide (occludes Use),
At (constructs argument,role pairs), Close
(quantificational closure), Rel (constructs
relations), If (conditional to select what
is evaluated), and Lam (shifts bindings be-
tween binding names). Evaluation of the
resulting SCT expression conspires to bring
about the enforcement of fixed roles on the
binding names from the conversion of the
parsed constituent tree annotation ("arg0",
"arg1", "attrib", etc.).

With evaluation of ex1, the following
meaning representation is returned:

∃z4x1A5e2e3(

past(e2) ∧
past(e3) ∧
delicious(A5) ∧
made(e2, z4, x1) ∧ pizza(x1) ∧
z4 = I ∧ was(e3, x1, A5))

This assumes a Davidsonian theory (David-
son 1967) in which verbs are encoded
with minimally an implicit event argu-
ment which is existentially quantified over
and may be further modified. Such
a meaning representation encodes truth-
conditional content in a standard way, but
also contains clues to assist generation.
Most notably variables have sort informa-
tion, thus: e1, e2, ... are events, x1, x2, ...
are objects, A1, A2, ... are attributes, etc.
Also, the main predicate is the most deeply
embedded right-side predicate.

4 Generation

The idea behind the approach to generation
is, from a meaning representation presented
as a tree, to follow a series of meaning pre-
serving transformations to arrive back at a
parsed syntactic representation, that is, to a
representation of the kind fed to the Tree-
bank Semantics system at the start of the
pipeline. There are two major steps. First,
there is preparation, discussed in section
4.1, and subsequently there is generation,
demonstrated in section 4.2 as building and
transforming tree structure.

4.1 Preparing for generation

Preparation for generation involves obtain-
ing an alternative tree-based representation
of the output produced by Treebank Seman-
tics. Rendering the meaning representation
of section 3.2 as a tree with argument role
information made explicit gives:

✭✭✭✭ ✘✘ ❳❳❤❤❤❤ ✘✘
✭✭✭✭ ❤❤❤❤

❤❤❤❤
✭✭✭✭✭✭ ❤❤❤❤❤❤

QUANT

EXIST

z4 x1 A5 e2 e3

AND

past

e2

past

e3

delicious

A5

made

:arg0

z4

:arg1

x1

:event

e2

pizza

x1

=

z4 I

was

:arg0

x1

:ATTRIBUTE

A5

:event

e3

Content is further re-packaged to a tree for-
mat optimised for generation. Firstly, the
binding of wide-scope existentials is made
implicit with the removal of the top quan-
tification level. Next, an argument of each
predicate is promoted to become the parent
of the predicate, notably: the left-hand ar-
gument of an equality relation, or an event

argument if present, or the sole argument of
a one-place predicate.

✥✥✥ PP

✏✏ PP

❤❤❤❤❤

✭✭✭ ❤❤❤

AND

e2

past

e3

past

A5

delicious

e2

made

:arg0

z4

:arg1

x1

x1

pizza

z4

I

e3

was

:arg0

x1

:ATTRIBUTE

A5

Next, a daughter D of the top level AND is
moved inside a sister S when the argument
name at the root of D is contained as an ar-
gument within S. Movement is to only one
location (the left-most).
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✭✭✭✭ ❤❤❤❤ ✭✭✭✭✭✭ ❤❤❤❤❤❤

AND

e2

made

:arg0

z4

I

:arg1

x1

pizza

:tense

past

e3

was

:arg0

x1

:ATTRIBUTE

A5

delicious

:tense

past

An internal argument is promoted to be-
come the root of a daughter of AND if
this enables further inclusion into a sister.
Promotion relies on folding tree material
around inverse roles from the PENMAN
notation (Matthiessen and Bateman 1991),
e.g., having arg1-of as an inverse of arg1
(logical object) enables transformation to
the following single rooted structure, and
more generally compacts long distance de-
pendencies such as are established as WH-
dependencies in English:

✭✭✭✭✭✭

✏✏ PP

❤❤❤❤❤❤

e3

was

:arg0

x1

pizza

:arg1-of

e2

made

:arg0

z4

I

:tense

past

:ATTRIBUTE

A5

delicious

:tense

past

4.2 Back to a parsed representation
Representations resulting from the changes
of the previous section are now used as the
basis for generation. This proceeds as a se-
ries of tree transformations, implemented as
a tsurgeon script (Levy and Andrew 2006)
with hundreds of transformation rules.

A tsurgeon script contains pattern/action
rules, where the pattern describes tree struc-
ture and the action transforms the tree, e.g.,
moving, adjoining, copying or deleting aux-
iliary trees or relabelling nodes. Trans-

formations are repeatedly made until the
pattern that triggers change is no longer
matched. Thus, clause structure is built
by identifying a main predicate as being
headed by an event variable (so: match e
followed by a number), and adjoining the
projection of a VBP part-of-speech tag, a
VP layer and an IP layer.

/ˆe[0-9]+$/=x !> VBP

adjoinF (IP (VP (VBP @))) x

Action adjoinF adjoins the specified aux-
iliary tree into the specified target node,
preserving the target node as the foot of
the adjoined tree. VBP (present tense
verb) may subsequently change, e.g., tense
past triggers change to VBD (past tense
verb), while was when generating English
brings about further change to BED (past
tense copula).

✭✭✭✭✭✭

✏✏ PP

❤❤❤❤❤❤

IP

VP

VBP

e3

was

:arg0

x1

Pizza

:arg1-of

IP

VP

VBP

e2

made

:arg0

z4

I

:tense

past

:ATTRIBUTE

A5

delicious

:tense

past

Subsequent changes involve moving all
structure under a main predicate into the
clause, starting with the creation of NP-SBJ
from an arg0 argument at the IP-level.
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✭✭✭

✏✏ PP

❤❤❤
IP

NP-SBJ

x1

Pizza

:arg1-of

IP

NP-SBJ

z4

I

VP

VBD

e2

made

VP

VBD

e3

was

:ATTRIBUTE

A5

delicious

The inverse role arg1-of is the foundation
for relative clause structure with an NP-
OB1 (object) trace, while if pizza had been
headed by an event variable, the structure
would bring about a clausal embedding.

✭✭✭✭✭

✘✘ ❳❳
✭✭✭✭✭ ✏✏ ❤❤❤❤❤

✭✭✭ ❤❤❤
✘✘ ❳❳

❤❤❤❤❤
✭✭✭ ❤❤❤

IP

NP-SBJ

x1

XP

Pizza CP-REL

WNP-6

0

C

that

IP

NP-SBJ

z4

I

VP

NP-OB1

*T*-6

VBD

e2

made

VP

VBD

e3

was

:ATTRIBUTE

A5

delicious

✭✭✭✭✭ ❤❤❤❤❤
✭✭✭✭✭✭ ✥✥✥ ❤❤❤❤❤❤

✭✭✭✭✭ ❤❤❤❤❤

IP-MAT

NP-SBJ

N

Pizza

CP-REL

WNP-6

0

C

that

IP-SUB

NP-OB1

*T*-6

NP-SBJ

PRO

I

VBD

made

BED

was

ADJP

ADJ

delicious

.

.

If an arg0 argument happened to be miss-
ing, either a passive transformation may re-
sult or there may be inclusion of a subject

expletive it or there for English. Adjunct
materials can find placement based on argu-
ment role information or subtree size, e.g.,
vocatives (NP-VOC) are always clause ini-
tial, a temporal NP (NP-TMP) will typi-
cally be clause initial, while, for English,
clause final positioning will be favoured for
a heavy PP or NP (whose children reach
large depths). Having arguments with the
same referent can trigger the introduction
of infinitival or participial clause structure
to create control configurations or various
types of ellipsis, such as VP ellipsis.

5 Experiments

In this section, the smatch metric for mea-
suring semantic annotation agreement rates
and semantic parsing accuracy (Cai and
Knight 2013) is used to evaluate the suc-
cess of round tripping on English. This is a
metric to measure whole-sentence semantic
analysis by calculating the degree of over-
lap between meaning representations.

The representation seen at the end of sec-
tion 4.1 is essentially compatible for calcu-
lating a smatch score. This gives a mean-
ing representation for the input sentence. A
meaning representation for the output sen-
tence is achieved by feeding the resulting
output of the round trip back into the Tree-
bank Semantics system.

Table 1 details results for 1452 anno-
tated sentences (14,118 tokens) from four
different registers that were manually se-
lected to illustrate different levels of sen-
tence complexity. All sentences are from
the Treebank Semantics Corpus1 with sen-
tences parsed to gold standard following the
annotation scheme detailed in section 3.1,
and so already unambiguous for feeding to

register sentences tokens precision recall F-score
textbook 687 5194 0.98 0.98 0.98
newswire 121 2381 0.97 0.96 0.97
(simple) fiction 547 5241 0.96 0.96 0.96
non-fiction 97 1302 0.93 0.93 0.93

Table 1: smatch scores comparing meaning representations from original and generated sentences

1https://github.com/ajb129/tscorpus
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the semantic component for the creation of
a gold standard meaning representation.

The results show that in round tripping
with English, so building a meaning repre-
sentation A and generating back to an En-
glish sentence and then building a meaning
representation B from the generated sen-
tence, and then comparing A with B, it is
possible to retain the bulk of semantic con-
tent with high precision and recall.

The results also reflect that performance
starts to decline on more challenging data.
In particular there is a notable reduction in
F-score with the non-fiction data (from a
technical manual describing the IBM 1401
Programming System). Weaknesses re-
vealed typically involve complex interac-
tions, such as happen with coordination, or
stem from constructions that are difficult
to provide a generalisable semantic analy-
sis, such as comparatives. On the genera-
tion side, improvements are possible with
more construction and lexical specific pat-
tern/action rules, reordering existing rules,
or arranging for existing rules to be retrig-
gered.

6 Towards translation

In this section, generation rules for
Japanese are demonstrated. Consider start-
ing with the same meaning representation
input as section 4.2, and first projecting
VP, IP structure. Thereafter rules diverge,
differing mostly in terms of constituent
placement.

✭✭✭

✏✏ PP

❤❤❤
IP

NP-SBJ

x1

Pizza

:arg1-of

IP

NP-SBJ

z4

I

VP

VBD

e2

made

VP

VBD

e3

was

:ATTRIBUTE

A5

delicious

✭✭✭✭✭

✘✘

✏✏ PP

❳❳

❤❤❤❤❤
✭✭✭ ❤❤❤

IP

NP-SBJ

x1

XP

:arg1-of

IP

NP-SBJ

z4

I

VP

VBD

e2

made

Pizza

VP

:ATTRIBUTE

A5

delicious

VBD

e3

was

Projection of relative clause structure is
again triggered, only for Japanese there is
projection of an IP-REL layer to the left
side of the head noun.

✭✭✭✭

✭✭✭
✭✭✭ ❤❤❤

✘✘ ❳❳

❤❤❤

❤❤❤❤
✏✏ PP

IP-MAT

NP-SBJ

x1

IP-REL

NP-SBJ

z4

I

VP

NP-OB1

*T*

VBD

e2

made

N

Pizza

VP

ADJ

delicious

VBD

e3

was

Generation is completed with the addition
of case particles.

✥✥✥
✭✭✭✭✭

✭✭✭✭✭ ✘✘ PP❤❤❤❤❤

❤❤❤❤❤

❤❤❤

✭✭✭ ❤❤❤❤❤
IP-MAT

PP

NP

IP-REL

NP-OB1

*T*

PP

NP

N

I

P

が

NP-SBJ

*が*

VBD

made

N

Pizza

P

が

NP-SBJ

*が*

ADJ

delicious

AXD

was

PU

。

This has demonstrated generation to
Japanese parse structure from a meaning
representation with English words and
concepts. In the case of this illustrative
example there is a close match with the
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corresponding Japanese version 僕 が

作ったピザがおいしかったです, seen
annotated below. However, for the general
translation task, substantial transformation
and lexical substitution of the meaning
representation used for generation will be
required.

✭✭✭
✭✭✭✭✭

✭✭✭ ❤❤❤❤

❤❤❤❤❤

❤❤❤

✭✭✭✭ ❤❤❤
IP-MAT

PP

NP

IP-REL

NP-OB1

*T*

PP

NP

PRO

僕

P

が

NP-SBJ

*が*

VB

作っ

AXD

た

N

ピザ

P

が

NP-SBJ

*が*

ADJI

おいしかっ

AXD

た

AX

です

PU

。

By feeding the Japanese version of the
example sentence into to the Treebank Se-
mantics system a meaning representation is
built:

∃x4x1e2e3(

past(e3) ∧
past(e2) ∧
x4 =僕 ∧
作っ_た(e2, x4, x1) ∧
ピザ(x1) ∧
おいしかっ_た_です(e3, x1))

Such a representation can be modified, as in
section 4.1, to form the basis for generation,
exactly as with the English example.

✏✏

✏✏ PP

PP

e3

おいしかっ_た_です

:arg0

x1

ピザ

:arg1-of

e2

作っ_た

:arg0

x4

僕

:tense

past

:tense

past

Having the above meaning representation
and the meaning representation for the cor-

responding English sentence in section 4.1,
together with meaning representations for
other sentences of parallel corpora, is a ba-
sis for extracting rules for a full translation
system.

7 Conclusion

To sum up, this paper has described a
complete pipeline for taking parsed sen-
tences, going to meaning representations
(initially to standard Davidsonian predicate
logic based meaning representations, then
to PENMAN notation), and then back to
parsed sentences (the round trip). Keep-
ing to the same language tests the com-
bined success of building meaning repre-
sentations from parsed input and of generat-
ing parsed output. Using the smatch metric
reveals that the bulk of semantic content is
retained with high precision and recall on a
range of data.

Results show that, while there is no ex-
plicit flagging in a conventional Davidso-
nian predicate logic meaning representa-
tion, as seen in section 3.2, of what is a
verb, noun, adjective, relative clause, pas-
sive, control relation, etc., much informa-
tion is found to facilitate generation when
there is sort and argument role information
and when there is subsequent re-packaging
of content, as in section 4.1, guided by the
aim to form single rooted structures.

The future direction for this research is to
show relevance for translation in being able
to switch languages at the point of manip-
ulating meaning representations. Current
transfer shortfall is seen with meaning rep-
resentations built from parsed parallel cor-
pora data.
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