
Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 33–40,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Orthography Engineering in Grammatical Framework

Krasimir Angelov
University of Gothenburg

krasimir@chalmers.se

Abstract

Orthography is an integral part of lan-
guage but in grammar engineering it is of-
ten ignored, simplified or just delegated to
external tools. We present new extensions
to Grammatical Framework, which allow
one and the same formalism to describe
both orthography, syntax and morphology.
These extensions are also easily generaliz-
able to other formalisms.

1 Introduction

Orthography is often assumed to be something
simple that is easily delegated to pre- or post-
processors. The real grammar engineering starts
only after the tokenization.

Unfortunately if this is mostly true for English,
it is more complicated in other languages. For
instance, most Germanic languages tend to build
compound nouns composed of one or more simple
nouns. Furthermore German requires that nouns
should start with a capital letter unless if the noun
is in the second part of a compound. Handling
compounds requires a separate compound split-
ter (Koehn and Knight, 2003) for parsing and
proper generator in linearization. The capitaliza-
tion is usually ignored in parsing but must be re-
covered for generation (Lita et al., 2003; Chelba
and Acero, 2004).

Agglutinative languages tend to build long
words by adding more and more suffixes which
blurs the borderline between word and morpheme.
In that case the words themselves need to be
parsed since it is not possible to enumerate all
word forms in a finite lexicon. The extreme case
is in languages that does not separate words with
spaces at all. This is usually solved by using a
preprocessor that finds a lattice of possible word
segmentations which are later parsed (Chappelier
et al., 1999; Hall, 2005).

Finally, in many languages there are lexical
units that are phonetically dependent on the con-
text. A typical example is the indefinite article
a/an in English which is different depending on
the next word in the sentence. Similarly the def-
inite article la/l in French depends on the next
word, except that the correct resolution also re-
quires knowledge of a syntactic context which is
available only in the grammar.

Because of all these complications, delegating
the orthography to an external tool has many en-
gineering disadvantages. To start with, a new tool
has to be developed for every language. The tool
moreover should partly encode knowledge that is
already in the grammar. For instance for com-
pound splitting the tool should have access to the
lexicon of the grammar. When an application
is ported from one platform to another then the
grammar itself is usually stored in a portable for-
mat and only the grammar interpreter needs to
be ported. However if external pre- and post-
processors are used then they have to be ported
as well. Everything is a lot simpler if the orthog-
raphy is encoded in a portable way as part of the
grammar itself.

We present extensions to the Grammatical
Framework (GF; Ranta 2011) which allow ortho-
graphic conventions to be encoded as an integral
part of the grammar. This possess the following
challenges.

First of all GF is a reversible formalism. One
and the same grammar is used for both parsing
and generation. In parsing we want grammars that
are robust and permissible as long as this does not
produce incorrect analyses. On the other hand in
generation we want to produce text of the best pos-
sible shape. This means for instance that accepting
a German noun that is not capitalized can be desir-
able but generating a text where the nouns are not
capitalized should be avoided.

GF is by design a multilingual formalism. A

33



single grammar typically contains modules for
several different languages. The modules are
linked together through a Logical Framework1

(Harper et al., 1993) which serves as a language
independent abstract syntax. In this multilingual
setting, having different pre- or post-processors
for the different languages will defeat the purpose
of having a single multilingual grammar.

GF grammars are distributed in a portable for-
mat (Angelov et al., 2010) which can be de-
ployed in different environments ranging from
web servers and desktop translation systems to
mobile devices. The virtual machine for GF (An-
gelov, 2011) is also developed as a platform in-
dependent software. By adding the orthographic
extensions to the framework itself, we automat-
ically make more GF applications portable since
they will not be dependent on external tools.

The grammarian in GF writes a grammar by
using a high-level functional programming lan-
guage reminiscent of Haskell and ML. However,
if we abstract away from the high-level features,
the backbone of the framework (Ljunglöf, 2004)
is equivalent to a Parallel Multiple Context-Free
Grammar (PMCFG; Seki et al. 1991). The latter
subsumes other popular formalisms such as TAG
(Joshi and Schabes, 1997) and CCG (Steedman,
2000) but contains only some of the possible RCG
grammars (Boullier, 1998). The full logical frame-
work embedded in GF in principle makes GF as
expressive as HPSG (Pollard and Sag, 1994) and
other unification grammars, but we often find this
extra level of complexity unnecessary and we stick
with the backbone of the framework.

The extensions that we present are mostly
framework independent and they can be added
even to simple context-free grammars. Because
of that and to make it easier to relate the exten-
sions to other formalisms we will use context-free
grammars for the rest of the paper. The actual im-
plementation is in the PMCFG engine behind GF.

There are four groups of extensions that we
present in four sections:

• BIND, SOFT_BIND and SOFT_SPACE in
Section 2

• CAPIT and ALL_CAPIT in Section 3

• pre in Section 4

1The name Grammatical Framework (GF) itself is the
analogy of the general Logical Framework in Harper et al.

• nonExist in Section 5

All of these extensions were frequently requested
by different people in the GF community. They
are now available as primitive operations of type
string (Str) and are exported from the standard
module Prelude. The only exception is pre,
which is a complex programming language con-
struction. In a public application the extensions
were first extensively used in the offline mobile
translator for twelve languages developed in An-
gelov et al. (2014).

2 Controlling the Spaces

The first problem is to decide whether and when
to put spaces between words. Like all formalisms,
GF describes a language as a set of strings over
a finite set of terminal symbols. This is problem-
atic in agglutinative languages and languages with
compound words since their vocabulary is theoret-
ically infinite.

The solution is to redefine what is considered
a word in the language. For instance, a Swedish
grammar should treat compound words such as
datavetenskap ‘computer science’ as two separate
words data and vetenskap, which, following the
orthographic convention in Swedish, are written
without space in between. The grammar encodes
that the two words are bound together by inserting
a special token called BIND. This can be exempli-
fied with a rule like:

fun CompoundN : N -> N -> N
lin CompoundN n1 n2 =

n1 ++ BIND ++ n2

Where CompoundN combines the two nouns re-
ferred by the two variables n1 and n2 into a single
compound noun. Obviously a realistic rule will be
more complicated but the example captures the es-
sense. The operator ++ specifies that we combine
words together to build a phrase. We put the nouns
one after another but we also insert BIND to indi-
cate that there is no space in-between. The result
from:

CompoundN data_N vetenskap_N

is the compound datavetenskap. In contrast if
we had missed the BIND, we would generate
data vetenskap which is not the correct Swedish
spelling. Both the types of the arguments as well
as the type of the result is noun (N), which allows
for compounds with multiple components with al-
ternative associativities.

34



0 1 . . .∞ 0 . . .∞
0 BIND ∗ SOFT_BIND
1 ∗ SOFT_SPACE

Table 1: Tokens for controlling the spacing. The
column shows how many spaces the parser will
accept and the row shows how many spaces are
put by the generator. Inconsistent combinations
are marked with ∗.

The same mechanism makes it possible to
model agglutinative languages. There we use a fi-
nite lexicon of words but we are free to add suf-
fixes syntactically. The suffixes are attached by
using BIND which prevents the insertion of un-
necessary spaces. This has been used extensively
in Finnish where the lexicon is composed of stems
and suffixes while the words are composed syn-
tactically. To a lesser extend the same technique
is also applied in Estonian (Listenmaa and Kalju-
rand, 2014) and Maltese (Camilleri, 2013).
BIND is useful even in English. For example

the grammars for all languages including English
must parse numerals in order to recognize whether
the numerals require singular or plural noun, i.e.
“1 apple” but “2 apples”. When we have numerals
with more than one digit then the grammar must
use BIND to glue individual digits together.

A related issue is that in many languages the
punctuation signs are glued to the previous word
(or the next word for opening parenthesis). Here
we could use BIND as well but this means that the
parser would reject sentences where the punctua-
tion is separated. Usually we do not want this and
for that purpose we also introduced SOFT_BIND.
In generation, BIND and SOFT_BIND are identi-
cal, but in parsing, the latter allows optional spaces
between the surrounding words.

For completeness we also added SOFT_SPACE
– a token which in generation mode leaves space
between the surrounding words but in parsing al-
lows the space to be omitted. The three spac-
ing tokens are summarized in Table 1. The rows
show how many spaces are inserted in generation
and the columns how many spaces are accepted in
parsing. Two of the combinations are inconsistent
since this would generate sentences that are im-
possible to parse. One combination corresponds
to the default case where ++ is used alone and
the rest of the combinations are represented with
a special token.

It should be obvious by now how BIND can
be implemented in the natural language genera-
tor. When we see BIND then we just glue the next
word to the previous one. The implementation in
the parser is not so obvious. We use a parsing algo-
rithm (Angelov, 2009) which is a variant of Earley
(1968) but is generalised to PMCFG.

Earley’s algorithm maintains items like:

[ji A→ α • β] (1)

which encode the fact that the rule A → αβ has
been partly recognized between positions i and j
in the input sentence. The difference in a parser
which can handle bindings is that positions i and j
must be measured in number of characters rather
than number of words. Now if the parser encoun-
ters an item like:

[ii N→ • ”data” BIND ”vetenskap”] (2)

and the current word is datavetenskap then it gen-
erates a new item:

[i+4
i N→ ”data” • BIND ”vetenskap”] (3)

The items in the original Earley algorithm are
grouped in sets with exactly one set for every po-
sition between two words. In our implementation
there could be from zero to two sets for every char-
acter position. Typically there is one set for every
position that corresponds to a space between two
words, i.e. exactly like in the original algorithm.
However, item 3 for example will force a new set
to be generated for the position between data and
vetenskap. This state is marked in a special
way since there is no space at that position. The
only tokens that make it possible to exit from this
state are BIND, SOFT_BIND and SOFT_SPACE.
This is exactly what will happen with item 3 which
will lead to the item:

[i+4
i N→ ”data” BIND • ”vetenskap”] (4)

The new item ends at the same position but now
it will be put in a new state which is not marked
as special and this will make it possible to accept
vetenskap as a next token.

Exactly the same modification to the Earley al-
gorithm is also applicable to the PMCFG parser
which is the basis of the implementation in GF.
Note that unlike Chappelier et al. (1999) and Hall
(2005), we do not need a lattice to represent the
ambiguous word segmentation. The ambiguity is

35



naturally represented as different alternatives in
the parse chart. However, the advantage of the lat-
tice is that a word is segmented only if all parts are
possible parts of the lexicon. In contrast the naive
implementation of a parser with BIND would seg-
ment out a prefix even if the rest of the word is not
a possible word. This is easily resolved by using
limited lookahead in the parser.

3 Controlling the Capitalization

Compounds in German require both gluing words
together as well as altering the capitalization. For
example from the nouns Aktion and Plan we
build Aktionsplan where the second noun is lower-
cased. This means that for every noun we need
one form where the first letter is capitalized, and
another where it is not. The same applies also
to verbs since all verbs can be nominalized. For
example from laufen ‘walk’ we get das Laufen
‘walking’ which requires capitalization.

Instead of storing each word form twice in
the lexicon, it is advantageous to have a way to
dynamically control the capitalization. We can
achieve this by introducing one more special to-
ken which we call CAPIT. The effect of CAPIT
is that it causes the next word in the sentence to
be rendered with initial upper case letter. We store
the words in the lexicon in lower case, but by in-
serting CAPIT in the right places in the grammar
we guarantee the right capitalization.

In a very simplified form, it could be written
like this:

fun UseN : N -> CN
lin UseN n = CAPIT ++ n

Here UseN is a function which converts a noun
into a common noun. Just like with CompoundN,
here, we ignore case, agreement and other irrele-
vant grammatical features. The noun can be a sim-
ple noun as well as a compound (composed by us-
ing CompoundN), and it is always in lower-case.
We add CAPIT in front of it to alter the capitaliza-
tion.

Altering the capitalization is the behaviour of
CAPIT in generation mode. In parsing we would
like to have robust processing, even if the input
sentence does not have the correct capitalization.
By default the GF parser is case sensitive but by
adding in the top module of the corresponding lan-
guage the declaration:

flags
case_sensitive=off;

we can instruct the parser to lower-case the input
before parsing. If all words in the grammar are
lower-cased too, the parsing becomes case insen-
sitive. This demands also that the parser must sim-
ply ignore CAPIT. In an Earley style parser, this
corresponds to adding the rule:

[ji A→ α • CAPIT β]

[ji A→ α CAPIT • β]
(5)

i.e. every time when we encounter an item with a
dot before CAPIT we are simply allowed to move
the dot to the next position.

The requirement that all words in the grammar
must be lower-cased contradicts the already es-
tablished convention for defining lexical entries in
German. An entry is defined by applying a smart
paradigm function (Détrez and Ranta, 2012) to
one or more word forms:

mkN "Junge" "Jungen" masculine

Here the forms are expected to be the lexico-
graphic forms used in the traditional paper dictio-
naries. Since the tradition is to use the capitalized
forms, the same convention was adopted in the GF
grammar as well. The conflict was easily resolved
by changing the definition of the paradigm func-
tion mkN. Because it is computed at compile time,
it has more freedom and it internally lower-cases
the forms listed in the definition.

German was the primary motivation for adding
CAPIT, but the robustness with respect to the cap-
italization is another aspect which is also useful in
other languages. One prototypical use is the capi-
talization of the first word in a sentence. Another
example is English which has a number of words
(compass directions, country adjectives, etc.) that
by convention are spelled with upper case. In all
those examples if they are encoded with CAPIT
then parsing succeeds even if the capitalization is
wrong.

The requirement that all lexical entries in the
grammar must be in lower-case means that we
need special treatment for acronyms which are
typically written with capital letters. Using
CAPIT would be enough, if we split those into a
sequence of letters glued with BIND. For example
IT (information technology) can be encoded as:

CAPIT ++ "i" ++
BIND ++ CAPIT ++ "t"

The same trick works even for mixed case combi-
nations like the word LaTeX. However, using the

36



trick requires a tedious and verbose encoding. It
is acceptable for rare combinations like LaTeX,
but we want a more compact solution for the nor-
mal acronyms. For that purpose we also added
ALL_CAPIT. The behaviour of ALL_CAPIT is
that it capitalizes all letters in the next ortho-
graphic word instead of only the first one. It
is important to emphasize that ALL_CAPIT ap-
plies to the next orthographic word and not to
the next grammatical word. This means that if
ALL_CAPIT is followed by a sequence of words
glued with BIND or SOFT_BIND then the whole
sequence will be capitalized.

Finally we should note that the robustness in the
parser also introduces additional spurious ambigu-
ities. For instance the acronym IT becomes indis-
tinguishable from the pronoun it. There should be
a soft preference for the pronoun, if the word is
spelled with lower-case, and alternatively in the
other direction if the word is upper-cased. This
is easy to implement in a parser which computes
weights for alternative analyses. In that case addi-
tional weight must be added to every analysis that
needs Rule 5 and where the next word in the sen-
tence has the wrong capitalization.

4 Phonetic Dependencies

It is quite common to have words in the language
whose exact form depends on the next word. Typ-
ical examples are the indefinite article a/an in En-
glish, the definite articles le/l’, la/l’ in French,
and the prepositions s/sǎs and v/vǎv in Bulgarian.
Keeping track of the form of the next word in the
grammar is tedious and error-prone. It is much
easier to delay the choice until we know all words
in the sentence. At that phase it is easy to check
the next word.

We do this by using the pre token2. Its general
syntax is:

pre {default;
form1 / prefixes1;
...
formN / prefixesN}

Here we start with the default form which applies
if there is no more specific variant. After the de-
fault are the specific cases. Every case is a word
form followed by slash and a list of prefixes. If the

2Strictly speaking pre is not a new addition to GF, but
its operational behaviour was never precisely defined. It also
interacts with the orthographic extensions, so it deserves at-
tention in the current paper.

next word after pre starts with one of the prefixes
in the list then the final sentence will contain the
corresponding word form. In case of ambiguity
the first matching alternative is selected.

Both the default and each of the specific forms
are arbitrary expressions. They could for instance
consist of multiple orthographic words, or they
could include other special tokens such as BIND.
The definite article in French is a good example:

pre {"la"; "l’" ++ BIND / voyelle}

If the next word starts with a vowel then the article
la should be contracted to l’ and the contraction
should be attached to the next word. We specify
this by using the expression voyelle which is
defined as the list of all vowels in French. l’ is
followed by BIND to indicate that there is no space
before the next word. The default is la without
BIND since it is spelled as a separate word.

The above gives the false impression that con-
traction in French is fully implemented. Unfortu-
nately this is not exactly the case. The problem
is that the aspirated h in French does not allow
contraction while the non-aspirated h demands it.
Unfortunately it is not possible to find whether
h is aspirated by just looking at the prefix of the
word. For this we need to know the whole word.
There is a similar problem in English where in or-
der to choose a/an we need to know whether the
next word is pronounced with initial vowel. Un-
fortunately this is not always possible to infer from
the orthographic prefix of the word. For that rea-
son the implementation for phonetic dependencies
in English and French is only approximate in the
current grammars. In contrast, the prepositions
s/sǎs and v/vǎv in Bulgarian are always reliably
detected since the orthography and the phonetics
in Bulgarian match very well. A better imple-
mentation for English and French would require
a grammar that models in parallel both the orthog-
raphy and the phonetics of the language. In that
case pre should refer to the phonetic form of the
next word rather than to the orthographic form.

French has one more feature which illustrates
why orthography should not be implemented out-
side of the grammar. The problem is that the defi-
nite article le in combination with the preposition
de is contracted to du, i.e.:

Le livre du garçon
instead of:

Le livre de le garçon
At the same time le is also the pronoun it which

37



does not allow the same contraction here:
Il m’a dit de le faire

This is easy to implement in the grammar by using
the syntactic context, but it is difficult to resolve
in a post processor working only with the surface
form of the final sentence.
pre is also used in the generation of punctua-

tion. The problem is that in many languages non-
restrictive relative clauses are separated from the
rest of the sentence with commas before and after
the clause. However, the closing comma should be
used only if there is no other punctuation mark and
if the comma is not the last word in the sentence.
The right way to encode this is:

pre {"";
"" / punct;
SOFT_BIND ++ "," / ""}

Here the first special case uses the expression
punct which lists all punctuation symbols. This
means that if the word after the comma is punctu-
ation, then we just generate the empty string. The
second case uses empty string as a prefix for filter-
ing. By definition, an empty prefix matches only
if there is at least one word after pre. Obviously
the empty string is a valid prefix for every possible
word. But, if there is no following word then only
the default form is applicable. We used the empty
string as the default since this is what we want to
generate if we are at the end of the sentence. Fi-
nally, the use of SOFT_BIND in the expression
ensures that comma is glued to the preceding word
in the sentence.

In generation mode, we always propagate the
pre until we know all words in the sentence and
then we replace it with the correct alternative. In
parsing we decided that we want to accept all al-
ternatives regardless of whether they agree with
the constraints. Usually this does not lead to false
ambiguities and accepting more alternatives only
makes the parser more robust.

5 Degenerate Inflection Tables

Another issue, that is not really related to orthog-
raphy, but is also easily solved by adding special
kinds of tokens in the grammar, is when a word
has missing inflection form. The problem is that
every lexical entry in GF is not a single word but
an inflection table with all possible forms. The
grammarian defines the entry by applying a smart
paradigm function, which is computed to an in-
flection table. For example if we define:

lin apple_N = mkN "apple"

the result will be something similar to:

lin apple_N =
table {Sg => "apple";

Pl => "apples"}

This representation fails for degenerate words
that miss one or more forms. For that purpose we
introduced the token nonExist. It can be used in
any place where a word should be put but the ac-
tual language does not have the appropriate form.

In generation mode, nonExist behaves like
an exception. Any attempt to linearise a sen-
tence which contains nonExist will fail com-
pletely and no output will be generated. Ideally
the grammarian should avoid exceptional situa-
tions and write grammars that always produce sen-
sible output. At least this should be the goal for
expressions generated from the intended start cat-
egory, i.e. for sentences. Avoiding the exceptions
is usually possible by using parameters to control
the possible choices in the grammar. nonExist
is still useful as an explicit marker for impossible
combinations in nested categories, i.e. categories
that are not used as start categories. If hiding all
exceptions in the grammar is not possible then at
least by using nonExist the user gets a chance
to handle the situation by rephrasing the request.
nonExist interacts in an interesting way with

variants in the grammar. GF provides the bar (|)
operator for listing alternative linearisations. For
example a | b is an expression which lists the
two expressions a and b as two different alterna-
tives. The API to the GF runtime provides meth-
ods for computing all possible alternatives for one
and the same expression. In that case if one of the
alternatives includes nonExist then it is simply
filtered out. Using variants in combination with
nonExist is yet another way to hide exceptions.

In parsing mode nonExist is implemented by
simply stating that items like this:

[ji A→ α • nonExist β]

should not lead to any further derivations. A
hacked-up version of nonExist can be imple-
mented by defining it as a special word which is
usually not used in the target language. In this
way we can hope that the special word will never
appear in an actual sentence and this will give
us the intended behaviour. However, this is first
of all inelegant and second it will become visi-
ble from some of the API calls. For example GF

38



is commonly used for designing controlled lan-
guages where the parser is used inside authoring
tools to assist the user in writing valid phrases in
the language. In that case using the hack will cause
the special token to show up in the suggestions
from the authoring tool. Instead we implemented
nonExist as a parser internal operation which is
always invisible from the API calls.

6 Conclusion and Future Work

We presented a number of extensions in GF that
make it easier to model orthographic phenomena
without the need to use external pre- and post-
processors. Keeping all the grammatical knowl-
edge in a single framework is a definite engineer-
ing advantage that gave us knowledge sharing and
portability. All of the extensions were extensively
tested in practice as part of the translation system
demonstrated in Angelov et al. (2014).

In the design we assumed two conflicting re-
quirements: high-precision in generation and ro-
bustness in parsing. This sounds like a logical
choice for most applications. It is possible, how-
ever, that for some applications, a more strict
parser will be desirable, too. For example in an
application for checking the correctness of a sen-
tence we may want to be more strict. There are two
ways in which this can be achieved. First of all it
is always possible to use the robust parser for pars-
ing the original input. After that the analysis can
be fed back to the generator which will produce
the canonical linearisation. The input can be com-
pared with the canonical linearisation to identify
potential problems. Another more involved solu-
tion is that we can extend the parser to keep record
of all cases where some constraint has been vio-
lated. In that way after the parsing is finished, the
user could consult the list of cases.

There is one more issue for which we have not
made a firm decision yet. We have already men-
tioned several times the ++ operator which puts
two phrases together. The framework has also an
operator + which is similar but does not insert a
space between the phrases. Its behaviour is similar
to the combination ++ BIND ++ except that it is
computed at compile time rather than at runtime.
Currently its primary use is to compute new in-
flection forms in the definitions for different mor-
phological operations. In principle, we could ex-
tend its use to a runtime operator which will fur-
ther fuse the boundary between grammatical and

orthographic words. Whether or not this is a good
design decision is still not clear to us. In any case
extending the domain of + would not make the use
of BIND obsolete since BIND can also interact in
a non trivial way with pre as in the French ex-
ample. There are also similar examples in Catalan
and Maltese.

Acknowledgement

Thanks to Aarne Ranta and the annonymous re-
viewers for their useful comments on the earlier
draft of the paper. Swedish Research Council
(Vetenskapsrådet) has supported this work under
grant number 2012-4506.

References
Krasimir Angelov, Björn Bringert, and Aarne Ranta.

2010. PGF: A Portable Run-Time Format for Type-
Theoretical Grammars. Journal of Logic, Language
and Information, 19:201–228.

Krasimir Angelov, Aarne Ranta, and Björn Bringert.
2014. Speech-enabled hybrid multilingual transla-
tion for mobile devices. In European Chapter of the
Association for Computational Linguistics, Gothen-
burg.

Krasimir Angelov. 2009. Incremental parsing with
parallel multiple context-free grammars. In Euro-
pean Chapter of the Association for Computational
Linguistics.

Krasimir Angelov. 2011. The Mechanics of the Gram-
matical Framework. Ph.D. thesis, Chalmers Univer-
sity of Technology.

Pierre Boullier. 1998. A proposal for a natural lan-
guage processing syntactic backbone. Technical Re-
port 3342, INRIA.

John J. Camilleri. 2013. A Computational Gram-
mar and Lexicon for Maltese. Master’s thesis,
Chalmers University of Technology, Gothenburg,
Sweden, September.

J.-C. Chappelier, M. Rajman, R. Arages, and A. Rozen-
knop. 1999. Lattice parsing for speech recognition.
In In Proceedings of 6me, pages 95–104.

Ciprian Chelba and Alex Acero, 2004. Proceedings
of the 2004 Conference on Empirical Methods in
Natural Language Processing, chapter Adaptation
of Maximum Entropy Capitalizer: Little Data Can
Help a Lo.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In Proceedings of the 13th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL ’12,

39



pages 645–653, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jay Clark Earley. 1968. An Efficient Context-free Pars-
ing Algorithm. Ph.D. thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA. AAI6907901.

Keith B. Hall. 2005. Best-first Word-lattice Pars-
ing: Techniques for Integrated Syntactic Language
Modeling. Ph.D. thesis, Providence, RI, USA.
AAI3174615.

Robert Harper, Furio Honsell, and Gordon Plotkin.
1993. A framework for defining logics. J. ACM,
40:143–184, January.

Aravind Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages. Vol 3: Beyond Words, chapter 2, pages 69–
123. Springer-Verlag, Berlin/Heidelberg/New York.

Philipp Koehn and Kevin Knight. 2003. Empirical
methods for compound splitting. In Proceedings
of the Tenth Conference on European Chapter of
the Association for Computational Linguistics - Vol-
ume 1, EACL ’03, pages 187–193, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Inari Listenmaa and Kaarel Kaljurand. 2014. Com-
putational estonian grammar in grammatical frame-
work. In Proceedings of LREC 2014, pages 13–18.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. truecasing. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics - Volume 1, ACL ’03,
pages 152–159, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Peter Ljunglöf. 2004. Expressivity and Complexity of
the Grammatical Framework. Ph.D. thesis, Depart-
ment of Computer Science, Gothenburg University
and Chalmers University of Technology, November.

Carl Jess Pollard and Ivan A. Sag. 1994. Head-driven
phrase structure grammar. Studies in contemporary
linguistics. Center for the study of language and in-
formation Chicago (Ill.) London, Stanford (Calif.).

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229, October.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

40


