Grammar Engineering for a Customer: a Case Study with Five Languages

Aarne Ranta
University of Gothenburg
and Digital Grammars AB

aarne@chalmers.se

Abstract

This paper describes a grammar-based
translation system built by a company for
a paying customer. The system uses a mul-
tilingual grammar for English, Finnish,
German, Spanish, and Swedish written in
GF (Grammatical Framework). The gram-
mar covers a corpus of technical texts in
Swedish, describing properties of places
and objects related to accessibility by dis-
abled people. This task is more com-
plex than most previous GF tasks, which
have addressed controlled languages. The
main goals of the paper are: (1) to find
a grammar architecture and workflow for
domain-specific grammars on real data (2)
to estimate the quality reachable with a
reasonable engineering effort (3) to assess
the cost of grammar-based translation and
its commercial viability.

1 Introduction

While statistical methods dominate in assimila-
tion (browsing quality) translation, grammars have
been argued to have a niche in dissemination (pub-
lication quality). The rationale is that such tasks
are often domain-specific and need high preci-
sion rather than wide coverage. A recent effort in
this direction was the European MOLTO project
(Hallgren et al., 2012), which developed tools for
such tasks building on the grammar formalism GF
(Grammatical Framework, (Ranta, 2011)).
MOLTO also built showcases for a few do-
mains (mathematics (Saludes and Xambo, 2011),
paintings (Damova et al., 2014), business models
(Davis et al., 2012), and touristic phrases (Ranta
et al.,, 2012)). But these showcases were all
dealing with CNL (controlled natural language),
which was defined by the grammar writers and de-
signed to be processable by formal grammars. The

Christina Unger
Bielefeld University

cunger@cit-ec.uni-bielefeld.de

1

Daniel Vidal Hussey
University of Gothenburg

daniel.vidal.hussey@gmail.com

present paper takes a step beyond these research
prototypes, as the language to be translated is not
controlled, but naturally written by different au-
thors at different times. The system was ordered
by a paying customer to solve a real problem. Also
the size of the language is larger than in the men-
tioned MOLTO applications.

The task was to create a translation system for a
web service documenting the accessibility to dif-
ferent sites, e.g. whether they can be visited by
wheelchair users'. The service provider had a set
of text templates written in Swedish, for instance
stating that the width of the door is [X]. These
templates had previously been translated by pro-
fessional translators to English and partly to other
languages. Also Google translate had been used
for some languages.

For quality reasons, Google translate was
deemed unsatisfactory by the customer. Manual
translation was problematic because of its high
cost and low speed: the system is updated by new
texts continuously, and their translations should
appear without delays. Therefore the customer
contracted a company? to build an automatic sys-
tem that could deliver high-quality translations
faster than before.

This paper addresses a part of the task: a gram-
mar used for translating from Swedish to English,
Finnish, German, and Spanish. The translation
system parses Swedish sentences (i.e. templates)
and generates translations in other languages, by
using the interlingual grammar architecture of GF.
The translations are manually revised and post-
edited, partly because the customer wants to be
sure about their quality, partly because the input
is noisy and contains typos, grammar errors, and
other problems not amenable to purely grammar-
based automatic translation. A fully automatic
system would require more control on the input

I Tillgiinglighetsdatabasen, www.t-d. se.
’Digital Grammars AB, www.digitalgrammars . com.

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 1-8,

Beijing, China, July 26-31, 2015. ©2015 Association for Computational Linguistics

language. This was left to future work.

The approach we chose was the “Embedded
CNL” (Ranta, 2014): a Controlled Natural Lan-
guage embedded in a general purpose syntactic
grammar. The parser gives priority to CNL analy-
ses whenever possible, but also provides coarser
analyses as back-up. This makes the automatic
translation robust. Since the system knows which
grammar rules are used for each part of the trans-
lation, it can show confidence information to the
user and the post-editor.

The main questions of this paper are:

e How to best build an embedded CNL system

for a task like this?

e How good is the quality, in terms of the usual

MT scores and post-editing required?
e Is this approach commercially viable, i.e.
competitive with human of translation?
The paper has the following structure: Section 2
describes the text corpus to be translated. Sec-
tion 3 is a very brief introduction to GF. Sec-
tion 4 outlines the structure of the grammar and
the grammar writing process. Section 5 outlines
the translation and post-editing workflow. Sec-
tion 6 gives evaluation on two dimensions: the
time taken by grammar writing and post-editing,
and the usual scores (BLEU) for translation qual-
ity. Section 7 discusses related work. Section 8
concludes, trying to answer the three questions
and give recommendations for later work.

2 The corpus

The starting point was a set of texts in Swedish.
Most of them had manual translations in English,
many also in Finnish and German. The cus-
tomer was happy with the English translations but
wanted to replace the Finnish and German ones, as
well as to create Spanish translations. The num-
ber of texts was around 1,900, mostly short sen-
tences of under 10 words. But as the texts also had
heavy HTML markup, which had to be rendered
correctly in translation, the corpus with tags and
repetitions of texts had 26,000 tokens.

The most interesting part of the markup was the
variable, a segment into which some actual value
is inserted when the text is used to describe some
object. As the first step of translation, we erased
all markup but the variable. As the last step, we
inserted it back by using an alignment between the
source and the translation.

Figure 1 shows a sample from the corpus. The

variables are in brackets. The brackets contain
identifiers marking what kind of value is to be in-
serted in them; the final grammar distinguishes be-
tween 13 different variables, which typically be-
long to different syntactic categories.

After the removal of markup, the number of
unique texts was 1,185, word count 7,309. There
were 1,258 unique words and 980 unique lem-
mas, as measured by the morphological analyser
of SALDO (Borin et al., 2013). 906 of these were
content words (nouns, adjectives, verbs), most of
which had precise technical meanings.

In the grammar writing process, it turned out
that many word combinations must be treated as
multiword constructions, since their translations
are not compositional. For instance, Swedish
motsvarande is literally corresponding, but the
proper translation of NP eller motsvarande is NP
or similar in English, NP o elemento parecido in
Spanish.

72 such constructions were included in the fi-
nal lexicon. This number is relatively low because
Swedish forms compounds without spaces, and
these were easy to identify as tokens at the out-
set. For comparison, the final English lexicon has
274 multiwords. Starting with English would thus
involve more work in identifying the multiwords.

3 GF and resource grammars

GF started at Xerox (XRCE) to support multilin-
gual generation in controlled-language scenarios
(Dymetman et al., 2000). A GF grammar consists
of an abstract syntax, which captures the seman-
tics of the application domain, and a set of con-
crete syntaxes, which map abstract syntax trees
into strings of different languages. As an example
from the domain of this paper, one could have an
abstract syntax function

fun Length :
Object -> Measure -> Fact

to model sentences such as the length of the chang-
ing table is 120 cm. The concrete syntax is given
by a linearization rule,

lin Length o m =
"the length of" ++ o ++ "is" ++ m

This rule is nothing but a string template, which
together with the abstract syntax rule is a decom-
position of the context-free grammar rule

Fact ::=
"the length of" Object "is" Measure

avakningsskyddet &r placerat pa [object]
the protective guards are placed on [object]

begransad gangyta dr [units] bred
the limited pedestrian area is [units] wide

karusell [exist] som &r anpassad for rullstol
roundabout adapted for wheelchair is [exist]

sprak vid visning eller guidning [is] speciellt anpassat for att vara enkelt och lattforstaeligt
language when showing or guiding [is] especially adapted to be simple and easy to understand

Figure 1: Parallel English-Swedish sentences from the corpus.

to a “tectogrammarical” and “phenogrammatical”
rule (Curry, 1961). The strength of GF is that dif-
ferent languages can have not only different lin-
earizations but also different fypes of lineariza-
tions. Thus for instance Object in English is
a string, but in German case-dependent string,
which is rendered in the genitive in this construc-
tion. The German linearization rule is thus

"die Lénge" ++ gen o ++ "ist" ++ m

which generates die Linge des Wickeltisches ist
120 cm for the object whose nominative form is
der Wickeltisch. The Finnish and Spanish rules are

gen o ++ "pituus on" ++ m
"la longitud"++ gen o ++"es de"++ m

respectively, where Finnish has a different word
order and Spanish adds the preposition de.

The first GF grammars were small, typically
involving up to 200 abstract syntax rules; their
context-free expansions could of course be thou-
sands of rules, due to parametric variations such
as case. But it soon turned out that writing
such grammars from scratch for each applica-
tion was untenable, as each application had to re-
implement morphology and syntax. To relieve this
task, the GF Resource Grammar Library (RGL)
(Ranta, 2009) was created, inspired by the re-
source grammars of CLE (Core Language Engine)
(Rayner et al., 2000). The current RGL includes
30 languages, implementing the inflectional mor-
phology and a comprehensive part of the syntax
of each language. The RGL has a common API
(Application Programmer’s Interface) based on an
abstract syntax. Thus for instance

possCN : CN -> NP -> CN

is a function that forms the possessive “CN of NP”
for any CN (common noun) and NP (noun phrase)
in any of the 30 languages. The linearization rules
of Length can now be written

mkCl (mkNP the_Det
(possCN (mkCN length_N)) o) m

uniformly in these four languages, by just varying
the definition of the constant length N, which in
turn can be written

mkN "length"
mkN "Lange"
mkN "pituus"
mkN "longitud"

using the smart paradigms (Détrez and Ranta,
2012) of each language, which infer the morpolog-
ical properties of words from one or more forms.
In Spanish, the argument m must be made into a
prepositional phrase (prepNP de_Prep m).

The RGL has increased the productivity of CNL
implementations in GF, so that a system with a few
hundred abstract syntax rules can be created in a
few days and portable to any new language in a
few hours (Ranta et al., 2012). The RGL has re-
cently also scaled up to open-domain translation,
due to improved parsing algorithms and statisti-
cal disambiguation (Angelov and Ljunglof, 2014),
chunk-based back-up of syntactic parsing (Ranta,
2014), and the ease of building large lexica with
smart paradigms. As a demonstration, a wide-
coverage translator (WCT) has been released as
a mobile app (Angelov et al., 2014).

4 The grammar writing process

The grammar writing task was given the following
constraints, for reasons of commercial viability:
1. The abstract syntax and Swedish should be
built in 2 person weeks.
2. Each of the other languages should be built in
1 person week, including the postprocessing
of the translations.
3. Later translations of similar text should be
five times as fast as human translation.

4. Each language could be implemented by a
different programmer, who does not need to
know the other grammars.

5. The grammarians need basic GF skills and
native knowledge of the target language, but
no Swedish.

Constraints 1 and 2 meant that we had to stop the
grammar development at some point and proceed
to post-editing, even if the grammar was not yet
perfect. Thus the workflow for each target lan-
guage (after the abstract syntax and Swedish) was
defined as follows:

e Days 1,2: Initial grammar, complete for the
abstract syntax.

e Days 3,4: Translation + post-editing + gram-
mar improvement loop.

e Day 5: Post-editing to deliver the final trans-
lations.

Constraint 3 means that the grammar must be
good enough to support faster translation in later
tasks. Constraint 4 means that the work can be
done in parallel, constraint 5 that the grammar
can easily be extended with new languages. In
the actual task reported here, the three program-
mers were native speakers of Finnish, German,
and Spanish, two of them GF experts and the third
one a student with a basic course of GF covering
most of the textbook (Ranta, 2011).

The source texts were in Swedish, but requir-
ing knowledge of Swedish would make it too hard
to find grammarians for new languages. Two of
the grammarians actually had to work on the ba-
sis of the English translations. It turned out useful
to write an English concrete syntax to help their
work, so that they knew exactly what was intended
with each abstract rule. The English grammar was
not a part of the deal, but it was needed for this
purpose as well as for future use. It was also a san-
ity check of the abstract syntax: building a gram-
mar with only one language in mind could result
in an abstract syntax that is not abstract enough, as
pointed out in the “best practices” of the MOLTO
project (Hallgren et al., 2012).

The process thus started with the abstract syntax
together with concrete syntaxes for Swedish and
English. We had two main options for the gram-
mar writing process:

e bottom-up: build a dedicated CNL and im-
plement it with the RGL (resource grammar
library);

e top-down: start with the WCT (wide-

coverage translator) and improve it by

domain-specific rules (using RGL).
The bottom-up approach was excluded almost im-
mediately, because we had to take the corpus as
it was: we had to translate sentences written in
different times by different human authors, which
could not be expected to follow strict CNL rules.

Figure 2 shows the grammar writing phases.

The rectangles are off-the-shelf components from
GF open source repositories. The ovals are gram-
mar parts created in the project. The dashed rect-
angle RGL means that the RGL is used as a li-
brary rather than as a part of the run-time transla-
tion grammar.

Phase 0: WCT

We started with a baseline using WCT out of
the box, just extended with rules for the vari-
ables. The results were far from satisfactory.
We did receive translations to all sentences, but
they were too often relying on robustness (i.e.
chunking rather than full analyses), lexical choices
were bad, and many words were returned un-
translated because they were missing. The same
happens with Google translate, because there are
many uncommon Swedish words. The grammar
at this phase was just the wide-coverage transla-
tion grammar of GF.

Phase 1: WCT + lexicon

This phase added the missing words to the lexicon,
but the syntax was still the WCT syntax. Many
compounds were first translated compositionally
from their parts: thus lekplatsomrdde became the
incomprehensible game place section instead of
the correct playground area. Such problems could
have been partly solved by using the corpus as
data for statistical phrase alignment and deriving
a GF multiword lexicon from that (Enache et al.,
2014). But the data was fully available only for
English, and it did not have the desired termi-
nological consistency. Thus we ended up creat-
ing a lexicon semiautomatically from the corpus,
occasionally adding multiword constructions later
when new languages required this. The grammar
at this phase was the wide-coverage grammar plus
the domain-specific lexicon.

Phase 2: CNL as extended subset of WCT

There were two problems with the grammar built
using the top-down strategy:

- WCT - WCT

l ! :

I 1 | \

I 1 | \

| RGL | ! RGL !
phase 0 phase 1

Figure 2: The four phases of grammar development.

e Ambiguity: including all syntax rules creates
ambiguities that are not adequately solved by
the generic statistical model of WCT.

e Incompleteness: even though all sentences
are parsed, the parses don’t capture idiomatic
constructions typical of this domain.

The incompleteness concerned not only multiword
constructions, but also general syntactic rules.
Some authors of the corpus had used a tele-
graphic style, with missing articles and endings;
Swedish expresses definiteness in morphology, for
instance, dorren = dorr + en (“the door”). These
phenomena required new rules in the general syn-
tax, not just domain-specific CNL rules.

At the same time, only some of the RGL struc-
tures turned out to be actually needed. Less than a
third of the 216 combination rules in the RGL ab-
stract syntax were used in correct analyses of the
corpus; the rest were just creating spurious parses

The module system of GF provides a way to
reuse and recombine parts of grammars, even of
grammars given as “black boxes” such as the RGL
in its standard binary distribution. Using these
techniques, we made two kinds of changes on top
of the standard RGL.:

e Removing rules until we got just those parses

that made sense for the domain.

o Adding rules that enabled parsing input that
was not parsed correctly before.

We ended up removing all but 30 rules of the stan-
dard RGL and adding about 40 new rules, having
to do with the telegraphic style, measument units,
and existential constructions. In addition, 16 rules
were needed to embed the variables in standard
syntactic constructions. They were not always just
words, but syntactic functions.

For example, the existential variable [exist],
as shown in Figure 1, marks a semantic function

that is realized in different ways in different lan-
guages. The abstract syntax is simply

fun VarExistNPS : NP -> S

The linearization has a variable that gets both
positive and negative values, “there is/are (not)”.
This cannot be done by simple slot-filling, be-
cause the filler may depend on the surrounding
sentence (e.g. “‘is/are” in English) and because,
conversely, the surrounding sentence may depend
on the slot filler (in Finnish, the NP is in the nomi-
native if the existential is positive, partitive if neg-
ative). However, human translators had been inge-
nious and found ways to generate acceptable lan-
guage even with slot filling. Thus the existential
verb of Swedish was rendered as an adjective in
English ((not) available) and in German ((nicht)
erhdltlich). Swedish (finns (inte)) and Spanish
((no) hay) could both be treated with verbs.

From the engineering point of view, the syntax
part was extremely simple. The GF source code
is around 180 lines for all languages, as opposed
to the lexicon, which is around 1050 lines. The
RGL and its common API come with the promise
that writing grammars by using the RGL is equally
complicated for all languages supported, which is
corroborated by these figures; see the full code
statistics in Table 2.

The resulting grammar was a CNL based on an
abstract syntax that was syntactic rather than se-
mantic. Thus for instance the length of X is Y is
not parsed as the logical predication (Length X
Y) but as an NP-VP predication

Pred (PossNP X (UseN langd N))
(MeasureVP Y)

This kind of abstract syntax is also used in
ACE (Attempto Controlled English) (Fuchs et al.,
2008). The syntactic structures and their logi-

cal semantics are known since (Montague, 1974),
which makes ACE well suited for inference. But it
is not so good for translation, because syntax may
have to be changed when going from one language
to another. Adding semantic constructions to the
abstract syntax would therefore be the way to go
if perfect quality was required.

The grammar at this point was a CNL with the
lexicon generated in the previous phase, together
with a minimal set of syntax rules. This grammar
was able to translate 95% of the corpus.

Phase 3: Embedded CNL in WCT

The grammar of phase 2 left 54 sentences un-
parsed. These sentences were long, tricky, and of-
ten ungrammatical. Extending the grammar would
have been hard work with diminishing returns.
What is more, the time allocated for grammar de-
velopment was coming to its end. The practical
solution was to switch back to the WCT for the
remaining sentences.

Since the same grammar was expected to be
used later for new sentences, we wanted a solution
with the best of both worlds: use CNL as much as
possible and WCT only as a back-up. An embed-
ded CNL does this by combining the two gram-
mars under a common start category, say S_top.
This category can be produced in two ways:

UseCNL
UseWCT :

S_cnl -> S_top
S_wct -> S_top

The weights in the probabilistic parser are set so
that UseCNL is given priority over UseWCT.

However, even unparsed sentences may have
parts that belong to the CNL. For instance, they
can contain noun phrases that are technical terms
whose translation is domain-specific. To make
maximal use of these parts, the robust grammar
has coercion rules from 12 subsentential cate-
gories of the CNL to corresponding categories of
the WCT, for instance,

CoercelNP NP_cnl -> NP_wct

The weights are again set in a way that gives this
rule priority over other rules producing NP_wct.

The additional grammar module for the robust
grammar is just 70 lines, actually the same for all
languages except for the import list telling which
RGL modules are used. It can therefore be pro-
duced automatically for any new language.

The final version of the grammar was now able
to parse all sentences in the corpus, 95% with the
CNL and 5% with robustness.

5 The translation workflow

With the abstract syntax, Swedish, and English in
place, the grammarians of Finnish, German, and
Spanish started their work. The Swedish/English
grammarian meanwhile produced a treebank cov-
ering the whole corpus, to guide the other gram-
marians. The grammarians used the trees in the
treebank to generate their own translations. Fig-
ure 3 shows an example entry from the treebank.

The GF translation is often different from the
original human translation, either because it is
wrong or because it just expresses the meaning in
a different way. In Figure 3, both reasons apply.
The translation is wrong because it uses the indef-
inite article; this in turn because the telegraphic
Swedish null determiner is rendered as an indefi-
nite in the English grammar - which is correct in
most cases, but not in this one (where the omis-
sion of determiner in the source is actually a ques-
tionable choice). The grammar moreover uses a
different word for gangyta, namely walking area
instead of pedestrian area. This is fine, because
both translations occur in the reference.

The grammarians used the treebank to guide
their grammar development. In the last phase,
they moved on to just post-editing the translations.
The final deliverable of the grammarians was the
concrete syntax modules, the machine translations
produced by the grammar, and the post-edited cor-
rect translations.

6 Evaluation

The first evaluation question is the quality of the
translations. Table 1 shows BLEU scores for each
language, computed by the Asiya tool (Gonzalez
et al., 2012) by using the post-edited translations
as reference, as well as the percentage of transla-
tions that were correct without post-editing. The
results cover all 1,185 texts of the corpus and
are also shown separately for the CNL and robust
translations. The Google translate scores are also
with a reference obtained by post-editing the MT
result minimally. These scores are for a sample
of 40 sentences for CNL and 10 for robust trans-
lations and hence less representative. Notice that
this is not a proper evaluation in the usual sense,
because the grammar is tested on the same mate-
rial that was used for building it; the purpose here
is to measure the quality that can be produced by
a limited effort, and also to check how it com-
pares to Google translate, which had been previ-

Swe: begrénsad gangyta &r [units] bred

GF: (Pred (NullDetCN (AdjCN (PastPartA begransa_V2) (UseN gangyta_N))) (measureVP varMeasure bred_A))

Eng: a restricted walking area is [units] wide

Ref: the limited pedestrian area is [units] wide

Figure 3: Example of a GF treebank entry: Swe (source), GF (tree), Eng (GF translation), Ref (human translation).

language correct | BLEU,GF | Google
Finnish, CNL 48% 77 31
Finnish, robust 0% 31 20
Finnish, all 46% 73 28
German, CNL 44% 75 37
German, robust 0% 33 34
German, all 42% 73 37
Spanish, CNL 34% 76 28
Spanish, robust 0% 39 25
Spanish, all 32% 74 28

Table 1: Quality evaluation.

ously used by the customer.

The second evaluation question is the produc-
tivity of grammar writing as a translation method.
Table 2 shows the working hours and lines of GF
code spent on different languages. The “prepare”
score shows the hours spent on analysing and
preparing the data and the amount of Haskell code
written to help the task. The main result is that the
time budget was held: 200 hours were allocated
and 138 used. The high post-edit speed predicts
that system development costs are amortized as
more texts are translated. The time difference be-
tween the Spanish and other grammarians reflects
the prior GF expertise of the grammarians and also
the availability of some prior Finnish and German
translations that helped with the technical termi-
nology. Each new language amortizes the cost of
the generic parts (48 hours), due to the interlin-
gual architecture. The interlingual RGL explains
why different languages need similar amounts of
GF code.

7 Related work

Grammar-based translation is familiar from com-
pilers, where synchronous grammars (Aho and
Ullman, 1969) are a technique that has also
been applied to human languages. With its ex-
plicit interlingua (abstract syntax), GF resembles
(Rosetta, 1994), whereas most other approaches
are based on transfer, e.g. (Rayner et al., 2000;
Butt et al., 2002; Rayner et al., 2000).

The quality of the earlier GF projects using pure
CNLs is higher, with typical BLEU scores be-
tween 80 and 95 (Rautio and Koponen, 2013). But

language | GE | PE | PES | Ws/h | LoC
Finnish 14 6 | 1200 370 | 1292
German 18 6 | 1200 300 | 1290
Spanish 38 8 900 160 | 1291
Swedish 12 - - - | 1303
English 12 - - - | 1284
abstract 12 - - - | 1286
prepare 12 - - - 400
total 118 | 20 | 1100 160 | 8056

Table 2: The grammar writing and translation effort. GE =
grammar engineering (hours), PE = postediting (hours), PES
Ws (post-editing speed words per hour), Ws/h (words trans-
lated per hour of work), LoC = lines of GF/Haskell code. The
“total” for PES and Ws/h means the average of all languages.

it is interesting to note that even in those cases, the
post-editors were not fully satisfied. Thus it is not
clear if translation can be made completely auto-
matic, if dissemination quality is the goal.

8 Conclusion

How to best build a system like this? The em-
bedded CNL approach provided a good balance of
quality and robustness. The CNL parsed 95% of
the sentences, and covering the rest would have
given diminishing returns. Including more seman-
tic constructions (rather than syntactic combina-
tions) in the CNL could have given better quality.

How good is the quality? The BLEU scores
were at least 73 for all languages, which meant
easy post-editing, at least 900 words per hour.

Is this approach commercially viable? The
translation of the corpus to three languages was
made at the rate of 160 words per hour, which
includes both grammar writing and post-editing.
This is comparable to human translation, so that
we are just above the bar if only this corpus is con-
sidered. However, the high post-editing speed sug-
gests that building grammars is profitable if more
text of the same kind is translated later. More-
over, the interlingual architecture of GF enables
new languages to be added at lower costs.

References

Alfred V. Aho and Jeffrey D. Ullman. 1969. Syntax
directed translations and the pushdown assembler.
Journal of Computer and System Sciences, 3(1):37
- 56.

Krasimir Angelov and Peter Ljunglof. 2014. Fast
statistical parsing with parallel multiple context-free
grammars. In EACL’14, pages 368-376.

Krasimir Angelov, Bjorn Bringert, and Aarne Ranta.
2014. Speech-enabled hybrid multilingual transla-
tion for mobile devices. EACL’14, pages 41-44.

Lars Borin, Markus Forsberg, and Lennart Lonngren.
2013. Saldo: a touch of yin to wordnet’s yang. Lan-
guage resources and evaluation, 47(4):1191-1211.

Miriam Butt, Helge Dyvik, Tracy Holloway King,
Hiroshi Masuichi, and Christian Rohrer. 2002.
The parallel grammar project. In Proceedings of
the 2002 workshop on Grammar engineering and
evaluation-Volume 15, pages 1-7. Association for
Computational Linguistics.

Haskell B. Curry. 1961. Some logical aspects of
grammatical structure. In Roman Jakobson, edi-
tor, Structure of Language and its Mathematical As-
pects: Proceedings of the Twelfth Symposium in Ap-
plied Mathematics, pages 56—68. American Mathe-
matical Society.

Mariana Damova, Dana Dannélls, Ramona Enache,
Maria Mateva, and Aarne Ranta. 2014. Multi-
lingual natural language interaction with semantic
web knowledge bases and linked open data. In To-
wards the Multilingual Semantic Web, pages 211—
226. Springer Berlin Heidelberg.

Brian Davis, Ramona Enache, Jeroen van Grondelle,
and Laurette Pretorius. 2012. Multilingual verbali-
sation of modular ontologies using gf and lemon. In
Tobias Kuhn and Norbert Fuchs, editors, Controlled
Natural Language, volume 7427 of LNCS/LNAI,
pages 167—184. Springer.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In EACL (European As-
sociation for Computational Linguistics), Avignon,
April. Association for Computational Linguistics.

Marc Dymetman, Veronika Lux, and Aarne Ranta.
2000. XML and multilingual document author-
ing: Convergent trends. In Proc. Computational
Linguistics COLING, Saarbriicken, Germany, pages
243-249. International Committee on Computa-
tional Linguistics.

Ramona Enache, Inari Listenmaa, and Prasanth Ko-
lachina. 2014. Handling non-compositionality in
multilingual CNLs. In Controlled Natural Lan-
guage - 4th International Workshop, CNL 2014,
Galway, Ireland, August 20-22, 2014. Proceedings,
volume 8625 of LNCS.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.
2008. Attempto Controlled English for Knowledge
Representation. In Cristina Baroglio, Piero A. Bon-
atti, Jan Maluszyniski, Massimo Marchiori, Axel
Polleres, and Sebastian Schaffert, editors, Reason-
ing Web, Fourth International Summer School 2008,
number 5224 in LNCS, pages 104—124. Springer.

Meritxell Gonzalez, Jesis Giménez, and Lluis
Marquez. 2012. A Graphical Interface for MT
Evaluation and Error Analysis. In The 50th Annual
Meeting of the Association for Computational Lin-
guistics.

Thomas Hallgren, Aarne Ranta, John Camilleri,
Grégoire Détrez, and Ramona Enache. 2012. Gram-
mar Tools and Best Practices. MOLTO Deliverable
D2.3, June.

Richard Montague. 1974. Formal Philosophy. Yale
University Press, New Haven. Collected papers
edited by Richmond Thomason.

Aarne Ranta, Ramona Enache, and Grégoire Détrez.
2012. Controlled Language for Everyday Use: the
MOLTO Phrasebook. In Tobias Kuhn and Norbert
Fuchs, editors, Controlled Natural Language, vol-
ume 7427 of LNCS/LNAI. Springer.

Aarne Ranta. 2009. The GF Resource Grammar Li-
brary. Linguistics in Language Technology, 2:1-65.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford.

Aarne Ranta. 2014. Embedded controlled languages.
In Controlled Natural Language - 4th International
Workshop, CNL 2014, Galway, Ireland, August 20-
22, 2014. Proceedings, volume 8625 of LNCS.

Jussi Rautio and Maarit Koponen. 2013. Deliverable
9.2: Molto evaluation and assessment report.

Manny Rayner, David Carter, Pierrette Bouillon, Vas-
silis Digalakis, and Mats Wirén. 2000. The Spoken
Language Translator. Cambridge University Press,
Cambridge.

Manny Rayner, Beth Ann Hockey, and Pierrette Bouil-
lon. 2006. Putting Linguistics into Speech Recogni-
tion: The Regulus Grammar Compiler. CSLI Publi-
cations.

M. T. Rosetta. 1994,
Kluwer, Dordrecht.

Compositional Translation.

Jordi Saludes and Sebastian Xambd. 2011. The
gf mathematics library. In Pedro Quaresma and
Ralph-Johan Back, editors, Proceedings First Work-
shop on CTP Components for Educational Soft-
ware (THedu’11), number 79, pages 102—-110. Elec-
tronic Proceedings in Theoretical Computer Sci-
ence, 02/2012.

