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Abstract 

This paper describes our participation in 
the QALB-2015 Automatic Correction of 
Arabic Text shared task. We employed 
various tools and external resources to 
build a rule based correction method. 
Hand written linguistic rules were added 
by using existing lexicons and regular 
expressions. We handled specific errors 
with dedicated rules reserved for non-
native speakers. The system is simple as 
it does not employ any sophisticated ma-
chine learning methods and it does not 
correct punctuation errors. The system 
achieved results comparable to other ap-
proaches when the punctuation errors are 
ignored with an F1 of 66.9% for native 
speakers’ data and an F1 of 31.72% for 
the non-native speakers’ data. 

1 Introduction 

The Automatic Error Correction (AEC) is an 
interesting and challenging problem in Natural 
Language Processing. The existing methods that 
attempt to solve this problem are generally based 
on deep linguistic and statistical analysis. AEC 
tools can assist in solving multiple natural lan-
guage processing (NLP) tasks like Machine 
Translation or Natural Language Generation. 
However, the main application of AEC is the 
building of automated spell checkers to be used 
as writing assistant tools (e.g. word-processing) 
or even for applications such as Mobile auto-
completion and auto correction programs, post-
processing optical character recognition tools or 
with the correction of large content site such as 
Wikipedia. Conventional spelling correction 
tools detect typing errors simply by comparing 

each token of a text against a dictionary of words 
that are known to be correctly spelled. Any to-
ken that matches an element of the dictionary, 
possibly after some minimal morphological 
analysis, is deemed to be correctly spelled; any 
token that matches no element is flagged as a 
possible error, with near-matches displayed as 
suggested corrections (Hirst 2005). 
 
In this paper we describe our participation in the 
QALB-2015 shared task (Rozovskaya 2015) 
which is an extension of the first QALB shared 
task (Mohit et al. 2014) that took place last year. 
The QALB-2014 shared task was reserved to 
errors in comments written to Aljazeera articles 
by native Arabic speakers (Zaghouani et al. 
2014; Obeid et al. 2013). The 2015 competition 
includes two tracks. The first track is dedicated 
to errors produced by native speakers and the 
second track includes correction of texts written 
by learners of Arabic as a foreign language (L2) 
(Zaghouani et al. 2015). The native track in-
cludes Alj-train-2014, Alj-dev-2014, Alj-test-
2014 texts from QALB-2014. The L2 track in-
cludes L2-train-2015 and L2-dev-2015. This da-
ta was released for the development of the sys-
tems. The systems were scored on blind test sets 
Alj-test-2015 and L2-test-2015. 

 
Our pipeline approach is based on a combination 
of pre-existing tools, hand written contextual 
rules and lexicons. Detecting and correcting such 
complex errors within the scope of a rule based 
approach require specific rules to be written in 
order to correctly analyze the dependencies be-
tween words in a given sentence. The remainder 
of this paper is organized as follows: Section 2 
describes the related works. Section 3 presents 
our approach including the tools and resources 
used and finally in Section 4 we report the re-
sults obtained on the Development set.  
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2 Related Works 

The task of automatic error correction has been 
explored widely by many researchers in the past 
years especially for the English language. Many 
approaches have been used to build systems (hy-
brid, rule base, supervised and unsupervised ma-
chine learning…). These systems used various 
NLP tools and resources including pre-existing 
lexicons, morphological analyzers and Part of 
Speech Taggers. We cite for the English lan-
guage early works done by (Church and Gale, 
1991; Kukich, 1992; Golding, 1995; Golding 
and Roth, 1996). Later on we find (Brill and 
Moore, 2000; Fossati and Di Eugenio, 2007) and 
more recently Han and Baldwin, 2011; Dahl-
meier and Ng 2012; Wu et al., 2013). For Ara-
bic, this problem has been investigated in a cou-
ple of papers as in Shaalan et al. (2003) who pre-
sented his work on the specification and classifi-
cation of spelling errors in Arabic. Later on, 
Haddad and Yaseen (2007) built a hybrid ap-
proach that used rules and some morphological 
features to correct non-words using contextual 
clues and Hassan et al. (2008) presented a lan-
guage independent text correction method using 
Finite State Automata. More recently, Alkanhal 
et al. (2012) wrote a paper about a stochastic 
approach used for word spelling correction and 
Attia et al. (2012) created a dictionary of 9 mil-
lion entries fully inflected Arabic words using a 
morphological transducer. Later on, they used a 
dictionary to build an error model by analyzing 
the various error types in the data. Moreover, 
Shaalan et al. (2012) created a model using uni-
grams to correct Arabic spelling errors and re-
cently, (Pasha et al., 2014) created MADAMI-
RA, a morphological analyzer and a disambigua-
tion tool for Arabic. Finally, Alfaifi and Atwell 
(2012) created a native and non-native Arabic 
learner’s corpus and an error coding correction 
taxonomy made available for research purpose. 

3 Our Approach 

Our correction approach watches out for certain 
predefined “errors” as the user types, replacing 
them with a suggested “correction” depending 
on the corpus type L1 or L2. Therefore an error 
analysis was performed on the provided data set 
to find the most frequent error types per data set. 
We also located some external freely available 
resources listed in (Zaghouani 2014) such as 
Alfaifi L1 and L2 corpus (Alfaifi and Atwell 
2013), The JRC-Names names (Steinberger et al. 
2011) and the Attia list (Attia 2012). 

3.1 Corpus Error Analysis 

In order to better write our correction rules and 
to better understand the nature of errors in the L1 
and L2 data, we performed a manual inspection 
on a sample taken from the Dev Sets of the 
shared task and we obtained the errors distribu-
tion shown in Table 1. While the errors commit-
ted by L1 speakers are mostly spelling errors 
such as the Hamza and Ta-Marbuta confusion, 
L2 speakers tend more to have difficulties with 
the following issues: the definiteness structure, 
the words agreement, the preposition usage and 
the correct word choice in the sentence. We used 
this analysis to optimize our rules for each cor-
pus. 
 

Rank Native L1 Non-Native L2 
#1 Hamza Definiteness 
#2 Ta-Marbuta / Ha 

Alif-Maqsura/Ya 
Agreement 

#3 Case Endings Prrnaleposition 
#4 Verbal Inflection Hamza 
#5 Conjunctions Word Choice 

Table 1: Most frequent errors observed in the 
Dev sets of the L1 and L2 Corpus. The errors are 
sorted from the most frequent to the least fre-
quent 

 
In Arabic, spelling confusion in Hamza forms is 
frequently found, e.g. the word إستعمال IstEmAl1 
“usage” must be written by a simple Alef ا, not 
Alef with Hamza below إ   . This error can be clas-
sified as a kind of errors and not a simple error 
in a word as reported by (Shaalan, 2003, Habash, 
2011). While typical common errors based on 
wrong letter spelling such as the confusion in the 
form of Hamza ھمزة, Daad  and ,ظاء and Za  ضاد
the omission dots with Yeh ياء and Teh تاء are 
generally relatively easy to handle, the task is 
more challenging for grammatical and semantic 
errors. Previously, we created an Arabic auto 
correction tool to correct common mistakes in 
Wikipedia articles. The idea is to create a script 
that detects common spelling errors using a set 
of regular expressions and a word replacement 
list2.  
In a similar way, the system we are presenting in 
this paper is based primarily on: 

                                                 
1 Buckwalter transliteration 
2 The script is named AkhtaBot, which is applied to 

Arabic wikipedia, the Akhtabot is available on 
http://ar.wikipedia.org/wiki/مستخدم:AkhtaBot  
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- Regular expressions used to identify errors 
and give a replacement. 

- Replacement list that contains the misspelled 
word and the exact correction needed for each 
particular case. Furthermore, we used the follow-
ing combination of tools and resources: 

 Arabic word list for spell checking: This 
list contains 9 million Arabic words from 
AraComLex, an open-source finite state 
transducer (Attia 2012). The list3 was vali-
dated against Microsoft Word spell checker 
tool. This list was used to check and replace 
wrongly spelled words. 

 JRC-Names4: a list of 1.18 million person 
and 6,700 organization names (Steinberger 
et al. 2011). We used the list to correct and 
replace wrongly spelled named entities in 
the data set. 

 Alfaifi L1 and L2 corpus: Used to observe 
the errors in context and to study the patterns 
of spelling errors made by native and non-
native speakers. The corpus was created by 
(Alfaifi and Atwell 2013) and freely availa-
ble5. 

 A Python script to generate the errors. 

 Hunspell spellchecker program6 combined 
with Ayaspell7 dictionary (Hadjir 2009, 
Zerrouki, 2013). 

 Ghalatawi8 : Our spelling correction tool 

 A task dedicated script to select the best 
suggestion from Hunspell correction sugges-
tions to generate customized autocorrected 
list customized for each data set. 

3.1 Regular Expressions 

 We use regular expression patterns to detect 
errors by using the Arabic verb forms (الأوزان 
AlOwzAn) and affixes. For example we can de-
tect very common Hamza spelling errors with 
the Arabic verbs form VII which expresses a 
submission to an action or an effect as in the 

                                                 
3 The list available at: http: //sourceforge.net/projects/ 
   arabic-wordlist/ 
4 The list is available at : 

https://ec.europa.eu/jrc/en/language-
technologies/jrc-names 

5 The corpus is available at 
http://www.arabiclearnercorpus.com 

6 Available at http://hunspell.sourceforge.net/ 
7 Available at http://ayaspell.sourceforge.net. 
8 The Ghalatawi autocorrect program is available as 

an open source program at 
http://ghalatawi.sourceforge.net  

case of an animate being, it could mean an in-
voluntary submission. This form reflects the 
meaning on two levels: reflexive (to let oneself 
be put through) and an agentless passive (non-
reciprocal of form I). Using such a rule with a 
word such as INFIAL  it should be written انفعال 
with Hamza Wasl, as the form إنفعال InfEAl is 
wrongly spelled. Moreover, we represent all 
forms with all possible affixes as shown in Table 
2 and Table 3 

Prefixes Form  Suffixes

ف و، ال، ب، ... 
f, w, Al, b 

كما ك، ھما، ھا، ه، ان، ي، ات، ين، انفعال ... 
kmA, k, hmA, h, An, y, At, 
yn… 

 Table 2: Infi'aal verb forms with affixes  
 
# Example of rules for انفعال
ur'\b(و|ف|)(ك|ب|)(ال|)إن(\w\w)ا(\w)(ين|ات|ة|تين)(|ي|)\b'
ur'\b(و|ف|)(لل|)إن(\w\w)ا(\w)(ين|ات|تين|ة)(|ي|)\b' 
ur'\b(و|ف|)إن(\w\w)ا(\w)(ًا|اً|ا)(|ي|)\b' 
Table 3: Sample rules for the Infi'al verb form 

Furthermore, we have modeled the following 
spelling errors cases using regular expressions 
(c.f Table 4):  
(1) words with the verb forms infi'al and ifti'al 
 words with the letter Alif (2) ; انفعال وافتعال
Maqsura followed by Hamza, for example  {s  سئ
will be corrected as سيء sy'. (3) words with Teh 
Marbuta misplaced or incorrectly merged, like in 
مدرسة  mdrspAlElm to be corrected to مدرسةالعلم
 .”mdrsp AlElm “school of knowledge العلم

Regular expressions Replacements

# removing kashida (Tatweel)  

ur'([\u0621-\u063F\u0641-
\u064A])\u0640+([\u0621-
\u063F\u0641-\u064A])' 

 ur'\1\2'  

# rules for انفعال  

ur'\b(و|ف|)(ك|ب|)(ال|)إن(\w\w)ا(\w)(
'b\(|ي|)(ين|ات|ة|تين

 ur'\1\2\3 \ان 4 \ا 5\6\7' 

Table 4: Sample rules expressed by regular ex-
pressions. 

3.2 Wordlist 

Many common mistakes cannot be corrected 
using regular expressions only, such as confu-
sion between the letter Dhad and the letter Za, 
and omitted dots on letter Teh and letter Yeh, as 
in the المكتبه * Almktbh “the library” and * فى fY 
“in”, So we resort to build a list of common mis-
spelled words.  

To build our word list, we used the existing 
lexicons of correctly spelled 9M words by Attia 
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(2012) and the JRC-Names named entities cor-
pus (Steinberger et al. 2011) by generating errors 
for common letters errors, then filtering the re-
sults to obtain an autocorrected words list with 
no ambiguity. In order to build the list, first, we 
take a correct word list than we select candidate 
words from words starting with Hamza Qat' or 
Wasl , words ending by Yeh or Teh marbuta or 
Words containing the letter Dhad or Zah. Than 
we generate errors on words by replacing candi-
date letters by errors on purpose. Finally we 
check the spelling and eliminate the corrected 
words, because some modified words can be cor-
rect, for example, if we take the word  َضل Dla ,
then modify it to ظل Zl, the modified word exists 
in the dictionary, then we exclude it from the 
auto corrected wordlist, and we keep only mis-
spelled modified words as the examples in the 
word إسلام IslAm “islam”, it can be written as 
 AslAm “islam” by mistake since it has the اسلام
same phonological construction.  

3.3 Customized Wordlist for L1 and L2 
Texts 

We generated a case specific auto correction list 
for each corpus (L1 or L2). The following algo-
rithm is applied to generate customized list from 
each corpus: 
 
(1) Extract misspelled words from dataset by 
using Hunspell spellchecker. (2) Generate sug-
gestions given by Hunspell. (3) Observe the sug-
gestions to choose the best one in hypothesis that 
words have common errors on letters according 
to modified letters. (4) Exclude ambiguous cas-
es. (5) The automatically generated word list is 
used to autocorrect the dataset instead of the de-
fault word list. 

4 Evaluation 

In order to evaluate the performance of our sys-
tem, we used the data set provided in the shared 
task test (Alj-dev-2014 and L2-dev-2015). For 
this evaluation we have used two autocorrected 
word lists: 
- A generic word list generated from Attia word-
list and the JRC corpus, this wordlist is used for 
general correction purposes. 
- A customized wordlist based on each dataset 
L2-dev-2015, L2-test-2015, Alj-dev-2014 and 
Alj-test-2015 by generating a special word list 
according to each data set, in order to improve 
the results and avoid unnecessary replacement. 
The customized auto correction word list is built 

in the same way as the generic one, by replacing 
the source dictionary by misspelled words from 
QALB corpus (Zaghouani, 2014). We submitted 
only one run for each corpus type and the offi-
cial results obtained on the Development sets 
and the Test sets are shown in Table 5 by using 
the M2 scorer (Dahlmeier et al 2012): 

 
Data set Precision Recall F1 

Alj-dev-2014 71.40 32.10  44.30 

Alj-test-2014 82.63 41.89 55.59

Alj-test-2015 81.88 40.24 53.97

L2-dev-2015 60.30 11.30  19.00 

L2-test-2015 59.75 15.90 25.12
Table 5: Results on the Dev and Test sets 

 
The relatively low results obtained were ex-
pected since we decided to ignore the punctua-
tion errors and therefore our system is penalized 
by this decision. We estimate that punctuation 
errors represent more than 38% of the errors in 
the QALB data sets (L1 and L2). When the 
punctuation errors were removed from the eval-
uation, we noticed a significant improvement of 
the recall and the F1 score for L1 (+13 points) 
and for L2 (+6.6 points) as seen in table 6. 

 
Data set Precision Recall F1 

Alj-test-2015 83.85 55.65 66.90

L2-test-2015 58.95 21.70  31.72
Table 6: Official Results on the Dev and Test 

sets with with punctuation errors ignored 

5 Error Analysis 

Our system failed to find the appropriate correc-
tion in many cases due to the limitations of the 
rule based systems in general. In this section, we 
will highlight some of the main errors not cor-
rected by our system for both data sets. We will 
not discuss punctuation related errors as they are 
not handled by our system. 

5.1 L1 Errors 

 Split and Merge errors: Such as 
 wAljzyrpnt “AljazeeraNet” it is والجزيرةنت
not obvious to detect where the words 
should be split as in نت والجزيرة wAljzyrp nt 
“Aljazeera Net”. Other words that should be 
merged are hard to detect as both words pro-
duced can be valid entries such as الفلس طيني 
Alfls Tyny that should be corrected to 
 AlflsTyny “the Palestinian” but both الفلسطيني
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words wrongly produced are acceptable in 
this case. 

 Wrong Hamza spelling: Such as أن On “in-
deed” and إن In “indeed”. For these particu-
lar examples advanced rules may be re-
quired. 

 Ta-Marbuta / Ha errors: These errors are 
practically frequent for the L1 corpus and 
they are not always corrected by our system 
in the cases of named entities. 

 Keyboard Typos: Keyboard errors are very 
frequent and our system did not detect most 
of them due to the complexity of the issue, 
since the typo word could be correctly 
spelled like misspelling الباب AlbAb “the 
door” for البار AlbAr “The bar” . 

 
5.2 L2 Errors 

Many L2 detection errors are very similar to the 
L1 errors listed in the previous section, but some 
errors are mostly found in L2 texts such as the 
following: 
 Definiteness: correcting definite errors with 

a rule based system could be very challeng-
ing without access to a parser. For instance 
errors such as missing definite article in 

منورةالمدينة   Almdynp mnwrp “The Madinah 
Munawwarah” are very frequent in L2 texts 
and our system failed to detect them most of 
the time since the word missing the definite 
article are correct as standalone words. 

 Gender and number agreement:  
The Gender-number agreement is another fre-
quent error type where our system failed fre-
quently to correct it such as in أخلاق سكانه جيد Ox-
lAq skAnh jyd “morals of its inhabitants is 
good” with the wrong gender in the word جيد jyd 
“good” that should be corrected to جيدة jydp in-
stead as it is related the feminine noun أخلاق Ox-
lAq “morals”. 

 Prepositions: Non-native speakers are fre-
quently confused in the preposition usage in 
Arabic. An advanced language level is usu-
ally required to master this. A frequent con-
fusion in the usage of the wrong preposition 
ذھبت في  .fy “in” in the following example في
 hbt fy Albyt “I went in the house” that* البيت 
should be corrected by our system to  ذھبت إلى
 ”hbt IlY Albyt “I went to the house* . البيت 

 Wrong Word choice: L2 speakers have 
some difficulties with words that may be 
homophones but spelled in a different way 

such as inالبقار يستريحون AlbqAr ystryHwn 
“the cow boys are resting” and it is obvious 
here that it is meant to be الأبقار يستريحون 
AlObqAr ystryHwn “the cows are resting”. 
Again these cases show another limitation of 
rule based systems to detect correctly spelled 
wrong word choices. 

6 Conclusion and Discussion 

We presented a pipeline rule based approach for 
correcting Arabic text optimized for two native 
and non-native text types. We focused mainly on 
the most common errors made by native and 
non-native speakers such as the Hamza errors, 
The Ta-Marbuta and letter Ya. We also used 
complex regular expressions to correct splitting 
and merging errors. We also, used lexicons such 
as the Attia word list and the JRC-names to 
boost the results of our system. The correction of 
more complex errors was also tested such as the 
correction of phonological errors caused by a 
confusion and similarity of the words. For non-
native speakers, we detected and corrected some 
of the errors related to the misuse of gender and 
number agreement and also for the wrong usage 
of the definite article.  
 
The results obtained showed that our systems 
performs much better with native speakers texts, 
this is mainly due to the complex nature of some 
spelling errors of L2 learners. In the future, we 
plan to handle more complex errors for both na-
tive and non-native texts such as grammatical 
and case ending errors and also wrong word 
choice errors. We are also planning to integrate 
the MADAMIRA morphological analyzer in a 
post processing step to increase our recall. 
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