
Proceedings of the Second Workshop on Arabic Natural Language Processing, pages 155–160,
Beijing, China, July 26-31, 2015. c©2014 Association for Computational Linguistics

SAHSOH@QALB-2015 Shared Task: A Rule-Based Correction Method
of Common Arabic Native and Non-Native Speakers’ Errors

Wajdi Zaghouani
Carnegie Mellon University,

Doha, Qatar

wajdiz@cmu.edu

Taha Zerrouki
Bouira University,
 Bouira, Algeria

t_zerrouki@esi.dz

Amar Balla
The National Computer

Science Engineering School
(ESI), Algiers, Algeria

a_balla@esi.dz

Abstract

This paper describes our participation in
the QALB-2015 Automatic Correction of
Arabic Text shared task. We employed
various tools and external resources to
build a rule based correction method.
Hand written linguistic rules were added
by using existing lexicons and regular
expressions. We handled specific errors
with dedicated rules reserved for non-
native speakers. The system is simple as
it does not employ any sophisticated ma-
chine learning methods and it does not
correct punctuation errors. The system
achieved results comparable to other ap-
proaches when the punctuation errors are
ignored with an F1 of 66.9% for native
speakers’ data and an F1 of 31.72% for
the non-native speakers’ data.

1 Introduction

The Automatic Error Correction (AEC) is an
interesting and challenging problem in Natural
Language Processing. The existing methods that
attempt to solve this problem are generally based
on deep linguistic and statistical analysis. AEC
tools can assist in solving multiple natural lan-
guage processing (NLP) tasks like Machine
Translation or Natural Language Generation.
However, the main application of AEC is the
building of automated spell checkers to be used
as writing assistant tools (e.g. word-processing)
or even for applications such as Mobile auto-
completion and auto correction programs, post-
processing optical character recognition tools or
with the correction of large content site such as
Wikipedia. Conventional spelling correction
tools detect typing errors simply by comparing

each token of a text against a dictionary of words
that are known to be correctly spelled. Any to-
ken that matches an element of the dictionary,
possibly after some minimal morphological
analysis, is deemed to be correctly spelled; any
token that matches no element is flagged as a
possible error, with near-matches displayed as
suggested corrections (Hirst 2005).

In this paper we describe our participation in the
QALB-2015 shared task (Rozovskaya 2015)
which is an extension of the first QALB shared
task (Mohit et al. 2014) that took place last year.
The QALB-2014 shared task was reserved to
errors in comments written to Aljazeera articles
by native Arabic speakers (Zaghouani et al.
2014; Obeid et al. 2013). The 2015 competition
includes two tracks. The first track is dedicated
to errors produced by native speakers and the
second track includes correction of texts written
by learners of Arabic as a foreign language (L2)
(Zaghouani et al. 2015). The native track in-
cludes Alj-train-2014, Alj-dev-2014, Alj-test-
2014 texts from QALB-2014. The L2 track in-
cludes L2-train-2015 and L2-dev-2015. This da-
ta was released for the development of the sys-
tems. The systems were scored on blind test sets
Alj-test-2015 and L2-test-2015.

Our pipeline approach is based on a combination
of pre-existing tools, hand written contextual
rules and lexicons. Detecting and correcting such
complex errors within the scope of a rule based
approach require specific rules to be written in
order to correctly analyze the dependencies be-
tween words in a given sentence. The remainder
of this paper is organized as follows: Section 2
describes the related works. Section 3 presents
our approach including the tools and resources
used and finally in Section 4 we report the re-
sults obtained on the Development set.

155

2 Related Works

The task of automatic error correction has been
explored widely by many researchers in the past
years especially for the English language. Many
approaches have been used to build systems (hy-
brid, rule base, supervised and unsupervised ma-
chine learning…). These systems used various
NLP tools and resources including pre-existing
lexicons, morphological analyzers and Part of
Speech Taggers. We cite for the English lan-
guage early works done by (Church and Gale,
1991; Kukich, 1992; Golding, 1995; Golding
and Roth, 1996). Later on we find (Brill and
Moore, 2000; Fossati and Di Eugenio, 2007) and
more recently Han and Baldwin, 2011; Dahl-
meier and Ng 2012; Wu et al., 2013). For Ara-
bic, this problem has been investigated in a cou-
ple of papers as in Shaalan et al. (2003) who pre-
sented his work on the specification and classifi-
cation of spelling errors in Arabic. Later on,
Haddad and Yaseen (2007) built a hybrid ap-
proach that used rules and some morphological
features to correct non-words using contextual
clues and Hassan et al. (2008) presented a lan-
guage independent text correction method using
Finite State Automata. More recently, Alkanhal
et al. (2012) wrote a paper about a stochastic
approach used for word spelling correction and
Attia et al. (2012) created a dictionary of 9 mil-
lion entries fully inflected Arabic words using a
morphological transducer. Later on, they used a
dictionary to build an error model by analyzing
the various error types in the data. Moreover,
Shaalan et al. (2012) created a model using uni-
grams to correct Arabic spelling errors and re-
cently, (Pasha et al., 2014) created MADAMI-
RA, a morphological analyzer and a disambigua-
tion tool for Arabic. Finally, Alfaifi and Atwell
(2012) created a native and non-native Arabic
learner’s corpus and an error coding correction
taxonomy made available for research purpose.

3 Our Approach

Our correction approach watches out for certain
predefined “errors” as the user types, replacing
them with a suggested “correction” depending
on the corpus type L1 or L2. Therefore an error
analysis was performed on the provided data set
to find the most frequent error types per data set.
We also located some external freely available
resources listed in (Zaghouani 2014) such as
Alfaifi L1 and L2 corpus (Alfaifi and Atwell
2013), The JRC-Names names (Steinberger et al.
2011) and the Attia list (Attia 2012).

3.1 Corpus Error Analysis

In order to better write our correction rules and
to better understand the nature of errors in the L1
and L2 data, we performed a manual inspection
on a sample taken from the Dev Sets of the
shared task and we obtained the errors distribu-
tion shown in Table 1. While the errors commit-
ted by L1 speakers are mostly spelling errors
such as the Hamza and Ta-Marbuta confusion,
L2 speakers tend more to have difficulties with
the following issues: the definiteness structure,
the words agreement, the preposition usage and
the correct word choice in the sentence. We used
this analysis to optimize our rules for each cor-
pus.

Rank Native L1 Non-Native L2
#1 Hamza Definiteness
#2 Ta-Marbuta / Ha

Alif-Maqsura/Ya
Agreement

#3 Case Endings Prrnaleposition
#4 Verbal Inflection Hamza
#5 Conjunctions Word Choice

Table 1: Most frequent errors observed in the
Dev sets of the L1 and L2 Corpus. The errors are
sorted from the most frequent to the least fre-
quent

In Arabic, spelling confusion in Hamza forms is
frequently found, e.g. the word إستعمال IstEmAl1
“usage” must be written by a simple Alef ا, not
Alef with Hamza below إ . This error can be clas-
sified as a kind of errors and not a simple error
in a word as reported by (Shaalan, 2003, Habash,
2011). While typical common errors based on
wrong letter spelling such as the confusion in the
form of Hamza ھمزة, Daad and ,ظاء and Za ضاد
the omission dots with Yeh ياء and Teh تاء are
generally relatively easy to handle, the task is
more challenging for grammatical and semantic
errors. Previously, we created an Arabic auto
correction tool to correct common mistakes in
Wikipedia articles. The idea is to create a script
that detects common spelling errors using a set
of regular expressions and a word replacement
list2.
In a similar way, the system we are presenting in
this paper is based primarily on:

1 Buckwalter transliteration
2 The script is named AkhtaBot, which is applied to

Arabic wikipedia, the Akhtabot is available on
http://ar.wikipedia.org/wiki/مستخدم:AkhtaBot

156

- Regular expressions used to identify errors
and give a replacement.

- Replacement list that contains the misspelled
word and the exact correction needed for each
particular case. Furthermore, we used the follow-
ing combination of tools and resources:

 Arabic word list for spell checking: This
list contains 9 million Arabic words from
AraComLex, an open-source finite state
transducer (Attia 2012). The list3 was vali-
dated against Microsoft Word spell checker
tool. This list was used to check and replace
wrongly spelled words.

 JRC-Names4: a list of 1.18 million person
and 6,700 organization names (Steinberger
et al. 2011). We used the list to correct and
replace wrongly spelled named entities in
the data set.

 Alfaifi L1 and L2 corpus: Used to observe
the errors in context and to study the patterns
of spelling errors made by native and non-
native speakers. The corpus was created by
(Alfaifi and Atwell 2013) and freely availa-
ble5.

 A Python script to generate the errors.

 Hunspell spellchecker program6 combined
with Ayaspell7 dictionary (Hadjir 2009,
Zerrouki, 2013).

 Ghalatawi8 : Our spelling correction tool

 A task dedicated script to select the best
suggestion from Hunspell correction sugges-
tions to generate customized autocorrected
list customized for each data set.

3.1 Regular Expressions

 We use regular expression patterns to detect
errors by using the Arabic verb forms (الأوزان
AlOwzAn) and affixes. For example we can de-
tect very common Hamza spelling errors with
the Arabic verbs form VII which expresses a
submission to an action or an effect as in the

3 The list available at: http: //sourceforge.net/projects/
 arabic-wordlist/
4 The list is available at :

https://ec.europa.eu/jrc/en/language-
technologies/jrc-names

5 The corpus is available at
http://www.arabiclearnercorpus.com

6 Available at http://hunspell.sourceforge.net/
7 Available at http://ayaspell.sourceforge.net.
8 The Ghalatawi autocorrect program is available as

an open source program at
http://ghalatawi.sourceforge.net

case of an animate being, it could mean an in-
voluntary submission. This form reflects the
meaning on two levels: reflexive (to let oneself
be put through) and an agentless passive (non-
reciprocal of form I). Using such a rule with a
word such as INFIAL it should be written انفعال
with Hamza Wasl, as the form إنفعال InfEAl is
wrongly spelled. Moreover, we represent all
forms with all possible affixes as shown in Table
2 and Table 3

Prefixes Form Suffixes

ف و، ال، ب، ...
f, w, Al, b

كما ك، ھما، ھا، ه، ان، ي، ات، ين، انفعال ...
kmA, k, hmA, h, An, y, At,
yn…

 Table 2: Infi'aal verb forms with affixes

Example of rules for انفعال
ur'\b(و|ف|)(ك|ب|)(ال|)إن(\w\w)ا(\w)(ين|ات|ة|تين)(|ي|)\b'
ur'\b(و|ف|)(لل|)إن(\w\w)ا(\w)(ين|ات|تين|ة)(|ي|)\b'
ur'\b(و|ف|)إن(\w\w)ا(\w)(ًا|اً|ا)(|ي|)\b'
Table 3: Sample rules for the Infi'al verb form

Furthermore, we have modeled the following
spelling errors cases using regular expressions
(c.f Table 4):
(1) words with the verb forms infi'al and ifti'al
 words with the letter Alif (2) ; انفعال وافتعال
Maqsura followed by Hamza, for example {s سئ
will be corrected as سيء sy'. (3) words with Teh
Marbuta misplaced or incorrectly merged, like in
مدرسة mdrspAlElm to be corrected to مدرسةالعلم
 .”mdrsp AlElm “school of knowledge العلم

Regular expressions Replacements

removing kashida (Tatweel)

ur'([\u0621-\u063F\u0641-
\u064A])\u0640+([\u0621-
\u063F\u0641-\u064A])'

 ur'\1\2'

rules for انفعال

ur'\b(و|ف|)(ك|ب|)(ال|)إن(\w\w)ا(\w)(
'b\(|ي|)(ين|ات|ة|تين

 ur'\1\2\3 \ان 4 \ا 5\6\7'

Table 4: Sample rules expressed by regular ex-
pressions.

3.2 Wordlist

Many common mistakes cannot be corrected
using regular expressions only, such as confu-
sion between the letter Dhad and the letter Za,
and omitted dots on letter Teh and letter Yeh, as
in the المكتبه * Almktbh “the library” and * فى fY
“in”, So we resort to build a list of common mis-
spelled words.

To build our word list, we used the existing
lexicons of correctly spelled 9M words by Attia

157

(2012) and the JRC-Names named entities cor-
pus (Steinberger et al. 2011) by generating errors
for common letters errors, then filtering the re-
sults to obtain an autocorrected words list with
no ambiguity. In order to build the list, first, we
take a correct word list than we select candidate
words from words starting with Hamza Qat' or
Wasl , words ending by Yeh or Teh marbuta or
Words containing the letter Dhad or Zah. Than
we generate errors on words by replacing candi-
date letters by errors on purpose. Finally we
check the spelling and eliminate the corrected
words, because some modified words can be cor-
rect, for example, if we take the word َضل Dla ,
then modify it to ظل Zl, the modified word exists
in the dictionary, then we exclude it from the
auto corrected wordlist, and we keep only mis-
spelled modified words as the examples in the
word إسلام IslAm “islam”, it can be written as
 AslAm “islam” by mistake since it has the اسلام
same phonological construction.

3.3 Customized Wordlist for L1 and L2
Texts

We generated a case specific auto correction list
for each corpus (L1 or L2). The following algo-
rithm is applied to generate customized list from
each corpus:

(1) Extract misspelled words from dataset by
using Hunspell spellchecker. (2) Generate sug-
gestions given by Hunspell. (3) Observe the sug-
gestions to choose the best one in hypothesis that
words have common errors on letters according
to modified letters. (4) Exclude ambiguous cas-
es. (5) The automatically generated word list is
used to autocorrect the dataset instead of the de-
fault word list.

4 Evaluation

In order to evaluate the performance of our sys-
tem, we used the data set provided in the shared
task test (Alj-dev-2014 and L2-dev-2015). For
this evaluation we have used two autocorrected
word lists:
- A generic word list generated from Attia word-
list and the JRC corpus, this wordlist is used for
general correction purposes.
- A customized wordlist based on each dataset
L2-dev-2015, L2-test-2015, Alj-dev-2014 and
Alj-test-2015 by generating a special word list
according to each data set, in order to improve
the results and avoid unnecessary replacement.
The customized auto correction word list is built

in the same way as the generic one, by replacing
the source dictionary by misspelled words from
QALB corpus (Zaghouani, 2014). We submitted
only one run for each corpus type and the offi-
cial results obtained on the Development sets
and the Test sets are shown in Table 5 by using
the M2 scorer (Dahlmeier et al 2012):

Data set Precision Recall F1

Alj-dev-2014 71.40 32.10 44.30

Alj-test-2014 82.63 41.89 55.59

Alj-test-2015 81.88 40.24 53.97

L2-dev-2015 60.30 11.30 19.00

L2-test-2015 59.75 15.90 25.12
Table 5: Results on the Dev and Test sets

The relatively low results obtained were ex-
pected since we decided to ignore the punctua-
tion errors and therefore our system is penalized
by this decision. We estimate that punctuation
errors represent more than 38% of the errors in
the QALB data sets (L1 and L2). When the
punctuation errors were removed from the eval-
uation, we noticed a significant improvement of
the recall and the F1 score for L1 (+13 points)
and for L2 (+6.6 points) as seen in table 6.

Data set Precision Recall F1

Alj-test-2015 83.85 55.65 66.90

L2-test-2015 58.95 21.70 31.72
Table 6: Official Results on the Dev and Test

sets with with punctuation errors ignored

5 Error Analysis

Our system failed to find the appropriate correc-
tion in many cases due to the limitations of the
rule based systems in general. In this section, we
will highlight some of the main errors not cor-
rected by our system for both data sets. We will
not discuss punctuation related errors as they are
not handled by our system.

5.1 L1 Errors

 Split and Merge errors: Such as
 wAljzyrpnt “AljazeeraNet” it is والجزيرةنت
not obvious to detect where the words
should be split as in نت والجزيرة wAljzyrp nt
“Aljazeera Net”. Other words that should be
merged are hard to detect as both words pro-
duced can be valid entries such as الفلس طيني
Alfls Tyny that should be corrected to
 AlflsTyny “the Palestinian” but both الفلسطيني

158

words wrongly produced are acceptable in
this case.

 Wrong Hamza spelling: Such as أن On “in-
deed” and إن In “indeed”. For these particu-
lar examples advanced rules may be re-
quired.

 Ta-Marbuta / Ha errors: These errors are
practically frequent for the L1 corpus and
they are not always corrected by our system
in the cases of named entities.

 Keyboard Typos: Keyboard errors are very
frequent and our system did not detect most
of them due to the complexity of the issue,
since the typo word could be correctly
spelled like misspelling الباب AlbAb “the
door” for البار AlbAr “The bar” .

5.2 L2 Errors

Many L2 detection errors are very similar to the
L1 errors listed in the previous section, but some
errors are mostly found in L2 texts such as the
following:
 Definiteness: correcting definite errors with

a rule based system could be very challeng-
ing without access to a parser. For instance
errors such as missing definite article in

منورةالمدينة Almdynp mnwrp “The Madinah
Munawwarah” are very frequent in L2 texts
and our system failed to detect them most of
the time since the word missing the definite
article are correct as standalone words.

 Gender and number agreement:
The Gender-number agreement is another fre-
quent error type where our system failed fre-
quently to correct it such as in أخلاق سكانه جيد Ox-
lAq skAnh jyd “morals of its inhabitants is
good” with the wrong gender in the word جيد jyd
“good” that should be corrected to جيدة jydp in-
stead as it is related the feminine noun أخلاق Ox-
lAq “morals”.

 Prepositions: Non-native speakers are fre-
quently confused in the preposition usage in
Arabic. An advanced language level is usu-
ally required to master this. A frequent con-
fusion in the usage of the wrong preposition
ذھبت في .fy “in” in the following example في
 hbt fy Albyt “I went in the house” that* البيت
should be corrected by our system to ذھبت إلى
 ”hbt IlY Albyt “I went to the house* . البيت

 Wrong Word choice: L2 speakers have
some difficulties with words that may be
homophones but spelled in a different way

such as inالبقار يستريحون AlbqAr ystryHwn
“the cow boys are resting” and it is obvious
here that it is meant to be الأبقار يستريحون
AlObqAr ystryHwn “the cows are resting”.
Again these cases show another limitation of
rule based systems to detect correctly spelled
wrong word choices.

6 Conclusion and Discussion

We presented a pipeline rule based approach for
correcting Arabic text optimized for two native
and non-native text types. We focused mainly on
the most common errors made by native and
non-native speakers such as the Hamza errors,
The Ta-Marbuta and letter Ya. We also used
complex regular expressions to correct splitting
and merging errors. We also, used lexicons such
as the Attia word list and the JRC-names to
boost the results of our system. The correction of
more complex errors was also tested such as the
correction of phonological errors caused by a
confusion and similarity of the words. For non-
native speakers, we detected and corrected some
of the errors related to the misuse of gender and
number agreement and also for the wrong usage
of the definite article.

The results obtained showed that our systems
performs much better with native speakers texts,
this is mainly due to the complex nature of some
spelling errors of L2 learners. In the future, we
plan to handle more complex errors for both na-
tive and non-native texts such as grammatical
and case ending errors and also wrong word
choice errors. We are also planning to integrate
the MADAMIRA morphological analyzer in a
post processing step to increase our recall.

7 Acknowledgements
This publication was made possible by grants
NPRP-4-1058-1-168 from the Qatar National
Research Fund (a member of the Qatar Founda-
tion).

References

Alfaifi Abdullah and Atwell Eric. 2012. Arabic
Learner Corpora (ALC): a taxonomy of coding er-
rors. In Proceedings of the 8th International Com-
puting Conference in Arabic (ICCA 2012)

Alfaifi, Abdullah and Atwell, Eric. 2013. Arabic
Learner Corpus v1: A New Resource for Arabic
Language Research. In proceedings of the Second
Workshop on Arabic Corpus Linguistics (WACL-
2). Lancaster University, UK.

159

Alkanhal, Mohamed I., Mohamed A. Al-Badrashiny,
Mansour M. Alghamdi, and Abdulaziz O. Al-
Qabbany. 2012. Automatic Stochastic Arabic
Spelling Correction With Emphasis on Space In-
sertions and Deletions. IEEE Transactions on Au-
dio, Speech, and Language Processing, Vol. 20,
No. 7, September 2012.

Attia, Mohammed, Pavel Pecina, Younes Samih,
Khaled Shaalan, Josef van Genabith. 2012. Im-
proved Spelling Error Detection and Correction for
Arabic. COLING 2012, Bumbai, India.

Dahlmeier, Daniel and Ng, Hwee Tou. 2012. Better
evaluation for grammatical error correction. In
Proceedings of NAAC-HLT, Montreal, Canada.

Deorowicz S٫, Marcin G. Ciura. 2005. Correcting
Spelling Errors By Modeling Their Causes. Int. J.
Appl. Math. Comput. Sci., 2005, Vol. 15, No. 2,
275–285

Golding and Roth. 1999. A Winnow based approach
to Context-Sensitive Spelling Correction. In Machine
Learning - Special issue on natural language learning,
Volume 34 Issue 1-3, Feb. 1999.

Habash Nizar. 2010. Introduction to Arabic natural
language processing. Synthesis Lectures on
Human Language Technologies 3.1 (2010): 1-187

Habash Nizar, Ryan M. Roth. 2011. Using Deep
Morphology to Improve Automatic Error Detec-
tion in Arabic Handwriting Recognition, ACL,
page 875-884. The Association for Computer Lin-
guistics, (2011)

Hadjir I .2009. Towards an open source Arabic spell
checker. MA thesis in Natural language pro-
cessing, scientific and technique research center to
Arabic language development.

Hammad M and Mohamed Alhawari. 2010. In Recent
improvement of arabic language search, Google
Arabia Blog, Google company, 2010 http://google-
arabia.blogspot.com/.

Hassan Ahmed, Noeman Sara and Hassan Hany.
2008. Language Independent Text Correction us-
ing Finite State Automata. IJCNLP. Hyderabad,
India.

Hirst Graeme and Alexander Budanitsky. 2005. Cor-
recting real-word spelling errors by restoring lexi-
cal cohesion, Natural Language Engineering 11
(1): 87–111, 2005 Cambridge University Press

Mohit Behrang, Alla Rozovskaya, Wajdi Zaghouani,
Ossama Obeid, and Nizar Habash. 2014. The First
shared Task on Automatic Text Correction for Ar-
abic. In Proceedings of EMNLP Workshop on Ar-
abic Natural Language Processing, Doha, Qatar.

Obeid Ossama, Wajdi. Zaghouani, Behrang. Mohit,
Nizar Habash, Kemal Oflazer and Nadi Tomeh.
2013. A Web-based Annotation Framework For

Large-Scale Text Correction. In The Companion
Volume of the Proceedings of IJCNLP 2013: Sys-
tem Demonstrations. Asian Federation of Natural
Language Processing.

Pasha A., M. Al-Badrashiny, M. Diab, A. El Kholy,
R. Eskander, N. Habash, M. Pooleery, O. Ram-
bow, and R. Roth. 2014. MADAMIRA: A Fast,
Comprehensive Tool for Morphological Analysis
and Disambiguation of Arabic. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC).

Rozovskaya Alla, Houda Bouamor, Wajdi Zag-
houani, Ossama Obeid, and Nizar Habash and
Behrang Mohit. 2015. The Second QALB Shared
Task on Automatic Text Correction for Arabic. In
Proceedings of ACL Workshop on Arabic Natural
Language Processing, Beijing, China.

Shaalan, Khaled, Amin Allam and Abdallah Gomah.
2003. Towards automatic spell checking for Ara-
bic. In Proceedings of the Conference on Language
Engineering, 2003 - claes.sci.eg

Steinberger, Ralf, Pouliquen, Bruno, Kabadjov, Mi-
jail, Belyaeva, Jenya and van der Goot, Erik. 2011.
JRC-NAMES: A Freely Available, Highly Multi-
lingual Named Entity Resource. In Proceedings of
the International Conference Recent Advances in
Natural Language Processing, Hissar, Bulgaria.

Zaghouani, Wajdi. 2014. Critical survey of the freely
available Arabic corpora. In Proceedings of the
Workshop on Free/Open-Source Arabic Corpora
and Corpora Processing Tools Workshop, LREC
2014, Reykjavik, Iceland.

Zaghouani Wajdi, Nizar Habash, Houda Bouamor,
Alla Rozovskaya, Behrang Mohit, Abeer Heider,
and Kemal Oflazer. 2015. Correction annotation
for nonnative arabic texts: Guidelines and corpus.
In Proceedings of The 9th Linguistic Annotation
Workshop, pages 129–139, Denver, Colorado,
USA, June. Association for Computational Lin-
guistics.

Zaghouani Wajdi, Behrang Mohit, Nizar Habash,
Ossama Obeid, Nadi Tomeh, Alla Rozovskaya,
Noura Farra, Sarah Alkuhlani, and Kemal Oflazer.
2014. Large Scale Arabic Error Annotation:
Guidelines and Framework. In Proceedings of the
Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), Reykjavik,
Iceland.

Zerrouki Taha. 2011. Improving the spell checking
dictionary by users feedback. A meeting of experts
check the spelling and grammar and composition
automation, Higher Institute of Applied Science
and Technology of Damascus, the Arab Organiza-
tion for Education, Science and Culture, Damas-
cus, April 18 to 20, 2011.

160

