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Abstract 

Named entity recognition (NER) plays an im-
portant role in the NLP literature. The tradi-
tional methods tend to employ large annotated 
corpus to achieve a high performance. Differ-
ent with many semi-supervised learning mod-
els for NER task, in this paper, we employ the 
graph-based semi-supervised learning 
(GBSSL) method to utilize the freely available 
unlabeled data. The experiment shows that the 
unlabeled corpus can enhance the state-of-the-
art conditional random field (CRF) learning 
model and has potential to improve the tag-
ging accuracy even though the margin is a lit-
tle weak and not satisfying in current experi-
ments.  

 

1. Introduction 

Named entity recognition (NER) can be regarded 
as a sub-task of the information extraction, and 
plays an important role in the natural language 
processing literature. The NER challenge has 
attracted a lot of researchers from NLP, and 
some successful NER tasks have been held in the 
past years. The annotations in MUC-71 Named 
Entity tasks (Marsh and Perzanowski, 1998) con-
sist of entities (organization, person, and loca-
tion), times and quantities such as monetary val-
ues and percentages, etc. among the languages of 
English, Chinese and Japanese.  

The entity categories in CONLL-02  (Tjong 
Kim Sang, 2002) and CONLL-03 (Tjong Kim 

1 http://www-
nlpir.nist.gov/related_projects/muc/proceedings/
ne_task.html 

Sang and De Meulder, 2003) NER shared tasks 
consist of persons, locations, organizations and 
names of miscellaneous entities, and the lan-
guages span from Spanish, Dutch, English, to 
German. 

The SIGHAN bakeoff-3 (Levow, 2006) and 
bakeoff-4 (Jin and Chen, 2008) tasks offer stand-
ard Chinese NER (CNER) corpora for training 
and testing, which contain the three commonly 
used entities, i.e., personal names, location 
names, and organization names. The CNER task 
is generally more difficult than the western lan-
guages due to the lack of word boundary infor-
mation in Chinese expression.  

Traditional methods used for the entity recog-
nition tend to employ external annotated corpora 
to enhance the machine learning stage, and im-
prove the testing scores using the enhanced mod-
els (Zhang et al., 2006; Mao et al., 2008; Yu et 
al., 2008). The conditional random filed (CRF) 
models have shown advantages and good per-
formances in CNER tasks as compared with oth-
er machine learning algorithms (Zhou et al., 
2006; Zhao and Kit, 2008), such as ME, HMM, 
etc. However, the annotated corpora are general-
ly very expensive and time consuming.  

On the other hand, there are a lot of freely 
available unlabeled data in the internet that can 
be used for our researches. Due to this reason, 
some researchers begin to explore the usage of 
the unlabeled data and the semi-supervised learn-
ing methods based on labeled training data and 
unlabeled external data have shown their ad-
vantages (Blum and Chawla, 2001; Shin et al., 
2006; Zha et al., 2008; Zhang et al., 2013). 
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2. Semi-supervised Learning 

In the semi-supervised learning model, a sample 
{𝑍𝑍𝑖𝑖 = (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)}𝑖𝑖=1

𝑛𝑛𝑙𝑙  is usually observed with label-
ing 𝑌𝑌𝑖𝑖 ∈ {−1,1}, in addition to independent unla-
beled samples {𝑋𝑋𝑗𝑗}𝑗𝑗=𝑛𝑛𝑙𝑙+1

𝑛𝑛  with the 𝑛𝑛 = 𝑛𝑛𝑙𝑙 + 𝑛𝑛𝑢𝑢 . 
The 𝑋𝑋𝑘𝑘 = �𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2, … ,𝑋𝑋𝑘𝑘𝑘𝑘� 𝑘𝑘 ∈ (1,𝑛𝑛)  is a p-
dimentional input (Wang and Shen, 2007). The 
labeled samples are independently and identical-
ly distributed according to an unknown joint dis-
tribution 𝑃𝑃(𝑥𝑥,𝑦𝑦), and the unlabeled samples are 
independently and identically distributed from 
distribution 𝑃𝑃(𝑥𝑥). Many semi-supervised learn-
ing models are designed through some assump-
tions relating 𝑃𝑃(𝑥𝑥) to the conditional distribution, 
which cover EM method, Bayesian network, etc. 
(Zhu, 2008). 

The graph-based semi-supervised learning 
(GBSSL) methods have been successfully em-
ployed by many researchers. For instance, Gold-
berg and Zhu (2006) design the GBSSL model 
for sentiment categorization; Celikyilmaz et al. 
(2009) propose a GBSSL model for question-
answering; Talukdar and Pereira (2010) use the 
GBSSL methods for class-Instance acquisition; 
Subramanya et al. (2010) utilize the GBSSL 
model for structured tagging models; Zeng et al., 
(2013) use the GBSSL method for the joint Chi-
nese word segmentation and part of speech (POS) 
tagging and result in higher performances as 
compared with previous works. However, as far 
as we know, the GBSSL method has not been 
employed into the CNER task. To testify the ef-
fectiveness of the GBSSL model in the tradition-
al CNER task, this paper utilizes some unlabeled 
data to enhance the CRF learning through 
GBSSL method. 

3. Designed Models 

To briefly introduce the GBSSL method, we as-
sume 𝐷𝐷𝑙𝑙 = {(𝑥𝑥𝑗𝑗, 𝑟𝑟𝑗𝑗)}𝑗𝑗=1𝑙𝑙  denote 𝑙𝑙  annotated data 
and the empirical label distribution of 𝑥𝑥𝑗𝑗  is 𝑟𝑟𝑗𝑗 . 
Assume the unlabeled data types are denoted as 
𝐷𝐷𝑢𝑢 = {𝑥𝑥𝑖𝑖}𝑖𝑖=𝑙𝑙+1𝑚𝑚 . Then, the entire dataset can be 
represented as 𝐷𝐷 = 𝐷𝐷𝑢𝑢 ∪ 𝐷𝐷𝑙𝑙. Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) cor-
responds to an undirected graph with V as the 
vertices and E as the edges. Let 𝑉𝑉𝑙𝑙 and 𝑉𝑉𝑢𝑢 repre-
sent the labeled and unlabeled vertices respec-
tively. One important thing is to select a proper 
similarity measure to calculate the similarity be-
tween a pair of vertices (Das and Smith, 2012). 
According to the smoothness assumption, if two 
instances are similar according to the graph, then 

the output labels should also be similar (Zhu, 
2005). 

There are mainly three stages in the designed 
models, i.e., graph construction, label propaga-
tion and CRF learning. Graph construction is 
performed on both labeled and unlabeled data, 
and the unlabeled data is automatically tagged 
through the label propagation stage. Then, the 
tagged external data will be added into the man-
ually annotated training corpus to enhance the 
CRF learning model. 

3.1 Graph Construction & Label Propaga-
tion 

We follow the research of Subramanya et al. 
(2010) to represent the vertices using character 
trigrams in labeled and unlabeled sentences for 
graph construction. 

A symmetric k-NN graph is utilized with the 
edge weights calculated by a symmetric similari-
ty function designed by Zeng et al. (2013). 

The feature set we employed to measure the 
similarity of two vertices based on the co-
occurrence statistics is the optimized one by Han 
et al. (2013) for CNER tasks, as denoted in Table 
1. 

 
Feature Meaning 

𝑈𝑈𝑛𝑛,𝑛𝑛 ∈ (−4,2) 
Unigram, from previous 
4th to following 2nd charac-
ter 

𝐵𝐵𝑛𝑛,𝑛𝑛+1,𝑛𝑛 ∈ (−2,1) 
Bigram, 4 pairs of fea-
tures, from previous 2nd to 
following 2nd character 

 
Table 1: Feature set for measuring vertices simi-
larity in graph construction and training CRF 
model. 

 
After the graph construction on both labeled 

and unlabeled data, we use the sparsity inducing 
penalty (Das and Smith, 2012) label propagation 
algorithm to induce trigram level label distribu-
tions from the constructed graph, which is based 
on the Junto toolkit (Talukdar and Pereira, 2010). 

3.2 CRF Training 

In the CRF model, assume a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
comprising a set 𝑉𝑉 of vertices or nodes together 
with a set 𝐸𝐸  of edges or lines and 𝑌𝑌 = {𝑌𝑌𝑣𝑣|𝑣𝑣 ∈
𝑉𝑉} so 𝑌𝑌 is indexed by the vertices of 𝐺𝐺. The joint 
distribution over the label sequence 𝑌𝑌 given 𝑋𝑋 is 
presented as the form: 
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𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥) ∝ 𝑒𝑒𝑥𝑥𝑒𝑒� � 𝜆𝜆𝑘𝑘𝑓𝑓𝑘𝑘(𝑒𝑒,𝑦𝑦|𝑒𝑒 , 𝑥𝑥)
𝑒𝑒∈𝐸𝐸,𝑘𝑘

+ � 𝜇𝜇𝑘𝑘𝑔𝑔𝑘𝑘(𝑣𝑣,𝑦𝑦|𝑣𝑣 ,𝑥𝑥)
𝑣𝑣∈𝑉𝑉,𝑘𝑘

� 

 
The 𝑓𝑓𝑘𝑘 and 𝑔𝑔𝑘𝑘 are the feature functions and 𝜇𝜇𝑘𝑘 

and 𝜆𝜆𝑘𝑘  are the parameters that are trained from 
specific dataset (Lafferty et al., 2001). The fea-
ture set employed in the CRF learning is also the 
optimized one as shown in Table 1. The training 
method utilized for the CRF model is a quasi-
newton algorithm2. The automatically annotated 
corpus by the graph based label propagation will 
affect the trained parameters 𝜇𝜇𝑘𝑘 and 𝜆𝜆𝑘𝑘.  

4. Experiments 

4.1 Data 

We employ the SIGHAN bakeoff-3 (Levow, 
2006) MSRA (Microsoft research of Asia) train-
ing and testing data as standard setting. To testify 
the effectiveness of the GBSSL method for CRF 
model in CNER tasks, we utilize some plain (un-
annotated) text from SIGHAN bakeoff-2 (Emer-
son, 2005) and bakeoff-4 (Jin and Chen, 2008) as 
external unlabeled data. The data set is intro-
duced in Table 2 from the aspect of sentence 
number. 

 
 Bakeoff-3 Corpus External 

Sentence 
Number 

Training Testing Unlabeled 
50,425 4,365 31,640 

 
Table 2: Corpus Information. 

4.2 Result Analysis 

We set two baseline scores for the evaluation. 
One baseline is the simple left-to-right maximum 
matching model (MaxMatch) based on the train-
ing data, another baseline is the closed CRF 
model (Closed-CRF) without using unlabeled 
data. The employment of GBSSL model into 
semi-supervised CRF learning is denoted as 
GBSSL-CRF. 

The training costs of the CRF learning stage 
are detailed in Table 3. The comparison shows 
that the extracted features grow from 8,729,098 
to 11,336,486 (29.87%) due to the external da-
taset, and the corresponding iterations and train-

2 
http://www.nag.com/numeric/fl/nagdoc_fl23/html/E0
4/e04conts.html 

ing hours also grow by 12.86% and 77.04% re-
spectively. 

 
 Training Costs 
 Feature Iteration Time (h) 

Closed-CRF 8,729,098 350 4.53 
GBSSL-CRF 11,336,486 395 8.02 

 
Table 3: Training Cost for CRF Learning. 

 
The evaluation results are shown in Table 4, 

from the aspects of recall, precision and the har-
monic mean of recall and precision (F1-score). 
The evaluation shows that both the Closed-CRF 
and GBSSL-CRF models have largely outper-
formed baseline-1 model (MaxMatch). As com-
pared with the Closed-CRF model, the GBSSL-
CRF model yielded a higher performance in pre-
cision score, a lower performance in recall score, 
and finally resulted in a faint improvement in F1 
score. Both the GBSSL-CRF and Closed-CRF 
show higher performance in precision and lower 
performance in recall value. 

 
 Evaluation Scores 

Total-score Total-R Total-P Total-F 
MaxMatch 48.8 59.0 53.4 

Closed-CRF 77.95 90.27 83.66 
GBSSL-CRF 77.84 90.62 83.74 

 
Table 4: Evaluation Results. 

 
To look inside the GBSSL performance on 

each kind of entity, we denote the detailed evalu-
ation results from the aspect of F1-score in Table 
5. The detailed evaluation from three kinds of 
entities shows that both the GBSSL-CRF and 
Closed-CRF show higher performance in LOC 
entity type, and lower performance in PER and 
ORG entities. 

 
 Detailed Evaluation 

Sub-F-score PER-F LOC-F ORG-F 
MaxMatch 61.4 53.1 46.9 

Closed-CRF 77.95 88.56 80.88 
GBSSL-CRF 78.17 88.39 81.35 

 
Table 5: Detailed Evaluation Results. 

 
Fortunately, the GBSSL model can enhance 

the CRF learning on the two kinds of difficult 
entities PER and ORG with the better perfor-
mances of 0.28% and 0.58% respectively. How-
ever, the GBSSL model decreases the F1 score 
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on LOC entity by 0.19%. The lower performance 
of GBSSL model on LOC entity may be due to 
that the unlabeled data is only as much as 62.75% 
of the training corpus, which is not large enough 
to cover the Out-of-Vocabulary (OOV) testing 
words of LOC entity; on the other hand, the un-
labeled data also bring some noise into the model. 

5. Related Work 

Nadeau (2007) employs the semi-supervised 
learning method to recognize 100 entity types on 
English documents with little supervision. Simi-
larly, Liao and Veeramachaneni (2009) propose 
a simple semi-supervised algorithm for English 
entity recognition. Liu et al. (2011) design an 
interesting application of the semi-supervised 
learning model for online tweets document for 
English NER. 

Pham et al. (2012) use semi-supervised learn-
ing method of CRFs into the Vietnamese NER 
task with generalized expectation criteria. Simi-
larly, Vo and Ock (2012) utilize a hybrid ap-
proach semi-supervised learning approach into 
the NER task for Vietnamese document. 

Wang et al. (2013) and Che et al. (2013) re-
cently propose the usage of bilingual constraints 
to enhance the NER accuracy. 

Some advanced technologies of GBSSL 
methods are introduced in the papers Zhu and 
Lafferty (2005), Culp and Michailidis (2008), 
and Zhang and Wang (2011), etc. 

6. Conclusion and Future Work 

This paper makes an effort to see the effective-
ness of the GBSSL model for the traditional 
CNER task. The experiments verify that the 
GBSSL can enhance the state-of-the-art CRF 
learning models. The improvement score is a 
little weak because the unlabeled data is not large 
enough. In the future work, we decide to use 
larger unlabeled dataset to enhance the CRF 
learning model.  

The feature set optimized for CRF learning 
may be not the best one for the similarity calcu-
lation in graph construction stage. So we will 
make efforts to select the best feature set for the 
measuring of vertices similarity in graph con-
struction on CNER documents. 

In this paper, we utilized the Microsoft re-
search of Asia corpus for experiments. We will 
use more kinds of Chinese corpora for testing, 
such as CITYU and LDC corpus, etc. 

The GBSSL model generally improves the 
tagging accuracy of the Out-of-Vocabulary 

(OOV) words in the test data, which are unseen 
in the training corpora. In the future work, we 
plan to give a detailed analysis of the GBSSL 
model performance on the OOV words for 
CNER tasks. 
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