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Abstract

We define a new algorithm, named
“Drem”, for tuning the weighted linear
model in a statistical machine translation
system. Drem has two major innova-
tions. First, it uses scaled derivative-free
trust-region optimization rather than other
methods’ line search or (sub)gradient ap-
proximations. Second, it interpolates the
decoder output, using information about
which decodes produced which transla-
tions.

1 Introduction

While searching for the best translation of a text,
statistical machine translation systems generate
several different quantitative descriptors of the
translation, called “features”. These features are
combined into a single score, by weighting and
summing them. A tuning algorithm chooses the
weights used in this combination.

MERT (Och, 2003) is the standard tuning al-
gorithm. Many different varieties of error rate
training exist, with various techniques, includ-
ing expectation, line-search, Nelder—-Mead sim-
plex (Zhao and Chen, 2009), particle swarm op-
timization (Suzuki et al., 2011), and stabilization
(Foster and Kuhn, 2009). It has been experienced
that MERT fails to perform well in larger feature
spaces, but recently there has been evidence of a
regularized MERT succeeding in high dimensions
(Galley et al., 2013).

Other methods have been designed as wholesale
replacements for MERT, including MIRA (Chiang
et al., 2008), k-best MIRA (Cherry and Foster,
2012), PRO (Hopkins and May, 2011), and Ram-
pion (Gimpel and Smith, 2012).
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MERT’s continued use indicates an improved
dense-feature optimizer for weighted linear mod-
els would be welcome. It is in this context that we
introduce our tuning algorithm, named “Drem”. In
contrast to known varieties of MERT, Drem is not
a line-search, simplex, or particle swarm optimiza-
tion method. It is a derivative-free trust-region
method, with several advancements to cater to the
particular nature of MT system optimization.

2 Background and definitions

A feature vector f € R has the relative impor-
tance of its components determined by a weight
vector w € R¥. For a weighted linear model, the
score used by the decoder to choose the best trans-
lation is the scalar product,

s(w, f) =w" f (1)

which we call the decoder score. The output of the
decoder run on a corpus C at a weight w is an n-
best list V' (w, C). The n-best list can be thought
of as a collection of elements of the form (j, ¢, f),
where j € J is the segment (typically sentence)
index within C, ¢ is the text of the translation, and
f is the feature vector. The objective of tuning is
to choose the weights w such that the translation
with the highest decoder score (i.e., the “I-best”)
will be the segment’s best translation. For the test
error a human performs an evaluation.

In order to produce the best results on the test
set, it is important to optimize some measure of
error on a given bilingual development set, Cey.
In tuning we will use the common practice of
iteratively decoding and optimizing, and we de-
fine w(™ to be the weight used in the m-th de-
code. During optimization, the development er-
ror metric at a weight w (where no decode has
been performed) is approximated using only re-
sults from prior decodings. At this un-decoded
weight we must perform a “pseudo-decoding” to
approximate the result of decoding at it.
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In Drem we define a pseudo-decoder scoring
function sgey, changed from the standard decoder
score (1) to incorporate a “fear” of including
a translation that was produced by decoding a
weight far from the weight under consideration.
Several different methods, including MIRA (Chi-
ang et al., 2008), k-best MIRA (Cherry and Foster,
2012), Rampion (Gimpel and Smith, 2012), and
Ultraconservative Updating (Liu et al., 2012), and
stabilization methods of Foster and Kuhn (2009),
include this fear by adding a distance penalty to
the error function being optimized. We believe
that changing the pseudo-decoder score, rather
than the error minimized, is a novel technique and
qualitatively different from other treatments.

Our optimization technique is novel in that it
is not a line search method like MERT, nor a
(sub)gradient approximation method, nor a sim-
plex method. Rather, it is a regression-based
derivative-free trust-region method. Use of re-
gression on scaled weights allows us to take
smooth approximations of the error function,
which should aid the method’s robustness. Trust-
region optimization supports the multiresolution
placement of regression points, providing a thor-
ough search.

3 Tuner description

We divide the tuner description into three sec-
tions. In §3.1 we describe optimization techniques
used to optimize efficiently, avoiding local optima.
In §3.2 we describe techniques used to make the
translations in optimization similar to the output
of the decoder. In §3.3 we give techniques used to
make the result of tuning robust to human evalua-
tion of test sets.

3.1 Optimization
3.1.1 Scaling

The scalar product (1) used in the determination
of the 1-best translation means that the decoder
output is scale-invariant. However, many tuning
algorithms (excluding MERT and Drem, but in-
cluding MIRA (Chiang et al., 2008), Ultraconser-
vative Updating (Liu et al., 2012), and others) are
impacted by the magnitude of the weight vectors.
In this section we show how we rescale all weights
and features to change to an intrinsic unit scaling.

Our first step in defining the coordinate system
is whitening the feature space, which is transform-
ing the features to be uncorrelated and have equal
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variance. Whitening the features removes the
complications of features with dramatically differ-
ent scales and features that tend to move nearly in
lock-step with each other.

We perform the whitening of the feature space
by performing principal component analysis of the
matrix M, which we define to be the mean covari-
ance matrix. That is, M is the average of the sam-
ple covariance matrices for the different segments,
where we consider data from “relatively good” de-
codes’.

Principal component analysis of M provides the
scaling matrix A, which is used to produce the
whitened features (:

p=Af

In order to maintain ordering of the product w’ f
under the new scaling of the features, we also
rescale the weights via

B A tw
[ A~ w]|

We will use the notational convenience of the
implicit transformation between the unscaled vari-
ables w and f and the scaled variables A and
. The scaling matrix A is constant throughout
a Drem run, so this should produce no ambiguity.

With these scaled weights on the unit (k — 1)-
sphere, we can use a standard cosine difference be-
tween different weights:

dist(A1, Ag) = acos(AT Ag)

A

2

which implies that all distances between vectors
will be between zero and 7. This distance function
is appealing as a geometrically natural measure of
distance between direction vectors.

3.1.2 Derivative-free trust-region
optimization

Our tuning process can be summarized as per-

forming the development error minimization

3)

* .
w”* = arg min Egey (W, Cyey)
w

We choose to perform this optimization using a
trust-region method (Conn et al., 2000). We re-
peatedly solve a problem of the form

A= mé(Aa >‘0) “4)

arg min
A:dist (A, X)) <8

"Defined by the user, and precise definition has little im-
pact. We use metrics scaled like BLEU, and weights are “rel-
atively good” if they give an error within 0.0025 of the best
decode’s.



where 0 is the so-called “trust-region radius”, and
mg (to be defined in §3.1.3) is a simple model ap-
proximately equal to Egey.

When an improvement to Egey (01 Edeyrobust 1N
§4) is found via (4), a step is taken in that direction.
The trust-region radius is enlarged if the improve-
ment is significant, and maintained or decreased
otherwise.

Problem (4) is optimized repeatedly, with dif-
ferent central weights A¢ and different trust-region
radii §. Convergence is declared if the trust-region
radius becomes small enough or the maximum
number of iterations is reached?.

A new, optimal weight w is the output of each
Drem run. It will be used to decode the develop-
ment corpus, and then Drem will be re-run. Over-
all convergence is achieved if the Drem output
weights converge.

This trust-region method is in stark contrast to
MERT’s line search methodology on a piecewise
continuous error. MERT relies heavily on search-
ing along a line, keeping track of where the one-
best translations (and therefore the error) change
on that line. MERT’s method is designed for a
piecewise constant error and would be inapplica-
ble for (4). Both our pseudo-decoder score and
development error metrics are continuous.

3.1.3 Error surface modeling via sampling

We choose to evaluate the error function at a few
sampled points around the current best weight and
fit a quadratic or linear model ms to it (Conn et al.,
2009).

For a linear model, we choose the evaluation set
at the scale ¢ to be the 2(k—1)+1 points consisting
of the central point Ao of the trust-region and the
2(k—1) points found by taking steps of 0 in each
of the k — 1 coordinate directions.

The model of the error is defined as the model
mes(A, Ag) that minimizes the squared error be-
tween the error evaluations and the model.

Using least-squares regularization to model the
error surface completely avoids the issue of need-
ing to approximate a gradient or subgradient of the
error function. This is by design and avoids the
tendency of local behavior to dominate global be-
havior, in both computational effort and final result
(Conn et al., 2009).

?Precise definitions of the many optimization parameters
have little impact. Our threshold for the minimum trust-
region radius is 0.001, and we allow up to 30 iterations of
solving (4) per Drem run.

The local coordinate basis on the unit sphere is
arbitrary in the definition of mgs(X, Ag). We will
use this feature to our advantage, choosing a dif-
ferent random basis every time we perform an op-
timization iteration. This gives the benefit of func-
tion evaluation in many random directions at each
step, with negligible cost.

3.2 Pseudo-decoder improvement

We now turn to how we will use the information
available to Drem to simulate decoding at a new
weight.

3.2.1 Decode score interpolation

For development error, we include a penalty so
that a translation will get a lower score (“fade
away”) as one moves farther from the decode
weights that produced that translation.  Our
pseudo-decoder score is an adjusted version of (1),

sdev(Js t, 0, A) = s(w, ) +p(j, t, 0, A) (5

where p is the penalty for considering a transla-
tion at a weight which is distant from the weights
which produced it.

We have freedom in choosing the distance
penalty function p. Many optimizers, such as
MERT, have no such penalty function, so we can
replicate their pseudo-decoders by setting p iden-
tically equal to zero. We choose to interpolate in-
stead. That is, the decoder and the pseudo-decoder
will produce the same n-best list and scores at that
weight (modulo inclusion of translations with in-
finitely bad scores). In equations, this is

07 (]7 ta f) € N(w(m)7cdeV>

—00, otherwise

p(jvt,cp,A(m)):{

We give our standard choice for p here. Let
dmin(A) be the distance of a weight A from the
nearest weight where the current segment was de-
coded:

dmin(A) = min dist(A, A(™)

and let d(j,t, ¢, A) be the distance to the near-
est weight that produced the given translation
(4, t, ). We define the maximum distance that
can produce a finite score to be a multiple of this
minimum distance, dpax = 1000d,;,. Then we
define the penalty function to be

0, d = dmin
(Gt 0, N) = § P2= dimin < d < dinax
—00, otherwise
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We find Drem’s decode score interpolation to be
extraordinarily beneficial when n-best list rerank-
ing is part of the system. If the ranking from the
initial decoder differs substantially from that of the
rescorer, we have seen other tuners have difficulty
producing translations which are both produced by
the first decoder and scored highly by the rescorer.

3.2.2 Tabu search

We, like Foster and Kuhn (2009), feel that early
tuning iterations should focus on exploring the
space. This helps to develop the psuedo-decoder’s
knowledge of the decoder’s output at various
weights. To this end, we have the option of con-
straining the output of a tuning iteration to be a
certain distance from all previous decodes. As in
Foster and Kuhn (2009), we reduce the effect in
later iterations, to allow convergence. We set this
distance to 0.25 for the first twenty iterations of
Drem, and zero for the final three iterations.

3.2.3 Historical restarts

We, like Foster and Kuhn (2009), have observed
that random restarts are often not valuable for tun-
ing. In Drem this may be due in part to the re-
peatedly randomized coordinate systems. How-
ever, historical restarts can sometimes help re-
cover from an early misstep. The set of starting
points will then consist of the given weight and
the three prior decode weights with the best devel-
opment error metric values. If enough distinct his-
torical restarts are not available, random restarts
will be added until four distinct starting points are
found.

3.24

Our final option in this section is related to the
standard practice of running several replicates of
the tuning process and choosing to use the weights
output by just one of them. Instead of choosing
a single replicate’s result, we allow the user to
merge the n-best lists of all the replicates at some
mid-way point of Drem. This improves the knowl-
edge of the pseudo-decoder, allowing Drem to use
this information to select its final answer.

We allow ten replicates to proceed for twenty
iterations of Drem, then merge their n-best lists
and optimize for three further iterations.

Merging replicates

3.3 Generalization to test data

We find that the weights found by Drem (and other
tuners) do not always generalize well to test data.
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The proper choices here depend strongly on how
the development corpus and evaluation metric dif-
fer from the test corpus and evaluation metric.

3.3.1 Error function smoothing

To generalize from a development corpus to an un-
seen test corpus, we choose to smooth the metric
function optimized. We do this by using expected
metric scores, as in Smith and Eisner (2006), Och
(2003), Cherry and Foster (2012), and Liu et al.
(2012). We average the sufficient statistics of the
available translations, taking the weight of a trans-
lation as exp(aSqey (4,1, @, A))/Z;. Here Z; nor-
malizes the probability of the translations of seg-
ment j. The smoothing parameter « can vary, with
examples in the literature including oo = 1 (Cherry
and Foster, 2012), o = 3 (Liu et al., 2012), and
a = oo (i.e., the standard 1-best score, which
would be used if the test set was identical to the
dev set). We choose our standard setting of @ = 1.

3.3.2 Maetric choice

The most difficult part of this tuning task may well
be choosing a development error to optimize that
will give a final result that will match well to hu-
man judgment. We choose to maximize a combi-
nation of NIST score (NIST Report, 2002), Me-
teor 1.5 score (Denkowski and Lavie, 2014), and
Kendall’s 7 score (Birch and Osborne, 2011)*:

0.045 - NIST + 0.45 - Meteor + 0.1 - Kendall’s 7

where the weights are chosen based on experience,
and we smooth all metrics with o = 1. The com-
bined score aims to avoid pitfalls of any individual
metric. This metric was developed by performing
our own human evaluation of the Czech—English
direction and requesting human evaluation from
the task organizers for the English—Czech direc-
tion.

4 Unused options

Drem has several options that were not necessary
for this task, and we give a few of them here.

A quadratic model could be chosen in §3.1.3,
where we add the cross-terms to get an evaluation
setof 2(k—1)2+1 points. For the tuning task, tests
showed no improvement in the final result with the
quadratic model.

In addition to smoothing in the “depth” of the
n-best list, we can also smooth the error spatially.

3dev set alignments were created by GIZA++, trained on
the supplied training and dev corpora



In §3.1.2, we would replace Egey With Egevrobusts
where Egevrobust 1S the average taken over a set of
nearby weights. For the tuning task, tests showed
no improvement in the final result with this spatial
smoothing.

We tested the ability of Drem to han-
dle sparse features, adding a total of 58
nontrivial TargetWordInsertion  and
SourceWordDeletion features. Drem ran
successfully on this larger feature space, to
apparent convergence. However, the resulting
translations of the dev set were not qualitatively
better, despite the increased risk of overfitting to
the dev set.

S Implementation

The Drem algorithm was programmed and run in
GNU Octave 3.6.4 in Scientific Linux. It is de-
signed to be called from the command prompt as a
drop-in replacement for the MERT executable that
is provided with Moses (Koehn et al., 2007). Ad-
ditional arguments, such as metric choice, expec-
tation parameter «, quadratic or linear error sur-
face model, etc., can be added to the command
line.

Tuning proceeded as described above. For this
task the test data are unavailable, so we do not
know how the test set differs from the develop-
ment set. We choose parameters for smoothing
and robustification that have generalized well in
the past, keeping in mind that we could make bet-
ter choices (such as paring down the dev set) if we
knew how the source text of the test differed from
the development text.

Convergence appeared to be achieved in both
translation directions.

It is noteworthy that for English—-Czech the
weight for the feature TranslationModelO
was tuned to near zero. We restarted the tuning
process with it fixed at zero and achieved very sim-
ilar results.

A comparison of results of the Tuning Task can
be found in (WMT, 2015).

6 Discussion

In this paper we have introduced a new method
for tuning the weighted linear model which arises
in finding a statistical machine translation system.
We have created a new, lower-dimensional search
space in which all features are uncorrelated and
have approximately equal variation. We have cre-

426

ated a new method for extrapolating known n-best
lists to a new point, effectively reordering its simu-
lated n-best list by penalizing the pseudo-decoder
score of less trustworthy translations. Finally, we
have employed a new, multi-scale optimization
method which avoids approximating derivatives
and for robustness smooths the error function and
its local approximations.

Several different implementations fit within
Drem’s framework. This paper presents a batch
implementation of Drem. The algorithm requires
minor modifications if partial decodes are per-
formed, and this has promise for tuning more effi-
ciently.
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