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Abstract

This paper describes the LeBLEU evalu-
ation score for machine translation, sub-
mitted to WMT15 Metrics Shared Task.
LeBLEU extends the popular BLEU score
to consider fuzzy matches between word
n-grams. While there are several variants
of BLEU that allow to non-exact matches
between words either by character-based
distance measures or morphological pre-
processing, none of them use fuzzy com-
parison between longer chunks of text.
The results on WMT data sets show that
fuzzy n-gram matching improves correla-
tions to human evaluation especially for
highly compounding languages.

1 Introduction

The quality of machine translation has improved
to the level that the translation hypotheses are
useful starting points for human translators for
almost any language pair. In the post-editing
task, the ultimate way to evaluate the machine
translation quality is to measure the editing time.
Editing times are naturally related to the num-
ber and types of the edits—and thus the number
of keystrokes (Frederking and Nirenburg, 1994)—
the post-editor needs to get the final translation
from the hypothesis. If we compare the raw trans-
lation hypothesis and its post-edited version, an
appropriate edit distance measure should correlate
to the edit time. However, implementing such a
measure is far from trivial.

In automatic speech recognition, common eval-
uation measures are Word Error Rate (WER) and
Letter Error Rate (LER) that are based on the Lev-
enshtein edit distance (Levenshtein, 1966). LER is
more reasonable measure than WER for morpho-
logically complex languages, in which the same
word can occur in many inflected and derived

forms (Creutz et al., 2007). However, both give
too high penalty for the variations in word order-
ing, which are frequent in translations. Even in
English, there are often at least two grammatically
correct orders for a complex sentence. For lan-
guages in which the grammatical roles are marked
by morphology and not the word order, there may
be many more options.

An edit distance measure suitable for machine
translation would require move operations. How-
ever, such measures are computationally very ex-
pensive: finding the minimum edit distance with
moves is NP-hard (Shapira and Storer, 2002),
making it cumbersome for evaluation and unsuit-
able for automatic tuning of the translation mod-
els. Possible solutions include limiting the move
operations or searching only for an approximate
solution. For example, Translation Edit Rate
(TER) by Snover et al. (2006) uses a shift oper-
ation that moves a contiguous sequence of words
to another location, as well as a greedy search al-
gorithm to find the minimum distance. Stanford
Probabilistic Edit Distance Evaluation (SPEDE)
by Wang and Manning (2012) applies a proba-
bilistic push-down automaton that captures non-
nested, limited distance word swapping.

A different approach to avoid the requirement
of exactly same word order in the hypothesis and
reference translations is to concentrate on compar-
ing only small parts of the full texts. For exam-
ple, the popular BLEU metric by Papineni et al.
(2002) considers only local ordering of words. To
be precise, it calculates the geometric mean pre-
cision of the n-grams of length between one and
four. As high precision is easy to obtain by provid-
ing a very short hypothesis translation, hypotheses
that are shorter than the reference are penalized by
a brevity penalty.

BLEU, TER and many other word-based meth-
ods assume that a single word (or n-gram) is ei-
ther correct or incorrect, nothing in between. This
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is problematic for inflected or derived words (e.g.
“translate” and “translated” are considered two
different words) as well as compound words (e.g.
“salt-and-pepper” vs. “salt and pepper”). This is
a minor issue for English, but it makes the evalua-
tion unreliable for many other languages. For ex-
ample, in English–German translation, producing
“Arbeits Geberverband” from “employers’ organi-
zation” would give no hits if the reference had the
compound “Arbeitgeberverband”.

A common approach to the problem of inflected
word forms—as well as to the simpler issues of
uppercase letters and punctuation characters—is
preprocessing. For example, METEOR (Baner-
jee and Lavie, 2005; Denkowski and Lavie, 2011)
uses a stemmer. Popović (2011) applies and com-
bines BLEU-style scores based on part-of-speech
(POS) tags as well as morphemes induced by the
unsupervised method by Creutz and Lagus (2005).
Also the AMBER score by Chen and Kuhn (2011)
combines many BLEU variants, and in some vari-
ants, the words are heuristically segmented.

Our approach is to extend the BLEU metric
to work better on morphologically complex lan-
guages without using any language-specific re-
sources. Instead of giving one point for exactly
same n-gram or zero points for any difference, we
include “soft” or “fuzzy” hits for word n-grams
based on letter edit distance. We call the score
LeBLEU; this name can be interpreted either as
“Letter-edit-BLEU” or “Levenshtein-BLEU”. Le-
BLEU has two main parameters, n-gram length
and fuzzy match threshold, that are easy to tune
for different types of languages.1

There are at least three previous approaches that
resemble LeBLEU in that they try not to over-
penalize different word orderings and word forms,
but do not require any preprocessing tools or re-
sources. Denoual and Lepage (2005) simply use
the standard BLEU score on the level of charac-
ters, treating word delimiters as any other charac-
ters. In order to capture long enough sequences of
text, they increase the maximum n-gram length to
18. Compared to word-based BLEU, their method
does not increase the correlations to human evalu-
ation in English.

Homola et al. (2009) propose a score that is a
weighted combination of two measures: an align-
ment score that applies letter edit distances be-

1In contrast, for example the AMBER score by Chen and
Kuhn (2011) includes nearly 20 weight parameters.

tween the word forms and a structural score that
measures the differences in word order. In con-
trast to LeBLEU, it still strongly penalizes errors
in compounding, as the alignment is word-to-word
and fuzzy matches are accepted only if the LER
between a pair of words is lower than 15%.

More recently, Libovický and Pecina (2014)
have proposed “tolerant BLEU”, a variant of
BLEU that similarly to LeBLEU finds fuzzy
matches between hypothesis and reference words.
Instead of Levenshtein edit distance, they apply
a specific affix distance measure that requires an
exact match in the middle of the words. More-
over, they apply a more complex procedure, in
which the words between the hypothesis and refer-
ence are first aligned using the Munkres algorithm.
Then the hypothesis words are replaced by the
matched reference words while applying a penalty
based on the affix distance, and finally standard
BLEU calculations are performed on the modified
hypothesis. Similarly to the method by Homola
et al. (2009), there is no matching between word
n-grams of different lengths.

2 Method

LeBLEU differs from the standard BLEU (Pap-
ineni et al., 2002) in the following aspects (in the
order of decreasing importance):

First, the matching of word n-grams is fuzzy:
for a close match, the hits are increased according
to a similarity score. The similarity score is one
minus letter edit distance normalized by the length
of the longer n-gram in characters. Even though
we use the term “letter edit”, the calculations are
based on all characters, including the spaces be-
tween the words. If the similarity score is lower
than the selected threshold parameter δ, the fuzzy
match is ignored.

In contrast to standard BLEU, there is no need
for lowercasing or even tokenization. For exam-
ple, a punctuation character following a word is
included in the n-gram as a part of the word. Thus,
with a reasonably low threshold parameter, miss-
ing the punctuation character will result only in a
relative small decrease in the score.

Second, to facilitate the matching of compound
words, the hypothesis n-grams are not matched
only to reference n-grams of the same order, but n-
grams of any order between one and 2n, where n
is highest order of hypothesis n-gram considered.

Third, the brevity penalty is not based on the
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number of word tokens but the number of charac-
ters in the data. By this, we try to avoid giving too
much penalty for mistakes in compound words.
Character-based penalty is also one of the penalty
variants in AMBER (Chen and Kuhn, 2011).

Fourth, when calculating mean over the differ-
ent n-gram orders, arithmetic mean is taken in-
stead of geometric mean. That the arithmetic
mean is often a better choice than the geometric
mean has been noted also by Song et al. (2013).

2.1 Algorithm

Our algorithm for calculating the LeBLEU score
consists of four phases: First, the hypothesis n-
grams and their frequencies are collected. Sec-
ond, hypothesis n-grams are matched to the refer-
ence n-grams, collecting the normalized letter-edit
scores. Third, the scores are summed up for each
n-gram order and normalized by the total number
of hypothesis n-grams. Finally, average precision
over n-gram orders is calculated and multiplied by
the brevity penalty.

Only the second phase differs significantly from
calculating the standard BLEU score. It is also
the most time-consuming part of the algorithm, so
we will describe the implemented optimizations in
more detail. We also discuss how further speed-
up can be obtained by sampling the hypothesis n-
grams in the first phase.

2.1.1 Calculating distances between n-grams
As we need to compare all hypothesis n-grams (up
to n) to all reference n-grams (up to 2n), the worst-
case complexity for the number of Levenshtein
calculations is O(n2HR) for hypothesis sentence
of H words, reference sentence of R words and
maximum n-gram order n. We use several strate-
gies to optimize this task without changing the re-
sulting scores.

To calculate the Levenshtein distances, we use a
modified version of python-Levenshtein, a Python
extension module written in C.2 The number of
function calls from Python to C is minimized by
passing in two lists of strings to compare: all ex-
tracted n-grams from the hypothesis and reference.
This strategy results in a large number of compar-
isons, making it attractive to prune comparisons
that will not affect the final score due to the thresh-
old parameter δ.

2Our fork is available from https://github.com/
Waino/python-Levenshtein.

Two lower bounds for Levenshtein distance
were used for pruning. The first lower bound
is given by the difference in lengths of the two
strings: the number of letter edits is at least the ab-
solute difference of the lengths. The second lower
bound is the bag distance (Bartolini et al., 2002),
which uses the difference between character his-
tograms calculated from the compared strings. In
addition to the lower bounds, we use early stop-
ping of the dynamic programming algorithm for
Levenshtein distance, if all possible paths have
grown past the pruning threshold.

For each hypothesis n-gram, the pruning thresh-
old is initially set to δ. As we are looking only
for the m-best matches (where m is the number of
times the hypothesis n-gram occurred in the sen-
tence), we can constraint the threshold whenever
better matches to the reference n-grams are found.
For example, if the two best matches are required,
a third score that is worse than the current second-
best cannot affect the score. Keeping track of the
desired number of best matches can be accom-
plished using for example a heap data structure.
However, most of the n-grams occur only once,
in which case the heap degenerates into a single
item. To simplify the implementation, we adjust
the threshold only in this case.

2.1.2 Sampling of n-grams

Regardless of the optimizations above, the eval-
uation speed may get impractically slow for very
long sentences. In such cases, a suitable approxi-
mation is to estimate the precision for only a sub-
set of the hypothesis n-grams. If the sample size
is limited to L n-grams, the time complexity be-
comes O(LnR). A sensible scheme is to select
n-grams evenly from the hypothesis sentence. In
practice, we exclude or include n-grams starting
from every kth word for a suitable value of k.3

If the gaps are never longer than n − 1 words,
all words in the hypothesis will influence the re-
sult. We set the maximum n-gram sample size L
to 2000. If n = 4, this means that we use all n-
grams if the number of words in the hypothesis
H ≤ 500. Some words in the hypothesis would
be completely discarded only if H > 2000.

3If L/H < 0.5, we set k = bH/Lc and include every
kth word. Otherwise we set k = bH/(H − L)c and exclude
every kth word.
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3 Experiments

We study the proposed evaluation score using the
data sets from the shared tasks of the Workshops
on Statistical Machine Translation (WMT). The
data sets contain human evaluations for different
machine translation systems and system combi-
nation outputs. The translation hypotheses are
ranked both in the level of segments (individual
sentences) and systems. The translation hypothe-
ses and references were used as inputs to the Le-
BLEU score as such: no preprocessing was per-
formed on the texts.

3.1 Parameter tuning

We tuned the two parameters of the evaluation
score on the data sets published from the WMT
2013 and 2014 shared tasks (Macháček and Bo-
jar, 2013; Macháček and Bojar, 2014). We ran a
grid search on the parameters for each language
and level. We tested four values of the maximum
n-gram length n (from 1 to 4) and six values of
the fuzzy match threshold δ (from 0.2 to 0.8 using
step size 0.1).

Our WMT 2015 submission includes two ver-
sions regarding the method parameters: “default”
and “optimized”. For the default submission, we
selected the parameters based on the smallest rank
sum over all languages, data sets (2013/2014) and
levels of evaluation (system/segment). These pa-
rameters, which we set as the default parameters
for our implementation, are n = 4 and δ = 0.4.

For the optimized submission, we took the pa-
rameters with the best average correlation over
WMT 2013 and 2014 data sets for each language
pair and level of evaluation. The results are shown
in Table 1. For the Finnish language that was
not present in the 2013 and 2014 shared tasks, we
took the best parameters for German, another lan-
guage with complex morphology and long com-
pound words.

3.2 Results for the WMT shared tasks

Table 2 shows the results from the WMT 2013,
WMT 2014, and WMT 2015. Topline for system-
level data of WMT 2013 is not included due to
the use of Spearman’s rank correlation instead of
Pearson’s product-moment correlation. Segment-
level results of WMT 2013 are dominated by sin-
gle submission, SIMPBLEU-RECALL by Song et
al. (2013). Considering morphologically com-
plex languages, LeBLEU would have ranked first

segment system

Source Target n δ n δ

English French 4 0.7 4 0.4
English German 3 0.2 4 0.2
English Czech 2 0.3 4 0.3
English Russian 2 0.3 2 0.2
French English 3 0.6 4 0.6
German English 4 0.5 4 0.4
Czech English 4 0.5 4 0.7
Russian English 4 0.5 4 0.3

Table 1: Results of parameter optimization for
each language pair and level of evaluation (seg-
ment or system).

in English–German and second in English–Czech
and English–Russian. For translations to English,
LeBLEU would have ranked in the top five among
the 10 methods.

For WMT 2014 segment-level data, optimized
LeBLEU provides the highest correlations for all
language pairs from English. It also outperforms
all the included methods for English–German and
English–Russian system-level data. For system-
level English–French, it would have ranked 5th.
For system-level English–Czech, the optimized
parameters yielded lower correlation than the de-
fault ones, and neither come close to the topline.
Somewhat surprisingly, LeBLEU provides the top
correlation for system-level German–English and
third best for system-level Czech–English transla-
tions. For other system-level pairs to English, and
all segment-level pairs to English, the correlations
are reasonably high but quite far from the respec-
tive toplines. We can also compare LeBLEU to
two related methods, standard BLEU and AMBER
(Chen and Kuhn, 2011). LeBLEU outperforms
both in almost all tasks already with the default pa-
rameters. The only exception is the system-level
English–Czech task, in which BLEU provided a
slightly higher correlation.

In the WMT 2015 evaluation, LeBLEU pro-
vides quite stable correlations across the differ-
ent language pairs: Segment-level correlations are
between 0.345–0.436 with default parameters and
0.347–0.438 with optimized parameters. System-
level correlations are between 0.850–0.955 with
default parameters and 0.842–0.984 with opti-
mized parameters, except for English–Finnish,
which gets 0.835 with the default parameters and
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WMT 2013 WMT 2014 WMT 2015

Source Target Level def. opt. top def. opt. ref-B ref-A top def. opt. top

English French segment .231 .234 .261 .292 .296 .256 .264 .293 .345 .347 .366
English Finnish segment – – – – – – – – .368 .368 .380
English German segment .247 .260 .254 .273 .273 .191 .227 .268 .398 .399 .398
English Czech segment .167 .168 .192 .342 .349 .290 .302 .344 .406 .410 .446
English Russian segment .230 .233 .245 .446 .449 .381 .397 .440 .404 .404 .439

French English segment .255 .259 .303 .380 .395 .378 .367 .433 .373 .376 .398
Finnish English segment – – – – – – – – .383 .391 .445
German English segment .256 .262 .318 .324 .320 .271 .313 .380 .402 .399 .482
Czech English segment .225 .227 .388 .278 .282 .213 .246 .328 .436 .438 .495
Russian English segment .229 .230 .234 .302 .309 .263 .294 .355 .376 .374 .418

English French system .971 .971 – .947 .947 .937 .928 .960 .933 .933 .964
English Finnish system – – – – – – – – .835 .803 .878
English German system .947 .919 – .451 .531 .216 .241 .357 .850 .868 .879
English Czech system .842 .857 – .973 .964 .976 .972 .988 .953 .952 .977
English Russian system .787 .870 – .926 .941 .915 .926 .941 .896 .908 .970

French English system .948 .956 – .964 .964 .952 .948 .981 .955 .984 .997
Finnish English system – – – – – – – – .900 .900 .977
German English system .933 .933 – .963 .963 .832 .910 .943 .916 .916 .981
Czech English system .960 .946 – .918 .988 .909 .744 .993 .947 .976 .993
Russian English system .836 .855 – .805 .799 .789 .797 .870 .908 .842 .981

Table 2: Performance of LeBLEU in recent WMT metrics shared tasks. Pearson’s correlation coefficients
(system-level data) and average Kendall’s tau correlation coefficients (segment-level data) for LeBLEU
with default parameters (def.), LeBLEU with optimized parameters (opt.), and topline method for the
shared task (top). For WMT 2014 data, also two reference methods are included: BLEU (ref-B) and
AMBER (ref-A).

only 0.803 with the German-optimized parame-
ters. The choice of German-based parameters was
clearly unsuccessful, and the effect of optimiza-
tion for evaluation in Finnish remains to be seen.
On average, optimization based on WMT 2013
and 2014 data sets improved the performance.

Compared to other methods submitted to WMT
2015, LeBLEU outperformed others in segment-
level English–German translation. It also ranked
second in system-level English–German and third
in segment-level English–French. Moreover, even
though unoptimized for the task, it ranked third in
segment-level and fourth in system-level English–
Finnish evaluations.

4 Conclusions

We have described the LeBLEU evaluation score
for machine translation. It is an extension of the
popular BLEU evaluation metric, but much more
suitable for evaluating machine translation to mor-
phologically complex languages. The extension
is conceptually simple and does not require any
language-specific resources. Instead, morpholog-
ical variants and mistakes in compound words
are accepted by using fuzzy matching between

the word n-grams in the hypothesis and reference
translations.

In the WMT15 shared task, LeBLEU provided
high correlations to the human evaluations espe-
cially when translating from English to a mor-
phologically more complex language. In particu-
lar, it outperformed other methods in the segment-
level evaluation of English–German translation.
The performance is equally good for WMT 2013
and 2014 data sets. This is remarkable especially
as the method uses neither rule-based nor data-
driven tools for morphological processing. As
German is a highly compounding language, this
indicates that the mistakes in compound words are
frequently over-penalized by the current evalua-
tion methods.

Implementation for the LeBLEU evaluation
score is available from https://github.
com/Waino/LeBLEU.
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