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Abstract

We describe our systems for Tasks 1 and
2 of the WMT15 Shared Task on Qual-
ity Estimation. Our submissions use (i)
a continuous space language model to ex-
tract additional features for Task 1 (SHEF-
GP, SHEF-SVM), (ii) a continuous bag-
of-words model to produce word embed-
dings as features for Task 2 (SHEF-W2V)
and (iii) a combination of features pro-
duced by QuEst++ and a feature produced
with word embedding models (SHEF-
QuEst++). Our systems outperform the
baseline as well as many other submis-
sions. The results are especially encour-
aging for Task 2, where our best perform-
ing system (SHEF-W2V) only uses fea-
tures learned in an unsupervised fashion.

1 Introduction

Quality Estimation (QE) aims at measuring the
quality of the Machine Translation (MT) output
without reference translations. Generally, QE is
addressed with various features indicating fluency,
adequacy and complexity of the source-translation
text pair. Such features are then used along with
Machine Learning methods in order for models to
be learned.

Features play a key role in QE. A wide range
of features from the source segments and their
translations, often processed using external re-
sources and tools, have been proposed. These
go from simple, language-independent features, to
advanced, linguistically motivated features. They
include features that rely on information from the
MT system that generated the translations, and
features that are oblivious to the way translations
were produced. This leads to a potential bottle-
neck: feature engineering can be time consuming,
particularly because the impact of features vary

across datasets and language pairs. Also, most
features in the literature are extracted from seg-
ment pairs in isolation, ignoring contextual clues
from other segments in the text. The focus of our
contributions this year is to introduce a new set of
features which are language-independent, require
minimal resources, and can be extracted in unsu-
pervised ways with the use of neural networks.

Word embeddings have shown their poten-
tial in modelling long distance dependencies in
data, including syntactic and semantic informa-
tion. For instance, neural network language mod-
els (Bengio et al., 2003) have been success-
fully explored in many problems including Au-
tomatic Speech Recognition (Schwenk and Gau-
vain, 2005; Schwenk, 2007) and Machine Transla-
tion (Schwenk, 2012). While neural network lan-
guage models predict the next word given a pre-
ceding context, (Mikolov et al., 2013b) proposed
a neural network framework to predict the word
given the left and right contexts, or to predict the
word’s left and right contexts in a given sentence.
Recently, it has been shown that these distributed
vector representations (or word embeddings) can
be exploited across languages to predict transla-
tions (Mikolov et al., 2013a). The word represen-
tations are learned from large monolingual data in-
dependently for source and target languages. A
small seed dictionary is used to learn mapping
from the source into the target space. In this paper,
we investigate the use of such resources in both
sentence-level (Task 1) and word-level QE (Task
2). As we describe in what follows, we extract
features from such resources and use them to learn
prediction models.

2 Continuous Space Language Model
Features for QE

Neural networks model non-linear relationships
between the input features and target outputs.
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They often outperform other techniques in com-
plex machine learning tasks. The inputs to the
neural network language model used here (called
Continuous Space Language Model (CSLM)) are
the hj context words of the prediction: hj =
wj−n+1, ..., wj−2, wj−1, and the outputs are the
posterior probabilities of all words of the vocab-
ulary: P (wj |hj) ∀i ∈ [1, N ] where N is the vo-
cabulary size. CSLM encodes inputs using the so
called one-hot coding, i.e., the ith word in the vo-
cabulary is coded by setting all element to 0 except
the ith element. Due to the large size of the output
layer (vocabulary size), the computational com-
plexity of a basic neural network language model
is very high. Schwenk et al. (2012) proposed an
implementation of the neural network with effi-
cient algorithms to reduce the computational com-
plexity and speed up the processing using a subset
of the entire vocabulary called short list.

As compared to shallow neural networks, deep
neural networks can use more hidden layers and
have been shown to perform better. In all CSLM
experiments described in this paper, we use deep
neural networks with four hidden layers: a first
layer for the word projection (320 units for each
context word) and three hidden layers of 1024
units for the probability estimation. At the output
layer, we use a softmax activation function ap-
plied to a short list of the 32k most frequent words.
The probabilities of the out of the short list words
are obtained using a standard back-off n-gram lan-
guage model. The training of the neural network is
done by the standard back-propagation algorithm
and outputs are the posterior probabilities. The pa-
rameters of the models are optimised on a held out
development set.

Our CSLM models were trained with the CSLM
toolkit 1. We extracted the probabilities for Task
1’s training, development and test sets for both
source and its translation with their respective op-
timised models and used them as features along
with other available features in a supervised learn-
ing algorithm. In Table 1, we report detailed
statistics on the monolingual data used to train the
back-off LM and CSLM. The training dataset con-
sists of Europarl, News-commentary and News-
crawl corpora with the Moore-Lewis data selec-
tion method (Moore and Lewis, 2010) to select the
CSLM training data with respect to a Task’s devel-
opment set. The CSLM models are tuned using a

1http://www-lium.univ-lemans.fr/cslm/

concatenation of newstest2012 and newstest2013
of WMT’s translation track.

Lang. Train Dev LM px CSLM px
en 4.3G 137.7k 164.63 116.58
es 21.2M 149.4k 145.49 87.14

Table 1: Training and dev datasets size (in number
of tokens) and models perplexity (px).

3 Word Embedding Features for QE

The word embeddings used in our experiments
are learned with the word2vec tool2, introduced
by (Mikolov et al., 2013b). The tool pro-
duces word embeddings using the Distributed
Skip-Gram or Continuous Bag-of-Words (CBOW)
models. The models are trained through the use
of large amounts of monolingual data with a neu-
ral network architecture that aims at predicting the
neighbours of a given word. Unlike standard neu-
ral network-based language models for predict-
ing the next word given the context of preceding
words, a CBOW model predicts the word in the
middle given the representation of the surrounding
words, while the Skip-Gram model learns word
embedding representations that can be used to pre-
dict a word’s context in the same sentence. As sug-
gested by the authors, CBOW is faster and more
adequate for larger datasets, so we used this model
in our experiments.

We trained 500-dimensional representations
with CBOW for all words in the vocabulary. We
consider a 10-word context window to either side
of the target word, sub-sampling option to 1e-05,
and estimate the probability of a target word with
the negative sampling method, drawing 10 sam-
ples from the noise distribution. The data used to
train the models is the same as presented in Ta-
ble 1. We then extracted word embeddings for
all words in the Task 2 training, development and
test sets from these models to be used as fea-
tures. These distributed numerical representations
of words as features aim at locating each word as
a point in a 500-dimensional space.

Inspired by the work of (Mikolov et al.,
2013a), we extracted another feature by map-
ping the source space onto a target space using
a seed dictionary (trained with Europarl + News-
commentary + News-crawl). A given word and

2https://code.google.com/p/word2vec/
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its continuous vector representation a could be
mapped to the other language space by comput-
ing z = Ma, where M is a transformation matrix
learned with stochastic gradient descent. The as-
sumption is that the vector representations of sim-
ilar words in different languages are related by a
linear transformation because of similar geomet-
ric arrangements. The words whose representa-
tion are closest to a in the target language space,
using cosine similarity, are considered as poten-
tial translations for a given word in the source lan-
guage. Since the goal of QE is not to translate
content, but to measure the quality of translations,
we take the source-to-target similarity scores as a
feature itself. To calculate it, we first learn word
alignments (see Section 4.2.2), and then compute
the similarity scores between target word and the
source word aligned to it.

4 Experiments

We present experiments on the WMT15 QE Tasks
1 and 2, with CSLM features for Task 1, and word
embedding features for Task 2.

4.1 Task 1

4.1.1 Dataset
Task 1’s English-Spanish dataset consists respec-
tively of a training set and development set with
11, 271 and 1, 000 source segments, their ma-
chine translations, the post-editions of the lat-
ter, and edit distance scores between between the
MT and its post-edited version (HTER). The test
set consists of 1, 817 English-Spanish source-MT
pairs. Translations are produced by a single on-
line statistical MT system. Each of the translations
was post-edited by crowdsourced translators, and
HTER labels were computed using the TER tool
(settings: tokenised, case insensitive, exact match-
ing only, with scores capped to 1).

4.1.2 Feature set
We extracted the following features:

• AF: 80 black-box features using the QuEst
framework (Specia et al., 2013; Shah et al.,
2013a) as described in Shah et al. (2013b).

• CSLM: A feature for each source and target
sentence using CSLM as described in Sec-
tion 2.

• FS(AF): Top 20 features selected from the
above 82 features with Gaussian Processes

(GPs) by the procedure described in (Shah et
al., 2013b).

4.1.3 Learning algorithms
We use the Support Vector Machines implemen-
tation in the scikit-learn toolkit (Pedregosa
et al., 2011) to perform regression (SVR) on each
feature set with either linear or RBF kernels and
parameters optimised using grid search.

We also apply GPs with similar settings to those
in our WMT13 submission (Beck et al., 2013) us-
ing GPy toolkit 3. For models with feature selec-
tion, we train a GP, select the top 20 features ac-
cording to the produced feature ranking, and then
retrain a SparseGP on the full training set using
these 20 features and 50 inducing points. To eval-
uate the prediction models we use Mean Absolute
Error (MAE), its squared version – Root Mean
Squared Error (RMSE), and Spearman’s Correla-
tion.

4.2 Task 2

4.2.1 Dataset
The data for this is the same as the one provided
in Task 1. All segments have been automatically
annotated for errors with binary word-level labels
(“GOOD” and “BAD”) by using the alignments
provided by the TER tool (settings: tokenised,
case insensitive, exact matching only, disabling
shifts by using the ‘-d 0‘ option) between machine
translations and their post-edited versions. The
edit operations considered as errors (“BAD”) are
replacements and insertions.

4.2.2 Word alignment training
To extract word embedding features, as explained
in Section 3, we need word-to-word alignments
between source and target data. As word-level
alignments between the source and target corpora
were not made available by WMT, we first aligned
the QE datasets with a bilingual word-level align-
ment model trained on the same data used for
the word2vec modelling step, with the help of the
GIZA++ toolkit (Och and Ney, 2003). Working
on target side, we refined the resulting n-m target-
to-source word alignments to a set of 1-m align-
ments by filtering potential spurious source-side
candidates out. To do so, the decision was based
on the lexical probabilities extracted from the pre-
vious alignment training step. Hence, each target-

3http://sheffieldml.github.io/GPy/
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side token has been aligned to the source-side can-
didate with the highest lexical probability. To map
our two monolingual vector spaces trained with
word embedding models, we extracted a bilingual
dictionary with the same settings used for word-
alignment.

4.2.3 Data filtering
An inspection of the training and development
data showed that 15% of the sentences contain
no errors and are therefore less useful for model
learning. In addition, most sentences have very
low HTER score, showing that very few words are
considered incorrect. Figure 1 shows the HTER
scores distribution for the training dataset: 50%
of the sentences have the HTER of 0.15 or lower
(points below the bottom orange line on the Fig-
ure), 75% of the sentences have the score of 0.28
or lower (points below the middle green line). The
distributions for the development and test sets are
similar.

Figure 1: The distribution of HTER scores for the
training data. Below orange line – 50% of the data,
below green line – 75% of the data, above red line
– worst 2000 sentences (18% of the data).

Sentences with few or no edits lead to mod-
els that tag more words as “GOOD”, so the tag-
ging is too optimistic, resulting in higher F1 score
for the “GOOD” class but lower F1 score for the
“BAD” class. This is an issue as obtaining a good
F1 score for the “BAD” class is arguably the pri-
mary goal of a QE model (and also the main evalu-
ation criterion for the task). Therefore, we decided
to increase the percentage of “BAD” labels in the
training data by filtering out sentences which have
zero or too few errors. As a filtering strategy, we
took only sentences with the highest proportions

of editing.
We performed experiments with two subsets

of the training sentences with the highest HTER
score: 2, 000 samples (18% of the data, i.e., points
above the top red line in Figure 1); and 5, 000 sam-
ples (44% of the data). Since the F1-score for the
“BAD” class was higher on the dev set for the
model built from the smaller subset, we chose it
to perform the tagging for the official submission
of the shared task. This subset contains sentences
with HTER score from 0.34 to 1, an average score
of 0.49, and variance of 0.018.

4.2.4 Learning algorithms
We learned binary tagging models for both SHEF-
W2V and SHEF-QuEst++ using a Conditional
Random Fields (CRF) algorithm (Lafferty et al.,
2001). We used pystruct (Müller and Behnke,
2014) for SHEF-W2V, and CRFSuite (Okazaki,
2007) for SHEF-QuEst++. Both tools allow one to
train a range of models. For pystruct we used the
linear-chain CRF trained with a structured SVM
solver, which is the default setting. For CRFSuite
we used the Adaptive Regularization of Weight
Vector (AROW) and Passive Aggressive (PA) al-
gorithms, which have been shown to perform well
in the task (Specia et al., 2015).

Systems are evaluated in terms of classification
performance (Precision, Recall, F1) against the
“GOOD” and “BAD” labels, and their weighted
average of both F1 scores (W-F1). The main
evaluation metric is the average F1 score for the
“BAD” label.

4.3 Results

4.3.1 Task 1
We trained various models with different feature
sets and algorithms and evaluated the performance
of these models on the official development set.
The results are shown in Table 2. Some interesting
findings:

• SVM performed better than GP.

• SVM with linear kernel performed better
than with RBF kernel.

• CSLM features alone performed better than
the baseline features.

• CSLM features always bring improvements
whenever added to either baseline or com-
plete feature set.
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System. Kernel Features #. of Feats. MAE RMSE Spear. Corr
Baseline (SVM) RBF BL 17 0.1479 0.1965 0.1651

SHEF-SVM RBF CSLM 2 0.1474 0.1959 0.1911
SHEF-SVM RBF BL+CSLM 19 0.1464 0.1950 0.1924
SHEF-SVM RBF AF 80 0.1497 0.1944 0.2259
SHEF-SVM RBF AF+CSLM 82 0.1452 0.1920 0.2325
SHEF-SVM Linear AF+CSLM 82 0.1422 0.1889 0.2736
SHEF-SVM Linear AF(FS) 20 0.1459 0.1896 0.2465
SHEF-GP RBF AF(FS) 20 0.1493 0.1917 0.2187

Table 2: Results on development set of Task 1.

System. MAE RMSE DeltaAvg Spear. Corr
Baseline 0.15 0.19 0.22 0.13

SHEF-SVM 0.14 0.18 0.51 0.28
SHEF-GP 0.15 0.19 0.31 0.28

Table 3: Official results on test set of Task 1.

• Linear SVM with selected features by GP
achieves comparable results to linear SVM
with the full feature set (82).

• Both CSLM features appear in the top 20 se-
lected features by GP.

Based on these findings, as official submissions
for Task 1, we put forward a system with linear
SVM using 82 features, and another with GP on
the selected feature set. The official results are
shown in Table 3.

4.3.2 Task 2
For the SHEF-QuEst++ system, we combined all
40 features described in (Specia et al., 2015) with
the source-to-target similarity feature described in
Section 3. For the SHEF-W2V system, we tried
several settings on the development data in order
to define the best-performing set of features and
dataset size. We used two feature sets:

• 500-dimensional word embedding vectors
for the target word only.

• 500-dimensional word embedding vectors
for the target word and the source word
aligned to it.

In addition, both these feature sets included the
source-to-target similarity feature. We performed
the data filtering technique described in 4.2.3, and
tested the systems using:

• The full dataset.

• 5K sentences with the highest HTER score.

• 2K sentences with the highest HTER score.

System W-F1 F1 Bad F1 Good
Baseline 75.48 17.07 89.07

MONO-ALL 72.31 0.35 89.39
MONO-5000 74.47 14.82 88.63
MONO-2000 65.83 35.38 73.06

MONO-2000-SIM 65.87 35.53 73.07
BI-ALL 72.23 0.0 89.38
BI-5000 75.37 22.77 87.86
BI-2000 64.78 38.64 70.99

BI-2000-SIM 64.56 38.45 70.76
QuEst++-AROW-SIM 68.58 38.54 75.72

QuEst++-PA-SIM 26.42 34.86 24.42

Table 4: Results on development set of Task 2.

Results on the development set are outlined in
Table 4. The system names are formed as follows:
“MONO” or “BI” indicate that the SHEF-W2V
system was trained on the target or target+source
word embeddings feature set. “ALL”, “5000” and
“2000” indicate that we used the entire training
set, 5, 000 sentences or 2, 000 sentences, respec-
tively. The prefix “SIM” means that the feature
sets were enhanced with the vector similarity fea-
ture. Finally, “AROW” and “PA” correspond to the
two learning algorithms used by SHEF-QuEst++.

Combining the target and source-side word em-
bedding vectors was found to improve the per-
formance of SHEF-W2V compared to using only
target-side vectors. The impact of the similarity
feature is less clear: it slightly improved the per-
formance of the monolingual feature set, but de-
creased the scores for the bilingual feature set. We
can also notice that the AROW algorithm is much
more effective than the PA algorithm for SHEF-
QuEst++.

Filtering out sentences that are mostly correct
allowed to achieve much higher F1-scores for the
“BAD” class. The best results were achieved with
a relatively small subset of the data (18%). There-
fore, as our official submissions, we chose the
model using bilingual vectors trained on 2,000
sentences with the highest HTER score, and the
same model extended with the similarity feature.
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System. W-F1 F1 Bad F1 Good
Baseline 75.71 16.78 88.93
W2V-BI 65.73 38.43 71.63

W2V-Bi-SIM 65.27 38.40 71.52
QuEst++-AROW 64.69 37.69 71.11

QuEst++-AROW-SIM 62.07 38.36 67.58
QuEst++-PA 33.02 35.16 32.51

QuEst++-PA-SIM 26.25 34.30 24.38

Table 5: Official results on test set of Task 2.

The results on the test set are presented in Table 5,
in which it is shown that the source-to-target sim-
ilarity feature has gain 0.67% in F1 of “BAD” la-
bels for SHEF-QuEst++ system with the AROW
algorithm.

5 Conclusions

We have proposed several novel features for trans-
lation quality estimation, which are trained with
the use of neural networks. When added to large
standard feature sets for Task 1, the CSLM fea-
tures led to improvements in prediction. More-
over, CSLM features alone performed better than
baseline features on the development set. Com-
bining the source-to-target similarity feature with
the ones produced by QuEst++ improved its per-
formance in terms of F1 for the “BAD” class. Fi-
nally, the results obtained by SHEF-W2V are quite
promising: although it uses only features learned
in an unsupervised fashion, it was able to outper-
form the baseline as well as many other systems.
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