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Abstract

This work explores the application of re-
current neural network (RNN) language
and translation models during phrase-
based decoding. Due to their use of un-
bounded context, the decoder integration
of RNNs is more challenging compared to
the integration of feedforward neural mod-
els. In this paper, we apply approxima-
tions and use caching to enable RNN de-
coder integration, while requiring reason-
able memory and time resources. We an-
alyze the effect of caching on translation
quality and speed, and use it to integrate
RNN language and translation models into
a phrase-based decoder. To the best of
our knowledge, no previous work has dis-
cussed the integration of RNN translation
models into phrase-based decoding. We
also show that a special RNN can be inte-
grated efficiently without the need for ap-
proximations. We compare decoding us-
ing RNNs to rescoring n-best lists on two
tasks: IWSLT 2013 German→English,
and BOLT Arabic→English. We demon-
strate that the performance of decoding
with RNNs is at least as good as using
them in rescoring.

1 Introduction

Applying neural networks to statistical machine
translation has been gaining increasing attention
recently. Neural network language and translation
models have been successfully applied to rescore
the first-pass decoding output (Le et al., 2012;
Sundermeyer et al., 2014; Hu et al., 2014; Guta
et al., 2015). These models include feedforward
and recurrent neural networks.

A more ambitious move is to apply neural net-
works directly during decoding, which in principle

should give the models a better chance to influence
translation in comparison to rescoring, as rescor-
ing is limited to scoring and reranking fixed n-
best lists. Recently, neural networks were used for
standalone decoding using a simple beam-search
word-based decoder (Sutskever et al., 2014; Bah-
danau et al., 2015). Another approach is to apply
neural models directly in a phrase-based decoder.
We focus on this approach, which is challeng-
ing since phrase-based decoding typically involves
generating tens or even hundreds of millions of
partial hypotheses. Scoring such a number of hy-
potheses using neural models is expensive, mainly
due to the usually large output layer. Nevertheless,
decoder integration has been done in (Vaswani et
al., 2013) for feedforward neural language models.
Devlin et al. (2014) integrate feedforward transla-
tion models into phrase-based decoding reporting
major improvements, which highlight the strength
of the underlying models.

In related fields like e. g. language model-
ing, RNNs has been shown to perform consid-
erably better than standard feedforward architec-
tures (Mikolov et al., 2011; Arisoy et al., 2012;
Sundermeyer et al., 2013; Liu et al., 2014). Sun-
dermeyer et al. (2014) also show that RNN trans-
lation models outperform feedforward networks in
rescoring. Given the success of feedforward trans-
lation models in phrase-based decoding, it is natu-
ral to ask how RNN translation models perform if
they are integrated in decoding.

This paper investigates the performance of
RNN language and translation models in phrase-
based decoding. For RNNs that depend on an
unbounded target context, their integration into
a phrase-based decoder employing beam search
requires relaxing the pruning parameters, which
makes translation inefficient. Therefore, we ap-
ply approximations to integrate RNN translation
models during phrase-based decoding. Auli and
Gao (2014) use approximate scoring to integrate
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an RNN language model (LM), but to the best
of our knowledge, no work yet has explored the
integration of RNN translation models. In addi-
tion to approximate models, we integrate a spe-
cial RNN model that only depends on the source
context, allowing for exact, yet efficient integra-
tion into the decoder. We provide a detailed com-
parison between using the RNN models in de-
coding vs. rescoring on two tasks: IWSLT 2013
German→English and BOLT Arabic→English. In
addition, we analyze the approximation effect on
translation speed and quality.

Our integration follows (Huang et al., 2014),
which uses caching strategies to apply an RNN
LM in speech recognition. This can be viewed
as a modification of the approximation introduced
by Auli and Gao (2014), allowing for a flexible
choice between translation quality and speed. We
choose to integrate the word-based RNN transla-
tion models that were introduced in (Sundermeyer
et al., 2014), due to their success in rescoring n-
best lists.

The rest of this paper is structured as follows. In
Section 2 we review the related work. The RNN
LM integration and caching strategies are dis-
cussed in Section 3, while Section 4 discusses the
integration of exact and approximate RNN transla-
tion models. We analyze the effect of approxima-
tion and caching on translation quality and speed
in Section 5. The section also includes the transla-
tion experiments comparing decoding vs. rescor-
ing. Finally we conclude with Section 6.

2 Related Work

Schwenk (2012) proposed a feedforward net-
work that predicts phrases of a fixed maximum
length, such that all phrase words are predicted at
once. The prediction is conditioned on the source
phrase. The model was used to compute additional
phrase table scores, and the phrase table was used
for decoding. No major difference was reported
compared to rescoring using the model. Our work
focuses on neural network scoring performed on-
line during decoding, capturing dependencies that
extend beyond phrase boundaries.

Online usage of neural networks during decod-
ing requires tackling the costly output normaliza-
tion step. Vaswani et al. (2013) avoid this step by
training feedforward neural language models us-
ing noise contrastive estimation. Auli and Gao
(2014) propose an expected BLEU criterion in-

stead of the usual cross-entropy. They train recur-
rent neural LMs without the need to normalize the
output layer, but training becomes computation-
ally more expensive as each training example is an
n-best list instead of a sentence. At decoding time,
however, scoring with the neural network is faster
since normalization is not needed. Furthermore,
they integrate cross-entropy RNNs without affect-
ing state recombination. They report results over
a baseline having a LM trained on the target side
of the parallel data. The results for the RNN LM
trained with cross-entropy indicated that decoding
improves over rescoring, with the difference rang-
ing from 0.4% to 0.8% BLEU. In this work, we
stick to RNNs trained using cross-entropy, with a
class-factored output layer to reduce the normal-
ization cost.

Devlin et al. (2014) augment the cross-entropy
training objective function to produce approxi-
mately normalized scores directly. They also pre-
compute the first hidden layer beforehand, result-
ing in large speedups. Major improvements over
strong baselines were reported. While their work
focuses on feedforward translation models, we in-
vestigate the decoder integration of RNN models
instead, which poses additional challenges due to
the unbounded history used by RNNs.

Huang et al. (2014) truncate the history and use
it to cache the hidden RNN states, the normaliza-
tion factors and the probability values. This is ap-
plied to an RNN LM in a speech recognition task.
In this work, we apply these caching strategies to
a recurrent LM for translation tasks. Furthermore,
we analyze the degree of approximation and its in-
fluence on the search problem. We also extend
caching and apply it to RNN translation models
that are conditioned on source and target words.

Sundermeyer et al. (2014) proposed word- and
phrase-based RNN translation models and applied
them to rescore n-best lists, reporting major im-
provements. The RNN word-based models were
shown to outperform a feedforward neural net-
work. This work aims to enable the use of the
word-based RNN models in phrase-based decod-
ing, and to explore their effect on the search space
during decoding.

3 RNN Language Model Integration

In this section we discuss the integration of
the RNN LM using caching in details. These
caching techniques will also be applied to the joint
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RNN translation model in Section 4.2 with minor
changes.

First, we will briefly introduce the RNN LM.
The LM probability p(ei|ei−1

1 ) of the target word
ei at position i depends on the unbounded target
history ei−1

1 . The probability can be computed us-
ing an RNN LM of a single hidden layer as fol-
lows:

yi−1 = A1êi−1 (1)

h(ei−1
1 ) = ξ(yi−1;A2, h(ei−2

1 )) (2)

o(ei−1
1 ) = A3h(ei−1

1 ) (3)

Z(ei−1
1 ) =

|V |∑
w=1

eow(ei−1
1 ) (4)

p(ei|ei−1
1 ) =

eoei (e
i−1
1 )

Z(ei−1
1 )

(5)

where A1, A2 and A3 denote the neural network
weight matrices, êi−1 is the one-hot vector en-
coding the word ei−1, and yi−1 is its word em-
bedding vector. h is a vector of the hidden layer
activations depending on the unbounded context,
and it is computed recurrently using the function
ξ, which we use to represent a generic recurrent
layer. o ∈ R|V | is a |V |-dimensional vector con-
taining the raw unnormalized output layer values,
where |V | is the vocabulary size. The probability
in Eq. 5 is computed using the softmax function,
which requires the normalization factor Z. In this
work, we use a class-factored output layer consist-
ing of a class layer and a word layer (Goodman,
2001; Morin and Bengio, 2005). In this case, the
LM probability is the product of the two:

p(ei|ei−1
1 ) = p(ei|c(ei), ei−1

1 ) · p(c(ei)|ei−1
1 )

where c denotes a word mapping from any target
word to its unique class. Such factorization is used
to reduce the normalization cost.

Phrase-based decoding involves the generation
of a search graph consisting of nodes. Each node
represents a search state uniquely identified by a
triple (C, ẽ, j), where C denotes the coverage set,
ẽ is the language model history, and j is the po-
sition of the last translated source word. During
decoding, equivalent nodes are recombined. The
degree of recombination is affected by the order
of the LM history, where higher orders result in
fewer recombinations. Our phrase-based decoder
is based on beam search, where the search space

is pruned and a limit is imposed on the number of
hypotheses to explore. Since an RNN LM depends
on the full target history ei−1

1 , a naı̈ve integration
of the RNN LM would define ẽ = ei−1

1 , but this
leads to an explosion in the number of nodes in
the search graph, which in turn leads to reducing
the variance between the hypotheses lying within
the beam, and focusing the decoding effort on hy-
potheses that are similar to each other.

Since the RNN LM computes a hidden state
h(ei−1

1 ) encoding the sequence ei−1
1 , another way

is to extend the search state of the node to
(C, ẽ, j, h(ei−1

1 )). However, such extension would
pose the same problem for recombination as the
one encountered if the full history sequence is
stored. Therefore, we resort to approximate RNN
LM evaluation in decoding. An approximation
proposed in (Auli et al., 2013) is to extend the
search node with the RNN hidden state, but to ig-
nore the hidden state when deciding which nodes
to recombine. That is, two search nodes are
deemed equivalent if they share the same triple
(C, ẽ, j), even if they have different RNN hidden
states. Upon recombination, one of the two hid-
den states is kept and stored in the resulting re-
combined node.

3.1 Caching Strategies

In this work, we follow a modification of the ap-
proach by (Auli et al., 2013). Instead of storing the
RNN hidden state in the search nodes, we truncate
the RNN history to the most recent n words ei−1

i−n,
and store this word sequence in the node instead.
As in (Auli et al., 2013), the added information is
ignored when deciding on recombination. When
the RNN hidden state is needed, it is retrieved
from a cache using the truncated history as a key.
The cache is shared between all nodes. While this
might seem as an unnecessary complication, it in-
troduces the flexibility of choosing the degree of
approximation. The parameter n can be used to
control the trade-off between accuracy and speed;
more accurate RNN scores are obtained if n is set
to a large value, or faster decoding is achieved if
n is set to a small value. In principle, we can still
simulate the case of storing the hidden RNN state
directly in the search nodes by using large n val-
ues as we will see later. We will refer to n as the
caching order.

During decoding, we use the cache Cstate to
store the hidden state h(ei−1

1 ) using the key ei−1
i−n.
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The state h(ei−1
1 ) is computed once, using the hid-

den state h(ei−2
1 ) as given in Eq. 2, and the cached

state is reused whenever it is needed. Note that
the n-gram key is only used to look up the hidden
state, which will have been computed recurrently
encoding an unbounded history. This is differ-
ent from a feedforward network which uses the n-
gram as direct input to compute its output. We also
introduce a cacheCnorm to store the output layer’s
normalization factor Z(ei−1

1 ) using the same key
ei−1
i−n, hence avoiding the sum of Eq. 4, which re-

quires the expensive computation of the full raw
output layer values o(ei−1

1 ) using Eq. 3. If the nor-
malization factor is found in the cache, comput-
ing Eq. 5 only requires the output value oei corre-
sponding to word ei, which involves a dot product
rather than a matrix-vector product. Since we use
a class-factored output layer, we cache the normal-
ization factor of the class layer. Finally, the cache
Cprob is introduced to store the word probability
using the caching key (ei, ei−1

i−n).

Fig. 1 shows the percentage of cache hits for
different caching orders. We count a cache hit if a
look up is performed on that cache and the entry
is found, otherwise the look up counts as a cache
miss. We observe high hit ratios even for high
caching orders. This is due to the fact that most
of the hits occur upon node expansion, where a
node is extended by a new phrase, and where all
candidates share the same history. We also ob-
serve that word probabilities are retrieved from the
cache 70% of the time for high enough caching or-
ders, which can be explained due to the similarities
between the phrase candidates in their first word.
Note also that the reported Cnorm hit ratio is for
the cases where the cache Cprob produces a cache
miss. We report this hit ratio since the original
Cnorm hit ratio is equal to Cstate’s hit ratio as they
both use the same caching key.

We report the effect of caching on translation
speed in Tab. 1, where we use a large caching order
of 30 to simulate the search space covered when no
caching is used. Using none of the caches and stor-
ing the hidden state in the search node instead has
a speed of 0.03 words per second. This increases
to 0.05 words per second when caching the hid-
den state. This is because caching computes each
hidden state once, while storing the hidden state in
the search node may lead to computing the same
hidden state multiple times, as no global view of
what has been computed is available. Caching the
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Figure 1: Cache hits for different caching orders
when using an RNN LM in the decoder.

Cache Speed [words/second]

none 0.03
Cstate 0.05
Cstate + Cnorm 0.19
Cstate + Cnorm + Cprob 0.19

Table 1: The effect of using caching on translation
speed. A large caching order of 30 is used to re-
duce the approximation effect of caching, leading
to the same translation quality for all table entries.

normalization constant yields a large speedup, due
to the reduction of the number of times the full
output layer is computed. Finally, caching word
probabilities does not speed up translation further.
This is due to the class-factored output layer we
use, where computing the softmax for the word
layer part (given a word class) uses a small ma-
trix corresponding to the words that belong to the
same class of the word in question. Overall, a
speedup factor of 6 is achieved over the case where
no caching is used. Achieving this speedup does
not lead to a loss in translation quality, in fact, for
all cases, the translation quality is the same due to
the large caching order used.

4 RNN Translation Model Integration

One of the main contributions of this work is to in-
tegrate RNN translation models into phrase-based
decoding. To the best of our knowledge, no such
integration has been done before. We integrate two
models that work on the word level. The mod-
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els were proposed in (Sundermeyer et al., 2014).
They assume a one-to-one alignment between the
source sentence f I

1 = f1 . . . fI and the target sen-
tence eI1 = e1 . . . eI . Such alignment is obtained
using heuristics that make use of IBM 1 lexica.
In the following, we discuss the integration of the
bidirectional translation model (BTM), which can
be done exactly and efficiently without resorting
to approximations. In addition, we propose an
approximate integration of the joint model (JM)
which makes use of the same caching strategies
discussed in Section 3.

4.1 Bidirectional Translation Model
The bidirectional translation model (BTM) is con-
ditioned on the full source sentence, without de-
pendence on previously predicted target words:

p(eI1|f I
1 ) ≈

I∏
i=1

p(ei|f I
1 ). (6)

This equation is realized by a network that uses
forward and backward recurrent layers to capture
the complete source sentence. The forward layer is
a recurrent hidden layer that processes the source
sequence from left to right, while a backward layer
does the processing backwards, from right to left.
The source sentence is basically split at a given
position i, then past and future representations of
the sentence are recursively computed by the for-
ward and backward layers, respectively. Due to
recurrency, the forward layer encodes f i

1, and the
backward layer encodes f I

i , and together they en-
code the full source sentence f I

1 , which is used to
score the output target word ei.

Including the BTM in the decoder is efficient
and scores can be computed exactly. This is be-
cause the model has no dependence on previous
target words hypothesized during decoding. For a
sentence of length I , and a target vocabulary size
|V |, the number of distinct evaluations is at most
I · |V |. The term I corresponds to the number
of possibilities where the source sentence may be
split into past and future parts, and the term |V |
is the different possible target words that may be
hypothesized. In phrase-based decoding, the num-
ber of distinct evaluations is in the order of thou-
sands, as the number of target word candidates per
sentence is limited by the phrase table. Since the
input to the network is completely known at the
beginning of decoding, it is enough that the full
network is computed I times per source sentence,

once per split position i for 1 ≤ i ≤ I . Computing
p(ei = e|f I

1 ) amounts to looking up the normal-
ized output layer value corresponding the word e
from the network computed using the split posi-
tion i.

4.2 Joint Model
The joint model (JM) conditions target word pre-
dictions on the hypothesized target history in ad-
dition to the source history and the current source
word:1

p(eI1|f I
1 ) =

I∏
i=1

p(ei|ei−1
1 , f i

1). (7)

This equation can be modeled using a network
similar to the RNN LM. While the RNN LM has
the previous target word ei−1 as direct input to
score the current target word ei, the JM aggregates
the word embeddings of the previous target word
ei−1 and the current source word fi. Due to recur-
rency, the hidden state will encode the sequence
pair (ei−1

1 , f i
1).

Since the JM is similar to the RNN LM in its
dependence on the unbounded history, we apply
caching strategies similar to those used with the
RNN LM. JM computations are shared between
instances that have a truncated source and target
history in common. The cache key in this case is
(ei−1

i−n, f
i
i−n+1) for the Cstate and Cnorm caches,

and (ei, ei−1
i−n, f

i
i−n+1) for the Cprob cache.

5 Experiments

5.1 Setup
We carry out experiments on the IWSLT 2013
German→English shared translation task.2 The
baseline system is trained on all available bilin-
gual data, 4.3M sentence pairs in total, and uses
a 4-gram LM with modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995; Chen and Goodman,
1998), trained with the SRILM toolkit (Stolcke,
2002). As additional data sources for the LM,
we selected parts of the Shuffled News and LDC
English Gigaword corpora based on the cross-
entropy difference (Moore and Lewis, 2010), re-
sulting in a total of 1.7 billion running words for

1We use a unidirectional rather than a bidirectional JM,
dropping the future source information fI

i+1. This is because
the models we integrate reorder the source sentence following
the target order, which can only be done for the past part of
the source sentence at decoding time.

2http://www.iwslt2013.org
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LM training. The state-of-the-art baseline is a
standard phrase-based SMT system (Koehn et al.,
2003) tuned with MERT (Och, 2003). It contains
a hierarchical reordering model (Galley and Man-
ning, 2008) and a 7-gram word cluster language
model (Wuebker et al., 2013). All neural networks
are trained on the TED portion of the data (138K
segments). The experiments are run using an ob-
servation histogram size of 100, with a maximum
of 16 lexical hypotheses per source coverage and a
maximum of 32 reordering alternatives per source
cardinality.

Additional experiments are performed on the
Arabic→English task of the DARPA BOLT
project. The system is a standard phrase-based
decoder trained on 921K segments, amounting to
15.5M running words, and using 17 dense fea-
tures. The neural network training is performed
using the same data. We evaluate results on two
data sets from the ‘discussion forum’ domain,
test1 and test2. The sizes of the data sets are:
1219 (dev), 1510 (test1), and 1137 (test2)
segments. An additional development set contain-
ing 2715 segments is used during RNN training.
The experiments are run using an observation his-
togram size of 100, with a maximum of 32 lexical
hypotheses per source coverage and a maximum
of 8 reordering alternatives per source cardinality.

The BTM consists of a linear projection layer,
forward and backward long-short term memory
(LSTM) layers and an additional LSTM to com-
bine them. Each of the LM and JM has a pro-
jection layer and a single LSTM layer. All lay-
ers have 200 nodes, with 2000 classes used for the
class-factored output layer.

All results are measured in case-insensitive
BLEU [%] (Papineni et al., 2002) and TER [%]
(Snover et al., 2006) on a single reference. The
reported decoding results are averages of 3 MERT
optimization runs. Rescoring experiments are per-
formed using 1000-best lists (without duplicates),
where an additional MERT iteration is performed.
20 such trials are carried out and the average re-
sults are reported. We used the multeval toolkit
(Clark et al., 2011) for evaluation.

5.2 Approximation Analysis

First, we will analyze the caching impact on de-
coding. We compare RNN LM rescoring and de-
coding by marking a win for the method find-
ing the better search score. Decoding with the

2 4 6 8 10 12 14 16

10

20

30

40

Caching order

Im
pr

ov
ed

hy
po

th
es

es
[%

]

Decoding
Rescoring

Figure 2: A comparison between applying the
RNN LM in decoding using caching, and apply-
ing it exactly in rescoring.

RNN LM uses approximate scores while rescor-
ing with same model uses the exact scores. Fig. 2
shows the percentage of improved hypotheses for
RNN decoding (compared to RNN rescoring) and
for RNN rescoring (compared to RNN decoding).
The figure does not include tie cases, which oc-
cur when RNN LM decoding and rescoring yield
the same hypothesis as their best finding. For
the caching order n = 8, decoding finds a better
search score for 33% of the sentences compared
to rescoring, while rescoring has a better score in
17% of the cases compared to decoding. The re-
maining 50% cases (not shown in the figure) cor-
respond to ties where both search methods select
the same hypotheses. Increasing the caching order
improves the decoding quality. For the caching
order n = 16, rescoring outperforms decoding in
12% of the cases, i.e. for the remaining 88% cases,
decoding is at least as good as rescoring.

Even for high caching orders, we observe that
decoding does not completely beat rescoring. This
can be attributed to the recombination approxima-
tion, as recombination disregards the RNN his-
tory. We performed another experiment to de-
termine the effect of recombination on the RNN
scores. In this experiment the RNN hidden state is
stored in the search nodes, and no caching is used.
This leaves recombination as the only source of
approximation. We generated 1000-best lists us-
ing the approximate RNN LM scores during de-
coding. Afterwards, we computed the exact RNN
scores of the 1000-best lists and compared them
to the approximate scores. Fig. 3 shows the cu-
mulative distribution of the absolute relative dif-
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Figure 3: The cumulative distribution of the abso-
lute relative difference between the approximate
and true RNN score with respect to the true score.
The distribution was generated using around 233k
sentences, obtained from n-best lists generated by
decoding the dev set of the IWSLT task.

ference between the approximate and true RNN
scores with respect to the true scores. The figure
suggests that recombining search nodes while ig-
noring the RNN hidden state leads to inexact RNN
scores in most cases. For 66% of the cases the ab-
solute relative error is at most 1%, and the error
is at most 6% for 99% of the cases. As expected,
ignoring the RNN during recombination leads to
inexact RNN scores.

In Tab. 2, we compare between caching the
RNN hidden state and the approach proposed in
(Auli et al., 2013), which stores the RNN hidden
state in the search node. The experiment aims to
compare the two approaches in terms of transla-
tion quality. If the caching order is at least 6, no
considerable difference is observed. This result is
in favor of caching due to the speedup it achieves
(cf. Tab. 1).

5.3 Translation Results

The IWSLT results are given in Tab. 3. We ob-
serve that decoding with RNNs improves the base-
line by 1.0− 1.7% BLEU and 0.9− 1.9% TER on
the test set. These improvements are at least as
good as those of rescoring. This applies both for
the exact BTM as well as the approximate LM and
JM cases. In the case of BTM decoding, we ob-
serve an improvement of 0.1 BLEU and 0.5 TER

compared to the corresponding rescoring exper-

Caching Order dev test

2 33.1 30.8
4 33.4 31.2
6 33.9 31.6
8 33.9 31.5
16 34.0 31.5
30 33.9 31.5

- 33.9 31.5

Table 2: A comparison between storing the RNN
state in the search nodes (last entry) or caching it
using different caching orders (remaining entries).
We report the BLEU [%] scores for the IWSLT
2013 German→English task.

dev test
BLEU TER BLEU TER

baseline 33.4 46.1 30.6 49.2

LM Resc. 34.1 45.7 31.5 48.6
LM Dec. 33.9 45.7 31.6 48.3
+LM Resc. 34.1 45.8 31.9 48.4

BTM Resc. 34.4 45.3 32.2 47.8
BTM Dec. 34.4 44.9 32.3 47.3

JM Resc. 34.3 45.4 31.6 48.3
JM Dec. 34.4 45.6 31.6 48.2
+ JM Resc. 34.6 45.3 31.8 47.9

Table 3: IWSLT 2013 German→English results.
Caching orders: n = 8 (LM), n = 5 (JM).

iment. The decoding improvements in the LM
and JM cases are minor compared to rescoring.
We also experimented with rescoring the RNN
decoding output, where rescoring was performed
using the same RNN used in decoding to obtain
exact scores. We took the best on dev among
the 3 MERT runs and rescored it. This is indi-
cated by the “+” sign. The results show that RNN
LM rescoring can be improved if decoding is per-
formed including the RNN LM. On test the gain
is 0.4 BLEU and 0.2 TER, while the improvement
is 0.2 BLEU and 0.4 TER in the JM case. This
indicates that using the RNN model in decoding
improves the n-best lists, allowing rescoring after-
wards to choose better hypotheses. Overall, BTM
decoding improves over the baseline by 1.7 BLEU

and 1.9 TER.
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test1 test2
BLEU TER BLEU TER

baseline 23.9 59.7 26.4 59.8

LM Resc. 24.3 59.3 26.9 59.3
LM Dec. 24.6 59.0 27.0 59.2
+LM Resc. 25.0 58.8 27.2 59.1

BTM Resc. 24.7 58.9 27.0 58.9
BTM Dec. 24.8 58.9 27.0 58.9

JM Resc. 24.4 59.0 27.2 59.0
JM Dec. 24.5 59.0 27.3 59.0
+ JM Rec. 24.5 59.0 27.3 59.0

Table 4: BOLT Arabic→English results. Caching
orders: n = 8 (LM), n = 10 (JM).

Tab. 4 shows the results of the Arabic→English
BOLT task. Again, the LM, JM and BTM mod-
els in decoding are at least as good as in rescor-
ing. For the LM, we observe an improvement of
0.7 BLEU when LM rescoring is applied on the
LM decoding output. The best result improves the
baseline by 1.1 BLEU on test1 and 0.9 BLEU on
test2.

In a final experiment to examine the power of
the recurrent neural translation models, we per-
formed phrase-based decoding without the con-
ventional phrasal and lexical translation scores.
Instead, we performed decoding with the BTM
as described in Section 4.1, and augmented the
phrase table with four additional features derived
from the bidirectional translation model, the joint
model, and the phrase-based translation and joint
models described in (Sundermeyer et al., 2014).
This was done by scoring each phrase pair in the
phrase table as if it were a sentence pair. For this
specific experiment, we trained the phrase-based
models on phrase pairs obtained from forced-
decoding the training data. That is, each training
instance was a phrase pair instead of a sentence
pair. For the sake of comparison, we trained the
baseline translation model on the TED portion of
the data; the same data used for neural training.
The results are shown in Tab. 5. We observe a
gap of only 1.2 BLEU on dev and 1.0 BLEU on
test, with almost no difference in TER. We con-
sider this an encouraging result, as it is possible
that the word-based recurrent neural models used
here are not capable of expressing their full poten-
tial due to their use in the phrase-based framework,

dev test
BLEU TER BLEU TER

baseline 32.2 46.6 30.5 48.7
RNN 31.0 46.8 29.5 48.6

Table 5: The in-domain baseline has a translation
model trained on the TED portion of the data only,
while RNN denotes decoding with the BTM, in
addition to 4 offline word- and phrase-based neu-
ral scores in the phrase table . The phrase-based
models were trained on forced-aligned phrase-
pairs rather than full sentences.

which only allows phrases given by the phrase ta-
ble. Therefore, it would be interesting to examine
the performance of the models outside the phrase-
based framework.

5.4 Discussion

We observe that integrating RNN models into
phrase-based decoding slightly outperforms ap-
plying them in a rescoring step. This is unlike
the case of feedforward networks, which where
integrated into phrase-based decoding in (Devlin
et al., 2014), and resulted in large improvements
compared to rescoring. Even when we use large
caching orders, we observe no major improve-
ments over rescoring. This can be attributed to
the fact that deciding on recombining search nodes
completely ignores the RNN hidden state, which
could be a harsh approximation, given that the
RNN hidden state encodes the complete history.
We experimented with changing the LM order
used to make recombination decisions, which we
refer to as the recombination order. However, sim-
ply increasing the recombination order does not
enhance the translation quality, and it starts to even
have a negative impact. This can be explained due
to the fact that our phrase-based decoder is based
on beam search, which has fixed pruning parame-
ters that allow a fixed number of hypotheses to be
explored. Simply increasing the recombination or-
der limits the variety in the beam. When the beam
size is doubled,3 both RNN decoding and rescor-
ing improve, but the difference between them is
still insignificant. To be able to benefit from the
increase in recombination order, the beam size

3We doubled each of the observation histogram size, the
number of lexical hypotheses per source coverage and the
number of reordering alternatives per source cardinality.
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should be appropriately increased. But using large
beam sizes makes translation costly and infeasi-
ble. This calls for other more selective ways to
make recombination decisions dependent on the
RNN hidden state.

6 Conclusion

We investigated the integration of RNN language
and translation models into a phrase-based de-
coder. We integrated exact RNN translation mod-
els that are conditioned on the source context only,
and used caching to integrate approximate RNN
translation models that are dependent on the tar-
get context. This is the first time RNN transla-
tion models are integrated into phrase-based de-
coding. We analyzed the effect of caching on
translation quality and speed, and demonstrated
that it achieves equivalent translation results com-
pared to having the RNN hidden states stored in
the decoder’s search nodes, while being 6 times
faster. Translation results indicated that applying
the models in decoding is at least as good as apply-
ing them in rescoring n-best lists, but we observed
no major advantage for RNN decoding. Future
work will investigate approaches to make recom-
bination dependent on the RNN hidden state in a
feasible way, furthermore, we will explore how the
RNN models perform in word-based decoding.
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2013. Comparison of feedforward and recurrent
neural network language models. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, pages 8430–8434, Vancouver, Canada,
May.

Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker,
and Hermann Ney. 2014. Translation Modeling
with Bidirectional Recurrent Neural Networks. In
Conference on Empirical Methods on Natural Lan-
guage Processing, pages 14–25, Doha, Qatar, Octo-
ber.

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in Neural Information
Processing Systems 27, pages 3104–3112, Montréal,
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