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Abstract

This paper describes the syntax-based sys-
tems built at the University of Edinburgh
for the WMT 2015 shared translation task.
We developed systems for all language
pairs except French-English. This year
we focused on: translation out of En-
glish using tree-to-string models; contin-
uing to improve our English-German sys-
tem; and source-side morphological seg-
mentation of Finnish using Morfessor.

1 Introduction

This year’s WMT shared translation task featured
five language pairs: English paired with Czech,
Finnish, French, German, and Russian. We built
syntax-based systems in both translation direc-
tions for all language pairs except English-French.

For English → German, we continued to de-
velop our string-to-tree system, which has proven
highly competitive in previous years. Additions
this year included the use of a dependency lan-
guage model, an alternative tuning metric, and soft
source-syntactic constraints.

For translation from English into Czech,
Finnish, and Russian, we built STSG-based tree-
to-string systems. Support for this type of model
is a recent addition to the Moses toolkit. In previ-
ous years, our systems have all used string-to-tree
models and have only translated into English and
German.

For Finnish → English, we experimented with
unsupervised morphological segmentation using
Morfessor 2.0 (Virpioja et al., 2013).

For the remaining systems (Czech → English,
German→ English, and Russian→ English), our
systems were essentially the same as last year’s
(Williams et al., 2014) except for the addition of
this year’s training data.

2 System Overview

2.1 Pre-processing

The training data was pre-processed using scripts
from the Moses toolkit. We first normalized
the data using the normalize-punctuation.perl
script then performed tokenization, parsing, and
truecasing. To parse the English data, we used
the Berkeley parser (Petrov et al., 2006; Petrov
and Klein, 2007). To parse the German data, we
used the ParZu dependency parser (Sennrich et
al., 2013).

2.2 Word Alignment

For word alignment we used either MGIZA++
(Gao and Vogel, 2008), a multi-threaded imple-
mentation of GIZA++ (Och and Ney, 2003), or
fast_align (Dyer et al., 2013). In preliminary
experiments, we found that the tree-to-string sys-
tems were particularly sensitive to the choice of
word aligner, echoing a previous observation by
Neubig and Duh (2014). See the individual tree-
to-string system descriptions in Section 3.

2.3 Language Model

We used all available monolingual data to train one
interpolated 5-gram language model for each sys-
tem. Using either lmplz (Heafield et al., 2013)
or the SRILM toolkit (Stolcke, 2002), we first
trained an individual language model for each of
the supplied monolingual training corpora. These
models all used modified Kneser-Ney smoothing
(Chen and Goodman, 1998). We then interpolated
the individual models using SRILM, providing the
target-side of the system’s tuning set (Section 2.7)
for perplexity-based weight optimization.

2.4 String-to-Tree Model

For English→ German and the systems that trans-
late into English, we used a string-to-tree model.
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2.4.1 Grammar
The string-to-tree translation model is based on a
synchronous context-free grammar (SCFG) with
linguistically-motivated labels on the target side.

SCFG rules were extracted from the word-
aligned parallel data using the Moses implemen-
tation (Williams and Koehn, 2012) of the GHKM
algorithm (Galley et al., 2004; Galley et al., 2006).

Minimal GHKM rules were composed into
larger rules subject to restrictions on the size of
the resulting tree fragment. We used the settings
shown in Table 1, which were chosen empirically
during the development of 2013’s systems (Nade-
jde et al., 2013).

Parameter Unbinarized Binarized
Rule depth 5 7
Node count 20 30
Rule size 5 7

Table 1: Parameter settings for rule composition.
The parameters were relaxed for systems that used
binarization to allow for the increase in tree node
density.

Further to the restrictions on rule composition,
fully non-lexical unary rules were eliminated us-
ing the method described in Chung et al. (2011)
and rules with scope greater than 3 (Hopkins and
Langmead, 2010) were pruned from the trans-
lation grammar. Scope pruning makes parsing
tractable without the need for grammar binariza-
tion.

2.4.2 Feature Functions
Our core set of string-to-tree feature functions is
unchanged from previous years. It includes the n-
gram language model’s log probability for the tar-
get string, the target word count, the rule count,
and various pre-computed rule-specific scores.
For a grammar rule r of the form

C → 〈α, β,∼〉
where C is a target-side non-terminal label, α is a
string of source terminals and non-terminals, β is
a string of target terminals and non-terminals, and
∼ is a one-to-one correspondence between source
and target non-terminals, we score the rule accord-
ing to (logarithms of) the following functions:

• p (C, β | α,∼) and p (α | C, β,∼), the direct
and indirect translation probabilities.

• plex (β | α) and plex (α | β), the direct and
indirect lexical weights (Koehn et al., 2003).

• ppcfg (π), the monolingual PCFG probability
of the tree fragment π from which the rule
was extracted.

• exp(−1/count(r)), a rule rareness penalty.

2.5 Tree-to-String Model
For English→ Czech, English→ Finnish, and En-
glish→ Russian, we used a tree-to-string model.

2.5.1 Grammar
In the tree-to-string model, the translation gram-
mar is a synchronous tree-substitution gram-
mar (Eisner, 2003) with parse tree fragments on
the source-side and strings of terminals and non-
terminals on the target-side.

As with the string-to-tree models, the grammar
was extracted from the word-aligned parallel data
using the Moses implementation of the GHKM al-
gorithm. Minimal GHKM rules were composed
into larger rules subject to the same size restric-
tions (Table 1). Unlike string-to-tree rule extrac-
tion, fully non-lexical unary rules were included
in the grammar and scope pruning was not used.

2.5.2 Feature Functions
The tree-to-string feature functions are similar to
those of the string-to-tree model. For a grammar
rule r of the form

〈π, β,∼〉
where π is a source-side tree fragment, β is a string
of target terminals and non-terminals, and ∼ is
a one-to-one correspondence between source and
target non-terminals, we score the rule according
to (logarithms of) the following functions:

• p (β | π,∼) and p (π | β,∼), the direct and
indirect translation probabilities.

• plex (β | π) and plex (π | β), the direct and
indirect lexical weights (Koehn et al., 2003).

• exp(−1/count(r)), a rule rareness penalty.

2.6 Decoding
Decoding for the string-to-tree models is based on
Sennrich’s (2014) recursive variant of the CYK+
parsing algorithm combined with LM integration
via cube pruning (Chiang, 2007). Decoding for the
tree-to-string models is based on the rule matching
algorithm by Zhang et al. (2009) combined with
LM integration via cube pruning.
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2.7 Tuning
The feature weights were tuned using the Moses
implementation of MERT (Och, 2003) for all sys-
tems except English-to-German, for which we
used k-best MIRA (Cherry and Foster, 2012) due
to the use of sparse features.

For the tree-to-string systems, we used all of
the previous years’ test sets as tuning data (except
newstest2014, which was used as the development
test set). For the string-to-tree systems, we used
subsets of the test data to speed up decoding.

3 Individual Systems

In this section we describe individual systems and
present experimental results. In many cases, the
only difference from the generic setup of the pre-
vious section is that we perform right binarization
of the training and test parse trees.

We also built hierarchical phrase-based systems
(Chiang, 2007), which we refer to in tables as ‘Hi-
ero.’ These systems were built using the Moses
toolkit, with standard settings. They were not used
in the submission and are included for comparison
only.

For each system, we present results for both the
development test set (newstest2014 in most cases)
and for the test set (newstest2015) for which ref-
erence translations were provided after the system
submission deadline. We refer to these as ‘devtest’
and ‘test’, respectively.

3.1 English to Czech
For English → Czech we built a tree-to-string
system. We used fast_align for word align-
ment due to the large training data size and on the
strength of its performance for English→ Finnish
and English→ Russian. We used all test sets from
2008 to 2013 as tuning data. Table 2 gives the
mean BLEU scores, averaged over three MERT
runs. Our submitted system was the right bina-
rized system that, out of the three runs, scored
highest on devtest.

system devtest test
Hiero 20.2 16.8
Tree-to-string 19.0 15.7
+ right binarization 19.5 16.1

Table 2: English to Czech translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.2 English to Finnish
In preliminary English → Finnish experi-
ments, we compared the use of MGIZA++ and
fast_align. Since there was only one test
set provided, in these initial experiments we split
newsdev2015 into two halves, using the first half
for tuning and the second half for testing. Table 3
gives the mean BLEU scores, averaged over three
MERT runs.

MGIZA++ fast_align

Hiero 11.7 11.6
Tree-to-string 11.5 12.3
+ right binarization 11.9 12.8

Table 3: Comparison of word alignment tools for
English to Finnish. BLEU on subset of news-
dev2015.

For our final system, we used fast_align
for word alignment and we used the full news-
dev2015 test set as tuning data. Table 4 gives the
mean BLEU scores for this setup. Our submitted
system was the right binarized system that, out of
the three MERT runs, scored highest on devtest.

system dev test
Hiero 11.4 11.5
Tree-to-string 11.9 11.8
+ right binarization 12.2 12.3

Table 4: Final English to Finnish translation
results (BLEU) on dev (newsdev2015) and test
(newstest2015) sets.

3.3 English to German
We experiment with the following additions to last
year’s submission system: a relational dependency
language model (RDLM) (Sennrich, 2015); tuning
on the syntactic metric HWCM (Liu and Gildea,
2005; Sennrich, 2015); soft source-syntactic con-
straints (Huck et al., 2014); a large-scale n-
gram Neural Network language model (NPLM)
(Vaswani et al., 2013); treebank binarization (Sen-
nrich and Haddow, 2015); particle verb restructur-
ing (Sennrich and Haddow, 2015). We do not in-
clude syntactic constraints in this year’s baseline.
Our string-to-tree baseline uses a dependency rep-
resentation of compounds, as described in (Sen-
nrich and Haddow, 2015).

RDLM is a relational dependency language
model which predicts the dependency relations
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system BLEU 2+ SUBJ
original trees 20.1 0
+ RDLM 21.0 0
+ RDLM (bidir.) 21.2 0
right binarization 20.4 272
head binarization 20.5 152
+ RDLM 21.3 43
+ RDLM (bidir.) 21.5 32

Table 5: English to German translation results
(on newstest2013) with different binarizations and
language models. 2+ SUBJ: number of finite
clauses with more than one subject.

and words in the translation hypotheses based on
the dependency relations and words of the ances-
tor and sibling nodes in the dependency tree. Our
model contains several extensions over the origi-
nal paper (Sennrich, 2015). Like the original pa-
per, we use an ancestor context size of 2, but we
increase the sibling context size from 1 to 3, and
allow bidirectional context, using the 3 closest sib-
lings to both the left and right of the current node.
The original model predicts a virtual stop node as
the last child of each tree, which models the prob-
ability that a node has no more children. This is
mirrored by a virtual start node in the bidirectional
model.

We binarize the treebanks before rule extrac-
tion. We note that treebank binarization allows the
extraction of rules that overgeneralize, e.g. allow-
ing structures with zero, or multiple, preterminals
per node, effectively allowing verb clauses with-
out verb and similar. We use head binarization
(Sennrich and Haddow, 2015), which ensures that
each constituent contains exactly one head. Dur-
ing decoding, the generated target trees are un-
binarized to allow scoring with RDLM. Table 5
shows that both right binarization and head bi-
narization overgeneralize, exemplified by the fact
that they allow finite clauses to have multiple sub-
jects1. The RDLM reduces this problem, and the
bidirectional RDLM slightly outperforms the uni-
directional variant, both in terms of BLEU and the
number of overgeneralizations.

For the soft source-syntactic constraints, we an-
notate the source text with the Stanford Neural
Network dependency parser (Chen and Manning,
2014), along with heuristic projectivization (Nivre
and Nilsson, 2005).

1Compound subjects are represented as a single node.

system devtest test
Hiero 19.2 21.0
String-to-tree baseline 19.8 21.4
+ HWCM+BLEU

2 tuning 20.1 21.6
+ head binarization 20.5 22.3
+ RDLM (bidirectional) 21.5 23.3
+ source-syntactic constraints 21.6 23.8
+ 5-gram NPLM 22.0 24.1
+ less pruning (submission) 22.0 24.0
+ particle verb restructuring 22.0 24.4

Table 6: English to German translation results
(BLEU) on devtest (newstest2013) and test (news-
test2015) sets.

The NPLM is a 5-gram feed-forward neural lan-
guage model, and for both RDLM and NPLM
we use a single hidden layer of size 750, a 150-
dimensional input embedding layer with a vocab-
ulary size of 500000, noise-contrastive estimation
with 100 noise samples, and 2 iterations over the
monolingual training set. Estimating LM proba-
bilities for OOV words is a well-known problem,
and we avoid this by filtering the translation model
according to the vocabulary of the neural models.

The impact of all experimental components is
shown in Table 6. Each system in Tables 5 and 6
was tuned separately with MIRA. For our submis-
sion system, we increased the Moses parameters
cube-pruning-pop-limit from 1000 to 4000, and
rule-limit from 100 to 400, but this had little effect
on devtest, and gave even slightly lower BLEU on
test. Particle verb restructuring, which was done
after the submission deadline, increases BLEU on
test. In total, we observe substantial improvements
over our baseline, which roughly corresponds to
last year’s submission systems: 2.2 BLEU on dev-
test, and 3.0 BLEU on test.

3.4 English to Russian

For English → Russian we built a tree-to-string
system. During preliminary experiments we found
that fast_align gave consistent gains over
MGIZA++ (albeit smaller than Finnish→ English
at around 0.3 BLEU). In final experiments we used
fast_align for word alignment and we used
the 2012 and 2013 test sets as tuning data. Table 7
gives the mean BLEU scores, averaged over three
MERT runs. Our submitted system was the right
binarized system that, out of the three runs, scored
highest on devtest.

202



system devtest test
Hiero 29.8 23.8
Tree-to-string 27.5 22.1
+ right binarization 28.3 23.0

Table 7: English to Russian translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.5 Czech to English
For Czech→ English we built a string-to-tree sys-
tem. We used all test sets from 2008 to 2013 as
tuning data. Table 8 gives the mean BLEU scores,
which are averaged over three MERT runs. Our
submitted system was the right binarized system
that, out of the three runs, scored highest on dev-
test.

system devtest test
Hiero 28.5 24.9
String-to-tree 27.8 24.4
+ right binarization 27.8 24.5

Table 8: Czech to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.6 Finnish to English
In preliminary Finnish→ English experiments, we
tried using Morfessor to segment Finnish words
into morphemes. We used Morfessor 2.0 (with de-
fault settings) to learn an unsupervised segmenta-
tion model from all of the available Finnish data,
which was then used to segment all words in the
source-side training and test data. We compared
systems with and without segmentation and using
a system combination of the two — an approach
that has been shown to improve translation quality
for this language pair (de Gispert et al., 2009).

As with English → Finnish, we split news-
dev2015 into two halves, using the first half for
tuning and the second half for testing. Table 9
shows the results: the column headed ‘word’ gives
BLEU scores for the unsegmented systems; the
column headed ‘morph’ gives scores for systems
trained on segmented data; and the column headed
‘syscomb’ gives results for a system combination
using MEMT (Heafield and Lavie, 2010).

For our final system, we used morphological
segmentation but not system combination. We
used the full newsdev2015 test as tuning data. Ta-
ble 10 gives mean BLEU scores for this setup, av-

word morph syscomb
Hiero 17.8 19.1 19.2
String-to-tree 17.6 18.5 18.7
+ right binarization 17.8 18.9 18.9

Table 9: Finnish to English experiments with mor-
phological segmentation.

system dev test
Hiero 18.6 17.5
String-to-tree 18.3 17.2
+ right binarization 18.5 17.7

Table 10: Finnish to English translation results
(BLEU) on dev (newsdev2015) and test (news-
test2015) sets.

eraged over three MERT runs. Our submitted sys-
tem was the right binarized system that, out of the
three, scored highest on newsdev2015.

3.7 German to English

For German → English we built a tree-to-string
system with similar setup as last year’s (Williams
et al., 2014). Our submitted system was right bi-
narized with the following extraction parameters:
Rule Depth = 7, Node Count = 100, Rule Size =
7. At decoding time we used the following non-
default parameter value: max-chart-span = 25.
This limits sub derivations to a maximum span of
25 source words. For the Hiero baseline system we
used max-chart-span = 15. For tuning we used a
random subset of 2000 sentences drawn from the
full tuning set.

We performed some preliminary experiments
with neural bilingual language models, our re-
implementation of the “joint” model of (Devlin
et al., 2014). The bilingual language models are
trained with the NPLM toolkit (Vaswani et al.,
2013). We used 250-dimensional input embedding
and hidden layers, and input and output vocabu-
lary sizes of 500000 and 250000 respectively. One
bilingual language model was a 5-gram model
with an additional context of 9 source words, the
affiliated source word and a window of 4 words on
either side. A second model was a 1-gram model
with an additional context of 13 source words. The
language models were trained on the available par-
allel corpora.

We also added a 7-gram class-based language
model, with 50 word classes trained using mkcls
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system devtest test
Hiero 27.7 28.0
String-to-tree 28.7 28.7
+ bilingual LMs 28.6 28.7
+ bilingual & class LMs 28.3 28.7

Table 11: German to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

(Och, 1999). The language model was trained
on all available monolingual corpora, filtering out
singletons.

Table 11 shows the results. As the preliminary
results were not encouraging, we did not include
the bilingual LMs and class LMs in our submitted
system.

3.8 Russian to English
For Russian → English we built a string-to-tree
system, using the 2012 and 2013 test sets as tun-
ing data. Table 12 gives the mean BLEU scores,
averaged over three MERT runs. Our submitted
system was the right binarized system that, out of
the three runs, scored highest on devtest.

system devtest test
Hiero 31.2 27.1
String-to-tree 30.5 25.9
+ right binarization 30.6 26.2

Table 12: Russian to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

4 Manual Error Analysis

Our syntax-based systems for the German–
English language pairs have greatly improved
over the last years and outperformed traditional
phrase-based statistical machine translation sys-
tems. Translating between German and English
is a challenge for those systems, since extensive
long distance reordering and long distance agree-
ment constraints do not fit that approach. Are our
syntax-based systems tackling these problems bet-
ter? And what are the main remaining problems?

For both German–English and English–
German, we analyzed 100 sentences, we carried
out an error analysis using linguistic error cate-
gories that roughly match other efforts in this area
(Vilar et al., 2006; Toral et al., 2013; Herrmann et

al., 2014; Lommel et al., 2014; Aranberri, 2015).
We used the following error annotation protocol:

1. A bilingual speaker corrects the machine
translation output with minimal necessary ed-
its to render an acceptable translation. This is
done in view of the human reference transla-
tion, but typically a much more literal trans-
lation was obtained.

2. Each edit is noted in a list in the form "old
string→ new string", where either old or new
string may also be empty or discontinuous.

3. In a second pass, all edits are classified with
error categories.

Such an error analysis is subjective. There are
many ways to correct errors (step 1), many ways
to split corrections into units (step 2), and many
ways to classify the errors (step 3). Moreover, an-
alyzing only 100 sentences does not lead to strong
statistically significant findings. With this in mind,
the following analysis is broadly indicative of the
main error types in our syntax-based systems.

Occasionally, parts of a machine translation are
just too muddled that a sequence of edits could be
established. This happened in 8 German–English
sentences, and 7 English–German sentences.

4.1 German–English
16 sentences have no error, while 18 sentences
have only one error. These are of course typically
the shorter ones. The longest sentence without er-
ror is:

• Source: Der Oppositionspolitiker Imran
Khan wirft Premier Sharif vor, bei der Par-
lamentswahl im Mai vergangenen Jahres be-
trogen zu haben.

• MT: The opposition politician Imran Khan
accuses Premier Sharif of having cheated
in the parliamentary election in May of last
year.

This is not a trivial sentence, since it requires the
translation of the complex subclause construction
accuses ... of having cheated, which is rendered
quite differently in German as wirft ... vor ... bet-
rogen zu haben.

An overview of the major error categories is
shown is Figure 13. On average, 2.85 errors per
sentence were identified. This gives us guidance
on the major problems we should be working on
in the future.
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Count Category
29 Wrong content word - noun
25 Wrong content word - verb
22 Wrong function word - preposition
21 Inflection - verb
14 Reordering: verb
13 Reordering: adjunct
12 Missing function word - preposition
10 Missing content word - verb
9 Wrong function word - other
9 Wrong content word - wrong POS
9 Added punctuation
8 Muddle
8 Missing function word - connective
8 Added function word - preposition
7 Missing punctuation
7 Wrong content word - adverb

Count Category
6 Wrong content word - phrasal verb
6 Added function word - determiner
5 Unknown word - noun
5 Missing content word - adverb
5 Missing content word - noun
5 Inflection - noun
4 Reordering: NP
3 Missing content word - adjective
3 Inflection - wrong POS
3 Casing
2 Unknown word - verb
2 Reordering: punctuation
2 Reordering: noun
2 Reordering: adverb
2 Missing function word - determiner
2 Inflection - adverb

Table 13: Main error types in German–English system (count in 100 sentences).

Lexical choice The biggest group of error types
concern translation of basic concepts. On average,
such errors occur 0.76 times per sentence. Given
the vast number of content words that need to be
translated, the actual performance on the task of
lexical translation is pretty high, but it is by no
means solved.

Count Category
29 Wrong content word - noun
25 Wrong content word - verb
9 Wrong content word - wrong POS
7 Wrong content word - adverb
6 Wrong content word - phrasal verb

Prepositions We were surprised by the large
number of errors revolving prepositions. Prepo-
sitions are frequent, but not as frequent as con-
tent words, so the performance on the preposi-
tion translation task is not as good. Prepositions
mostly mark relationships of adjuncts, which in-
volve quite complex considerations — the adjunct,
the modified verb or noun phrase, identifying the
relationship between them in the source sentence,
and the fuzzy meaning of prepositions.

Count Category
22 Wrong function word - preposition
12 Missing function word - preposition
8 Added function word - preposition

Reordering We were also surprised by the low
number of reordering errors. The different word
order between German and English has hampered

translation quality for this language pair histori-
cally. While we cannot declare complete success,
our syntax-based systems constitute great progress
in this area.

Count Category
14 Reordering: verb
13 Reordering: adjunct

4 Reordering: NP
2 Reordering: noun
2 Reordering: adverb

Other issues with verbs Reordering errors in-
volving verbs top the list in the previous group
of error types, but there are also other problems
with verbs: their inflection and the unacceptable
frequency of dropping verbs. The latter has its
roots in faulty word alignment which are based
on IBM Models which often fail to align the out-
of-English-order German verb, thus enabling the
translation model to drop them, which the lan-
guage model often prefers. Inflection is here to
be understood broadly, including the need for the
right function words to form a grammatical correct
verb complex (e.g., will have been resolved).

Count Category
21 Inflection - verb
10 Missing content word - verb

Overall, the main thrust of future research
should be focused on lexical choice, selecting cor-
rect prepositions, and producing the correct verb.
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Count Category
41 Wrong content word - verb
37 Wrong content word - noun
33 Reordering - verb
30 Inflection - verb
22 Missing function word - preposition
17 Inflection - np
14 Wrong function word - preposition
12 Wrong content word - phrasal verb
12 Wrong content word - wrong POS
12 Wrong function word - clausal connective
11 Reordering - pp
11 Inflection - noun
10 Wrong function word - pronoun
10 Missing function word - pronoun
10 Missing function word - determiner
9 Reordering - noun

Count Category
9 Compound merging
8 Added function word - preposition
7 Punctuation - inserted
7 Muddle
7 Missing function word - clausal connective
7 Added function word - determiner
5 Punctuation - missing
5 Missing content word - verb
4 Reordering - adverb
4 Wrong content word - adverb
3 Missing content word - adjective
2 Reordering - pronoun
2 Wrong content word - name
2 Missing content word - adverb
2 Wrong content word - adjective
2 Added function word - pronoun

Table 14: Main error types in English–German system (count in 100 sentences).

4.2 English–German

12 Sentences had no error, 13 sentences only one
error. Less than German–English, which supports
the general contention that translating into Ger-
man is harder. On average, a total of 3.8 errors
per sentence were marked, one error per sentence
more than German–English. An overview of the
major error categories is shown is Figure 14.

The longest sentence with no error is:

• Source: Congressmen Keith Ellison and John
Lewis have proposed legislation to protect
union organizing as a civil right.

• Target: Die Kongressabgeordneten Keith El-
lison und John Lewis haben Gesetze zum
Schutz der gewerkschaftlichen Organisation
als Bürgerrecht vorgeschlagen.

In terms of word order, this is not a
complicated sentence (besides the verb move-
ment proposed→vorgeschlagen), but it does
involve switching of part-of-speech for two
content words: protect→Schutz (verb→noun),
union→gewerkschaftlichen (noun→adjective).

Lexical choice As with German–English, this is
biggest group of error types, with 1.08 errors per
sentence. Verb sense errors tend to be more subtle,
such that a media outlet does not sagt (says) but
berichtet (reports) a news item. For nouns, there
were several stark errors, such the mis-translation

of patient as Geduld (patience) in a medical con-
text. In general, there is no reason to believe that
models that more strongly draw on a wider context
could not resolve many of these cases.

Count Category
41 Wrong content word - verb
37 Wrong content word - noun
12 Wrong content word - phrasal verb
12 Wrong content word - wrong POS
4 Wrong content word - adverb
2 Wrong content word - adjective

Role and order of adjuncts and arguments
While the overall sentence structure is mostly cor-
rect, there are often problems with the handling of
adjunct and argument phrases. Their role is iden-
tified in German by a preposition or the case of a
noun phrase (the main cause of inflection errors).
Their position in the sentence is less strict, but mis-
takes can be and are made.

Count Category
22 Missing function word - preposition
17 Inflection - np
14 Wrong function word - preposition
11 Reordering - pp
11 Inflection - noun

8 Added function word - preposition

Verbs Reordering errors of verbs mainly oc-
cur in complex subclause constructions. German
verbs are more strongly inflected for count and
person, and often a few function words are needed
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in just the right order and placement for a correct
verb complex.

33 Reordering - verb
30 Inflection - verb
5 Missing content word - verb

Pronouns Due to grammatical gender of nouns
in German, translating it and they is a complex un-
dertaking. German verbs also require more fre-
quently reflexive pronouns.

Count Category
10 Wrong function word - pronoun
10 Missing function word - pronoun
2 Added function word - pronoun

Clausal connectives A specific problem of
English–German translations are clausal connec-
tives. In English, the relationship of the sub clause
is often not explicitly marked (e.g., Police say the
rider), while German requires a function word.

Count Category
12 Wrong function word - clausal connective

7 Missing function word - clausal connective
Overall, while there are more structural prob-

lems than for German–English, often the remain-
ing challenge is the disambiguation of lexical
choices and the correct labelling of syntactic re-
lationships.

5 Conclusion

This year we submitted syntax-based systems for
all language pairs except English-French. Our
English → German system included significant
improvements over last year’s and we intend to
continue developing this system. We presented
the first results using Moses’ STSG-based tree-to-
string model.
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