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Abstract

We introduce the task of visualizing dis-
tributed semantic representations by gen-
erating images from word vectors. Given
the corpus-based vector encoding the word
broccoli, we convert it to a visual repre-
sentation by means of a cross-modal map-
ping function, and then use the mapped
representation to generate an image of
broccoli as “dreamed” by the distributed
model. We propose a baseline dream syn-
thesis method based on averaging pictures
whose visual representations are topologi-
cally close to the mapped vector. Two ex-
periments show that we generate dreams
that generally belong to the the right se-
mantic category, and are sometimes accu-
rate enough for subjects to distinguish the
intended concept from a related one.

1 Introduction

When researchers “visualize” dis-
tributed/distributional semantic models, they
typically present 2D scatterplots illustrating the
distances between a set of word representa-
tions (Van der Maaten and Hinton, 2008). We
propose a much more direct approach to visual-
ization. Given a vector representing a word in a
corpus-derived distributed space, we generate a
picture depicting how the denotatum of the word
looks like, according to the model. Given, say,
the word2vec vector of broccoli, we want to know
how broccoli looks like to word2vec (see Figure 1
for the answer).

Besides the inherent coolness of the task, it
has many potential applications. Current quali-
tative analysis of distributed semantic models is
limited to assessing the relation between words,
e.g., by looking at, or plotting, nearest neighbour
sets, but it lacks methods to inspect the proper-

ties of a specific word directly. Our image syn-
thesis approach will allow researchers to “see”, in
a very literal sense, how a model represents a sin-
gle word. Moreover, in the spirit of the “A pic-
ture is worth a thousand words” adage, the gener-
ated images will allow researchers to quickly eye-
ball the results, getting the gist of what a model
is capturing much faster than from textual neigh-
bour lists. For example, a more “topical” model
might produce pictures depicting the wider scenes
in which objects occur (a ball being dribbled by
soccer players), whereas a model capturing strictly
conceptual aspects might produce narrow views of
the denoted objects (a close-up of the ball). Im-
age synthesis could also be used to explore the ef-
fect of different input corpora on representations:
e.g., given a historical corpus, generate images for
the car word representations induced from early
20th-century vs. 21st-century texts. As a last ex-
ample, Aletras and Stevenson (2013) proposed to
examine the topics of Topic Models by associating
them with images retrieved from the Web. Given
that topics are represented by vectors, we could di-
rectly generate images representing these topics.

In cognitive science, there is a lively debate
on whether abstract words have embodied repre-
sentations, (Barsalou and Wiemer-Hastings, 2005;
Lakoff and Johnson, 1999), an issue that has re-
cently attracted the attention of the distributed se-
mantics community (Hill and Korhonen, 2014;
Kiela et al., 2014; Lazaridou et al., 2015). An in-
triguing application of image synthesis would be
to produce and assess imagery for abstract con-
cepts. Recent work in neuroscience attempts to
generate images of “what people think”, as en-
coded in vector-based representations of fMRI
patterns (Naselaris et al., 2009; Nishimoto et al.,
2011). With our method, we could then directly
compare images produced from corpus-based rep-
resentations to what humans visualize when think-
ing of the same words.
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In the long term, we would like to move be-
yond words, towards generating images depicting
the meaning of phrases (e.g., an angry cat vs. a
cute cat vs. a white cat) and sentences. This would
nicely complement current work on generating
verbal descriptions of images (Karpathy and Fei-
Fei, 2015; Kiros et al., 2014) with the inverse task
of generating images from verbal descriptions.

Generating images from vectorial word rep-
resentations is of course extremely challenging.
However, various relevant strands of research have
reached a level of maturity that makes it a realis-
tic goal to pursue. First, tools such as word2vec
(Mikolov et al., 2013a) and Glove (Pennington et
al., 2014) produce high-quality word representa-
tions, making us confident that we are not trying to
generate visual signals from semantic noise. Sec-
ond, there is very promising recent work on learn-
ing to map between word representations and an
(abstract) image space, for applications such as
image retrieval and annotation (Frome et al., 2013;
Karpathy and Fei-Fei, 2015; Kiros et al., 2014;
Lazaridou et al., 2014; Socher et al., 2014). Fi-
nally, the computer vision community is starting
to explore the task of image generation (Gregor et
al., 2015), typically in an attempt to understand
the inner workings of visual feature extraction al-
gorithms (Zeiler and Fergus, 2014).

The main aim of this paper is to present proof-
of-concept evidence that the task is feasible. To
this end, we rely on state-of-the-art word represen-
tation and cross-modality mapping methods, but
we adopt an image synthesis strategy that could be
seen as an interesting baseline to compare other
approaches against. Briefly, our pipeline works
as follows. Our input is given by pre-computed
word representations (word2vec) and a set of la-
beled images together with their pre-compiled rep-
resentations in a high-level visual feature space
(specifically, we use activations on one of the top
layers (fc7) of a convolutional neural network as
high-level image representations). Given an input
word vector, we use a linear cross-modal function
to map it into visual space, and we retrieve the n
nearest image representations. Finally, we overlay
the actual images corresponding to these nearest
neighbours in order to derive a visualization of the
mapped word, a method we refer to as averaging.
For example, the first image in Figure 1 below is
our visualization of broccoli, obtained by project-
ing the broccoli word vector onto visual space, re-

trieving the 20 nearest images and averaging them.
Importantly, we apply this synthesis method to

words that are not used to train the cross-modal
mapping function, and that do not match the label
of any picture in the image data set. So, for ex-
ample, our system had to map broccoli onto visual
space without having ever been exposed to labeled
broccoli images (zero-shot setting), and it gener-
ated the broccoli image by averaging pictures that
do not depict broccoli.

2 General setup

We refer to the words we generate images for as
dreamed words, and to the corresponding images
as dreams. We refer to the set of words that are
associated to real pictures as seen words. The real
picture set contains approximately 500K images
extracted from ImageNet (Deng et al., 2009) rep-
resenting 5.1K distinct seen words. The dreamed
word set includes 510 concrete, base-level con-
cepts from the semantic norms of McRae et al.
(2005) (we excluded 31 McRae concepts because
they were marked as ambiguous there, or for tech-
nical reasons).

Linguistic and Visual Representations For
all seen and dreamed concepts, we build 300-
dimensional word vectors with the word2vec
toolkit,1 choosing the CBOW method.2 CBOW,
which learns to predict a target word from the
ones surrounding it, produces state-of-the-art re-
sults in many linguistic tasks (Baroni et al., 2014).
Word vectors are induced from a corpus of 2.8
billion words.3 The 500K images are repre-
sented by 4096-dimensional visual vectors, ex-
tracted with the pre-trained convolutional neural
network model of Krizhevsky et al. (2012) through
the Caffe toolkit (Jia et al., 2014).

Cross-modal mapping We use 5.1K training
pairs (wc,vc) = {wc ∈ R300,vc ∈ R4096}, where
wc is the word vector and vc the visual vector for
(seen) concept c, the latter obtained by averaging
all visual representations labeled with the concept
(no dreamed concept is included in the training

1https://code.google.com/p/word2vec/
2Other hyperparameters, adopted without tuning, include

a context window size of 5 words to either side of the target,
setting the sub-sampling option to 1e-05 and estimating the
probability of target words by negative sampling, drawing 10
samples from the noise distribution (Mikolov et al., 2013b).

3Corpus sources: http://wacky.sslmit.unibo.
it, http://www.natcorp.ox.ac.uk
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set, given the zero-shot setup). Following previ-
ous work on cross-modal mapping (Frome et al.,
2013; Lazaridou et al., 2014), we assume a lin-
ear mapping function. To estimate its parameters
M ∈ R300×4096, given word vectors W paired
with visual vectors V, we use L1-penalized least
squares (Lasso) regression:4

M̂ = argmin
M∈R300×4096

‖WM−V‖F + λ‖M‖1

Image synthesis Suppose you have never seen
cougars, but you know they are big cats. You
might reasonably visualize a cougar as resembling
a combination of lions, cheetahs and other fe-
lines. One simple way to simulate this process is
through image averaging. Specifically, given the
word representation wc of a dreamed concept c,
we apply cross-modal mapping M to obtain an
estimate of its visual vector v̂c. Following that,
we search for the top k = 20 nearest images in
4096-dimensional visual space. Finally, the dream
of concept c is obtained by averaging the colors
in each pixel position (x, y) across the 20 images.
These images do not contain the dreamed concept,
and they will typically depict several distinct con-
cepts (e.g., with a fairly accurate mapping M, we
might get the dream of cougar by averaging im-
ages of 5 cheetahs and 15 lions).5

3 Experiment 1: Naming the dream

Task definition and data collection In this ex-
periment we presented a dream, and asked sub-
jects if they thought it was more likely to denote
the correct dreamed word or a confounder ran-
domly picked from the seen word set (we did not
use the “dream” terminology to explain the task
to subjects). Since the confounder is a randomly
picked term, the task is relatively easy. At the
same time, since the confounders are picked from
a set of concrete concepts, just like the dreamed
words, it sometimes happens that the two concepts
are quite related, as illustrated in Figure 1. More-
over, all confounders were used to train the map-
ping function, and their pictures are present in the
averaging pool. These factors could introduce a
bias in favour of them. We tested all 510 McRae

4λ is 10-fold cross-validated on the training data.
5The idea of generating a more abstract depiction of

something by averaging a number of real pictures is popular
in contemporary art (Salavon, 2004) and it has recently been
adopted in computer vision, as a way to visualize large sets of
images of the same concept, e.g., averaging across different
cat breeds (Zhu et al., 2014).

baboon
zebrabroccoli

laurel
tongs
utensil

cottage
gardener

Figure 1: Experiment 1: Example dreams with
correct dreamed word and confounder. Subjects
showed a significant preference for the colored
word (green if right, red if wrong).

words, collecting 20 ratings for each. We ran-
domized word order both across and within trials.
We used the CrowdFlower6 platform to collect the
judgments, limiting participation to subjects from
English-speaking countries who self-declared En-
glish as their native language.

Results Subjects show a consistent preference
for the correct (dreamed) word (median propor-
tion of votes in favor of it: 90%). Prefer-
ence for the correct word is significantly dif-
ferent from chance in 419/510 cases (two-
sided exact binomial tests, corrected for mul-
tiple comparisons with the false discovery rate
method, α = .05). Subjects expressed a sig-
nificant preference for the confounder in only 5
cases (budgie/parakeet, cake/pie, camel/ox, shot-
gun/revolver, squid/octopus).

For the first two dreams in Figure 1, subjects
showed a significant preference for the dreamed
word, despite the fact that the confounder is a re-
lated term. Still, when the two words are closely
related, it is more likely that subjects will be at
random. The figure also shows two interesting ex-
amples in which dreamed word and confounder
are related, and subjects significantly preferred the
latter. The tongs/utensil case is very challenging,
because any tongs picture would also be an utensil
picture (and the dreamed object does not look like
tongs to start with). For zebra/baboon, we conjec-
ture that subjects could make up an animal in the
dream, but one lacking the salient black-and-white
pattern of zebras.

4 Experiment 2: Picking the right dream

Task definition and data collection In this ex-
periment, we matched each dreamed word with
its own dream and a confounder dream gener-
ated from the most similar dreamed term (see
Figure 2 for examples). Word similarity was

6http://www.crowdflower.com
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measured in a space defined by subject-generated
properties describing the concepts of interest (this
method is known to produce high-quality similar-
ity estimates, better than those obtained with text-
based distributional models, see, e.g., Baroni et al.
(2010)). Subjects were asked which of the two im-
ages is more likely to contain the thing denoted by
the word. This is a very challenging task, as in
most cases target and confounder are closely re-
lated concepts, and thus their dreams must have
considerable granularity to allow subjects to make
the correct choice. Again, we used CrowdFlower
to collect 20 votes per item, with the same modal-
ities of Experiment 1.

Results We expected the simple averaging
method to fail completely at the level of accuracy
required by this task. The results, however, sug-
gest at least a trend in the right direction. This
time, the median proportion of votes for the cor-
rect dream is at 60%. In 165/510 cases, there
is a significant preference for the correct dream
(same statistical testing setup as above), and in 57
cases for the confounder. A manual annotation of
higher-level categories of dreamed word and con-
founder (e.g., garment, mammal, etc.) revealed
that the proportion of votes for the correct dream
was much higher in the 100 cases in which the
two items belonged to different categories (80%
vs. 55% for same-category pairs). The top row
of Figure 2 illustrates cases where the pairs be-
long to the same category, and yet subjects still
showed a strong preference for the correct dream.
In the tractor/truck case, both dreams represent
vehicles, but the correct one is evoking the ru-
ral environment a tractor. For swan/dove, we can
make out birds in both dreams, but the swan dream
is clearly of a larger, aquatic bird. Still, the more
common case is the one where, if the two concepts
are closely related, subjects assign random prefer-
ences, as they did for the examples in the second
row.

5 Discussion

Averaging lets common visual properties in the
source images emerge, as discussed in the next
paragraphs in relation to the examples of Figure 3.

Shape The typical position and orientation of
objects in images is an important factor deter-
mining dream quality. For example, weapons of-
ten appear in opposite orientations, which gives
the averaged bayonet dream an improbable X-

tractor swan

budgie cake

Figure 2: Experiment 2: Example dream pairs:
the one on the left was generated from the word
below the pair, the other from a confounder (clock-
wise from top left: truck, dove, pie, parakeet).
Subjects showed significant preference for the
green-framed correct dreams, and were at chance
level in the other cases.

like shape. Other concepts, like umbrella,
whose dream averages circular objects, are not so
strongly affected by the orientation problem.

Context Even when bad object alignment leads
to blurry dreams with unrecognizable concepts,
averaging might highlight a shared context, suf-
ficient to reveal the general category the dreamed
concept belongs to. While both dreams in the 2nd
column of Figure 3 are blurry, we can guess that
the first one is related to water or to the sea, while
the second is related to forest nature (dreams of a
mackerel and bison, respectively).7

Color Visual averaging can differentiate con-
cepts by capturing characteristics that are not typ-
ically verbalized. In black and white, the skirt and
trousers dreams look almost identical (and they
wrongly depict an upper-body garment). What
differentiates the two images is color, red for
skirt black for trousers. Indeed, a Google im-
age search reveals that skirts tend to be color-
ful and trousers dark. The McRae norms list
is colorful as a property of skirts, but not
trousers. We thus conjecture that image synthe-
sis could provide fine-grained perceptual informa-
tion complementing linguistic properties encoded
in classic nearest neighbour lists.

6 Conclusion

We presented a proof-of-concept study taking the
first steps toward generation of novel images from
text-based word vectors. Obviously, the next step
is to use genuine image generation methods in-

7Interestingly, Torralba (2003) used same-object image
averaging to illustrate contextual priming during object de-
tection.
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bison

mackerelumbrella

bayonet

skirt

trousers

SHAPE CONTEXT COLOR

Figure 3: Examples illustrating properties of
dream synthesis by image averaging.

stead of averaging (Gregor et al., 2015; Mahen-
dran and Vedaldi, 2015; Vondrick et al., 2014;
Zeiler and Fergus, 2014).

We would also like to consider alternative eval-
uation methods: for example, as suggested by a
reviewer, asking subjects to label the generated
dreams, and then measuring distance between the
volunteered labels and the ground truth.

In a relatively short-term application perspec-
tive, given the intriguing results on context and
other visual properties we reported, a natural first
step would be to see how such properties change
when different embeddings are used as input.
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