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Abstract

This paper describes a machine learning-
based approach that uses word embedding
features to recognize drug names from
biomedical texts. As a starting point,
we developed a baseline system based on
Conditional Random Field (CRF) trained
with standard features used in current
Named Entity Recognition (NER) sys-
tems. Then, the system was extended to
incorporate new features, such as word
vectors and word clusters generated by
the Word2Vec tool and a lexicon feature
from the DINTO ontology. We trained the
Word2vec tool over two different corpus:
Wikipedia and MedLine. Our main goal
is to study the effectiveness of using word
embeddings as features to improve perfor-
mance on our baseline system, as well as
to analyze whether the DINTO ontology
could be a valuable complementary data
source integrated in a machine learning
NER system. To evaluate our approach
and compare it with previous work, we
conducted a series of experiments on the
dataset of SemEval-2013 Task 9.1 Drug
Name Recognition.

1 Introduction

The automatic recognition of biomedical entities
from scientific texts can markedly reduce the time
that experts spend populating biomedical knowl-
edge bases and annotating papers and patents. Fur-
thermore, Named Entity Recognition (NER) is
a crucial component for many Natural Language
Processing (NLP) systems such as relation extrac-
tion, text classification or sentiment analysis sys-
tems, among many others.

Conditional Random Fields (CRF) often show
best results in the recognition of drugs and chem-
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ical names (Krallinger et al., 2015a; Segura Bed-
mar et al., 2013). So far the most popular fea-
tures for CRF-based NER systems concern syn-
tactic and semantic properties of words (such as
tokens, part-of-speech (POS) tags, lemmas, ortho-
graphic and lexicon features, among others). In
this work, we develop a system based on a CRF
to recognize drug mentions occurring in the DDI
corpus (Herrero-Zazo et al., 2013)'. Tt consists
of two different datasets: DDI-DrugBank (792
texts selected from the DrugBank database) and
DDI-MedLine (233 MedLine abstracts on the sub-
ject of DDIs). This corpus will allow us to com-
pare our system to the participating systems in the
SemEval-2013 Task 9.1 DrugNER Task.

One of the goals of this paper is to study
whether the DINTO ontology? (Herrero Zazo,
2015) can provide valuable information for this
task. As far as we know, DINTO is the first on-
tology providing a comprehensive and accurate
representation of drug-drug interactions (DDI)
knowledge. The DINTO ontology contains a to-
tal of 25,8009 classes, in particular 8,786 drugs and
11,555 DDIs. Several domain resources such as
the CheBI ontology (Degtyarenko et al., 2008), the
DrugBank database (Wishart et al., 2006) or the
OAE ontology (He et al., 2014) have been reused
to create DINTO. Furthermore, it was designed to
be used by the computer science community work-
ing on the DDI domain. A detailed description
of the DINTO ontology can be found in Herrero-
Zazo’s PhD thesis (Herrero Zazo, 2015).

As the main contribution, this work explores the
effectiveness of new features for the Drug NER
task, in particular, word clusters and word vec-
tors generated using the Word2Vec tool (Mikolov
etal., 2013a), a word embedding model based on a
neural network (NN). We hypothesize that the use

"http://labda.inf.uc3m.es/ddicorpus
Zhttp://www.obofoundry.org/cgi-
bin/detail.cgi?id=DINTO
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of word embedding features would allow us to ac-
curately detect even those drugs that are not in the
training set or in the DINTO ontology. A word
embedding is a function to map words to high-
dimensional vectors. At present, NN is one of the
most used learning techniques for generating word
embeddings (Mikolov et al., 2013b). The essen-
tial assumption of word embedding is that seman-
tically close words will have similar vectors. Word
embeddings have shown promising results in NLP
tasks, such as named entity recognition, sentiment
analysis or parsing (Turian et al., 2010; Socher et
al., 2013a; Socher et al., 2013b). However, to the
best of our knowledge, this technique has hardly
ever been exploited in drug name recognition (Liu
etal., 2015).

In fact, our work is the first to explore the word
embedding potential using the whole word2vec
vector for drug name recognition. In contrast to
(Liu et al., 2015), we also train the word em-
bedding features (word clusters and word vec-
tors) using the latest wikipedia dump?, which con-
tains more than 3 billion words, as well as the
2013 release of MedLine*, which they used for
genereting their word representations. This re-
lease contains approximately one million words,
being thus much smaller than the Wikipedia col-
lection. While MedLine is a biomedical literature
database, Wikipedia covers many different do-
mains of knowledge. However, we believe that the
larger the dataset used for training the Word2Vec
models, the better word embeddings should be ob-
tained. Thus, we would like to compare the effec-
tiveness of word embeddings features trained on a
specific domain corpus, such as MedLine, to those
trained on a larger collection, such as Wikipedia.

Another key difference of our work with (Liu
et al., 2015) is that while they only gave results
for the whole DDI corpus, we analyze and dis-
cuss the effect of the DINTO and word2vec fea-
tures on each one of the datasets: DDI-DrugBank
and DDI-MedLine. This analysis is necessary in
order to know what features are more efficient on
each dataset. MedLine abstracts are very different
from DrugBank texts. While abstracts are mainly
addressed to scientists in life sciences, texts from
DDI-DrugBank are written in a language under-
standable to patients.

The paper is organized as follows. In the

3http://dumps.wikimedia.org/
*http://www.nlm.nih.gov/databases/journal.html
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next section, we introduce the two main shared
tasks for drug name recognition task organized so
far: the BioCreative IV ChemdNER task and the
drugNER subtask of the SemEval-2013 DDIEx-
traction challenge. Section 3 describes the datasets
used and the experiments performed. The experi-
mental results are presented and discussed in Sec-
tion 4. We conclude in Section 5 with a sum-
mary of our findings and some directions for fu-
ture work.

2 State of the art

2.1 CHEMDNER task

The BioCreative IV CHEMDNER (Chemical
compound and drug name recognition) task was
devoted to NER focusing on detecting chemical
entity mentions. Twenty-six teams participated in
this task and as a result a corpus containing 10,000
PubMed abstracts annotated with 84,355 chem-
istry and chemical entity mentions was generated
(Krallinger et al., 2015b). An overview of the task
as well as of the main relevant characteristics of
participating systems is given in (Krallinger et al.,
2015a).

Participating systems used three approaches to
recognize chemical entity mentions: (a) super-
vised machine learning techniques (used by 17
systems). CRF was the most used technique fol-
lowed by Support Vector Machines (SVM) and
logistic regression. These systems used different
types of features: word level features (such as
ngrams, numerical items and digits, word length,
part-of-speech, among others), lookup features ex-
tracted from dictionaries and gazetteers and docu-
ment features (for example, coocurrences of men-
tions); (b) rule-based approaches are used in two
systems in the form of lexical patterns that imple-
ments the ITUPAC nomenclature guidelines to de-
tect formulas or specific sequences of compounds
(this strategy requires a high understanding of
chemical naming standards as well as annotation
guidelines) and (c) dictionary-based approaches
are integrated in four systems where domain-
specific resources (such as CheBI°, PubChem® or
DrugBank”) and gazetteers are expanded with lex-
ical variations to improve recall scores taking into
account that a post-processing task of removing
and pruning lexical entries is required. Only three

Shttps://www.ebi.ac.uk/chebi/
®https://pubchem.ncbi.nlm.nih.gov
"http://www.drugbank.ca



systems tried a hybrid approach combining ma-
chine learning and rule-based strategies. Analyz-
ing the runs submitted by participating teams, it is
important to highlight that the top ranked system
(Leaman et al., 2015) (87,39% of F-score) imple-
mented a hybrid approach that combines a CRF
model, a set of patterns to identify special types of
mentions and gazetteers. This score is very close
to the inter human annotator agreement (IAA) in
this task (91%).

2.2 SemkEval-2013 DrugNER task

The DDIExtraction Shared Task 2013 (Se-
gura Bedmar et al., 2013; Segura-Bedmar et al.,
2014) is the second edition of the DDIExtraction
Shared Task series, a community-wide effort to
promote the implementation and comparative as-
sessment of NLP techniques in the field of the
Pharmacovigilance domain. To attain this aim,
two main tasks were proposed: the recognition of
pharmacological substances (DrugNER task) and
the detection and classification of drug-drug inter-
actions (DDI task) from biomedical texts. Four
types of pharmacological substances were defined:
drug (generic drug names), brand (branded drug
names), group (drug group names) and drug-n (ac-
tive substances not approved for human use). The
results of the participating systems were evaluated
according to four evaluation criteria: strict (which
demands exact boundary and entity type match-
ing), exact (which only demans exact boundary
matching), partial (which only demands partial
boundary matching) and type (which demands
partial boundary and entity type matching).

A total of 6 teams participated in the DrugNER
subtask. The reader can find the full ranking in-
formation in (Segura Bedmar et al., 2013). In
general, the results on the DDI-DrugBank dataset
were much better than those obtained on the DDI-
MedLine dataset. While DDI-DrugBank texts fo-
cus on the description of drugs and their interac-
tions, the main topic of DDI-MedLine texts would
not necessarily be on DDIs. Coupled with this, it
is not always trivial to distinguish between sub-
stances that should be classified as pharmacolog-
ical substances and those that should not. This
is due to the ambiguity of some pharmacological
terms. For example, insulin is a hormone pro-
duced by the pancreas, but can also be synthe-
sized in the laboratory and used as drug to treat
insulin-dependent diabetes mellitus. The partici-
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pating systems should be able to determine if the
text is describing a substance originated within the
organism or, on the contrary, it describes a process
in which the substance is used for a specific pur-
pose and thus should be identified as pharmaco-
logical substance.

The best results were achieved by the WBI team
(Rocktéschel et al., 2013) with a CRF algorithm.
The system employed a domain-independent fea-
ture set along with features generated from the
output of ChemSpot (Rocktischel et al., 2012), an
existing chemical named entity recognition tool,
as well as a collection of domain-specific re-
sources. Its model was trained on the training
dataset as well as on entities of the test dataset
for the DDI task. In the detection subtask (which
only requires exact boundary matching), this sys-
tem achieved an F1 of 90% on the DDI-DrugBank
dataset and an F1 of 78% on DDI-MedLine. As
expected, the results of the classification subtask
(strict evaluation) were worse, showing an F1 of
87.8% on DDI-DrugBank and 58.1% on DDI-
MedLine.

3 Method

This section describes the datasets and settings
used in our experiments.

3.1 Datasets

The major contribution of DDIExtraction was to
provide a benchmark corpus, the DDI corpus.
The corpus was manually annotated with a total
of 18,502 pharmacological substances and 5,028
DDIs. It consists of two different datasets: DDI-
DrugBank (792 texts selected from the DrugBank
database) and DDI-MedLine (233 MedLine ab-
stracts on the subject of DDIs). A detailed descrip-
tion of the DDI corpus can be found in (Herrero-
Zazo et al., 2013).

The corpus was split in order to build the
datasets for the training and evaluation of the dif-
ferent participating systems. Approximately 77%
of the DDI corpus documents were randomly se-
lected for the training dataset and the remaining
was used for the test dataset. The training dataset
is the same for both subtasks since it contains en-
tity and DDI annotations. The test dataset for
the DrugNER task was formed by discarding doc-
uments which contained DDI annotations. En-
tity annotations were removed from this dataset
to be used by participants. The remaining docu-



ments (that is, those containing some interactions)
were used to create the test dataset for the DDI
task. Since entity annotations are not removed
from these documents, the test dataset for the DDI
task can also be used as additional training data for
the DrugNER task.

Tablel shows the basic statistics on the training
and test datasets for the DrugNER task.

3.2 Experiments

As it stated in the previous section, most success-
ful approaches for drug name recognition have
used machine learning algorithms such as CRFs
trained with linguistic features (tokens, lemmas or
POS tags, among others) and semantic features
from domain resources such as ontologies or dic-
tionaries. Encouraged by the good results of the
CRF-based methods, we propose a system based
on CRF and also explore word embedding fea-
tures provided by the Word2vec tool. In particular,
we used a python binding® to CRFsuite (Okazaki,
2007).

CRF performs the NER task as a classification
task on each token, determining whether it is an
entity or not. To represent the class of each to-
ken, we used the BIO tagging scheme. According
to this scheme, each token is tagged as either be-
ginning entity token (B), inside entity token (I) or
outside token (O). For the detection subtask (ex-
act criterion), we only considered three classes:
B-ENTITY, I-ENTITY and O. However, since we
had to classify four different types (drug, brand,
group and drug-n), we used nine different classes
for the classification task.

As a first stage, we developed a baseline sys-
tem using a CRF algorithm in which each token is
represented with the following features:

e The context window of three tokens to its
right and to its left in the sentence. The con-
text window also includes the current token.

POS tags and lemmas in the context window
are also considered.

An orthography feature which can take the
following values: upperlnitial (the token be-
gins with an uppercase letter and the rest are
lowercase), allCaps (all its letters are upper-
case), lowerCase (all its letters are lowercase)
and mixedCaps (the token contains any mix-
ture of upper and lowercase letters).

8http://python-crfsuite.readthedocs.org/en/latest/
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e A feature representing the type of token:
word, number, symbol or punctuation.

As one of our goals is to study the contribution
of DINTO in the task, in a second stage, we also
considered a binary feature that indicated whether
the current token was found in the DINTO ontol-
ogy.

Figure 1 shows a pipeline of GATE components
used to process the texts and to obtain the feature
set used to train the CRF model. There are five
main processing modules: sentence splitter, tok-
enizer, POS tagger, morphological analyzer and
the Gate onto root gazetteer, which links text to
the DINTO ontology. The ontology is processed
to produce a flexible gazetteer taking into account
alternative morphological forms of the instances
of the ontology.

The main hypothesis of this work is that the in-
corporating of word embeddings as features into a
CRF model could help to recognize unseen or very
rare drug mentions in the training set. Thus, we
train word embeddings using the Word2vec tool.
Word2vec only requires a large corpus of sen-
tences as input dataset in order to generate word
vectors by training a NN language model. The NN
model is able to learn from the different contexts
in which a word appears and then to compute its
representation as a vector. In this study, Word2Vec
tool was trained on two different corpora. As first
option, we used the latest wikipedia dump”, which
contains more than 3 billion words. Then, we used
the Word2Vec model trained on Wikipedia to ob-
tain the word vectors for all tokens in the DDI cor-
pus.

Based on distributional hypothesis (Harris,
1954), similar words will have similar vectors be-
cause they occur in similar contexts. The word
vector for the current token was considered as a
new feature into an our CRF system. We tried
with different dimensions of vectors (50, 100 and
200) (see Table 3). It should be noted that these
word representations could be very valuable input,
not only for named entity recognition, but also in
many other NLP tasks (POS tagging, word name
disambiguation, lexical simplification, etc).

Another important advantage of the Word2vec
tool is that contains a utility to compute word clus-
ters using a k-means clustering algorithm. Thus,
we also used word cluster as a new feature to rep-
resent the current token in our CRF-based system.

*http://dumps.wikimedia.org/



Training + Test for DDI task | Test for DrugNER task
< | documents 730 54
& | sentences 6648 145
¥ | drug 9715 180
& | group 3832 65
= | brand 1770 53
2 | drugn 124 5
g | documents 175 58
3 | sentences 1627 520
T [ drug 1574 71
= | group 234 90
2 | brand 36 6
/R | drug.n 520 115

Table 1: Statistics on the training and test dataset for the DrugNER task.
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(implemented with the
word2vec tool)
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R
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Figure 1: System architecture and pipelines for CRF machine learning-based Drug NER.
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Word clusters represent words at a higher level ab-
straction that may help to recognize even those
drug mentions that are not observed in the train-
ing set. We performed experiments for different
values of k in the k-means (50, 150 and 500). All
experiments are summarized in Table 2.

4 Evaluation

Table 3 shows the results for the different set-
tings studied for the detection subtask (exact crite-
rion) and for the classification subtask (strict crite-
rion). The scores correspond to the micro-average
values, which were calculated with regarding all
classes (B- and I-) of each corresponding subtask.

The following subsections present and discuss
the results for each dataset: DDI-DrugBank and
DDI-MedLine.

4.1 Results on DDI-DrugBank
4.1.1 Detection subtask

The use of a lexicon feature from DINTO achieved
an increase in both precision and recall (and con-
sequently, an improvement of 1% in F1 score).

The results suggest that Word2vec features
can potentially lead to improved detection per-
formance. In general, the use of word clus-
ters showed a significant increase in recall values
(from 84% to 89%), and hence a gain of 3% in
F1. However, word clusters did not seem signif-
icantly to alter overall precision values. As ex-
pected, word cluster is an effective feature to im-
prove the coverage of the system.

Our initial hypothesis was that Word2vec fea-
tures trained on MedLine should provide better
results because these texts are focused on the
biomedical domain, however the results demon-
strated that word clusters from Wikipedia, in gen-
eral, had a better performance than those from
MedLine. This may be due to the size of the
Wikipedia corpus is significantly larger than the
release of Medline used in this work. Therefore,
Wikipedia is the best option to train our Word2 Vec
models in our current settings, though Wikipedia
cover a vast array of subjects, not necessarily re-
lated to the biomedical domain.

Word cluster features trained on MedLine al-
ways seem to provide the same scores, that is,
there is no difference between to use a clus-
ter which was calculated using k=50, k=150 or
k=500. Word clusters trained on Wikipedia pro-
duced better results when the number of clusters
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is larger. More experiments are necessary to con-
firm or deny these results. In general, word clus-
ters performed better than word vectors.

To sum up, the results suggest that word clusters
are the most influential features for the detection
subtask, achieving an improvement of 4% in recall
over the baseline system.

4.1.2 Classification subtask

Regarding the results of the classification task on
the DDI-DrugBank dataset, the use of Word2vec
features did not necessarily give better results than
the baseline system and might even be worse (see
Table 3). The best F1 (75%) was obtained by
five different strategies (see Table 3): baseline,
word clusters (k=50) on Wikipedia, word clus-
ters (k=50, k=500) on MedLine and word vectors
(d=50) on MedLine.

Similarly, DINTO did not overcome the base-
line system yet. Therefore, while the experiments
on the detection task show that the use of DINTO
and Word2vec features could help to improve the
performance, this positive effect does not seem to
be present for the classification task.

4.2 Results on DDI-MedLine
4.2.1 Detection subtask

The use of DINTO led to an increase in precision,
achieving 10% over the baseline system, and an
increase of 3% in recall. Thus, Fl-score went up
from 61% to 66%.

Word cluster features generated from Wikipedia
provided a significant improvement of 6% in re-
call, but with worse precision than the combina-
tion of baseline with DINTO. As was the case
on DDI-DrugBank, lower improvements were ob-
tained by the word clusters trained on MedLine.
Moreover, word clusters seemed to perform better
than word vectors. On the other hand, word vec-
tors trained on MedLine showed precision values
very close to those obtained by the baseline system
with DINTO.

4.2.2 Classification subtask

Contrary to the evaluation on the DDI-DrugBank
dataset, the use of DINTO increased the base-
line precision by 8% and the baseline recall by
3%. Therefore, DINTO provide valuable informa-
tion for the classification of drug entities in scien-
tific texts. This may be due to DINTO incorpo-
rates information from several resources such as
the ChEBI ontology, the DrugBank database and



the ATC classification system'? (a drug classifica-
tion system developed by WHO). Word clusters
(k=500) achieved the best performance by increas-
ing the recall (by 7%) and thus the F1 accordingly.
However, word vectors do not seem to provide an
improvement over the results achieved by DINTO.

Although our system does not provide better
performance than the WBI system, the use of the
DINTO feature show a significant improvement by
9% in precision over the WBI system, but with a
sharp reduction in recall.

5 Conclusion

The main contribution of this paper is the incor-
poration of word embedding features into a CRF-
based NER system for drug entities. In addition,
we explore if the DINTO ontology can be a valu-
able resource for the task.

The results suggest that DINTO can lead to im-
prove the performance over the detection subtask.
Therefore, we can confirm that the DINTO ontol-
ogy is a useful resource for the drug name recogni-
tion task from scientific texts. For this reason, we
intend to continue studying on how to better use
DINTO in order to increase the performance of the
task. Moreover, we believe that the inclusion of
additional semantic features from biomedical re-
sources (such as DrugBank, CheBI, ChemIDPlus,
the ATC classification system, Drugs@FD !, etc)
are essential in order to improve performance for
the classification subtask.

As we foresaw in the initial hypothesis,
Word2vec features achieve a marked improvement
in recall for the detection task. Word cluster fea-
tures trained on Wikipedia seem to provide the
most satisfactory results. More experiments are
necessary to determine the optimum number of
clusters for the task. Although in general our re-
sults are not better than those achieved by the top
system in the DrugNER task, we strongly believe
the use of word embeddings for this task is worth
further research.

Our experiments conducted on the DDI corpus
allow us to compare our approach with the par-
ticipating systems of the DrugNER task in the
SemEval-2013 DDIExtraction challenge. In gen-
eral, our system does not perform better than the
top system (WBI) in this shared task. However,
the results for the classification task on the DDI-

Ohttp://www.whocc.no/ate/structure_and_principles/
Yhttp://www.accessdata.fda.gov/scripts/cder/drugsatfda/
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MedLine dataset show that DINTO could be a
valuable resource to improve precision.

The WBI system provided an F1 of 87.8% on
DDI-DrugBank (which is very close to the IAA
(0.91)), but performed worse on the DDI-MedLine
dataset (showing an F1 of 58.1%). It stands to rea-
son that this system could have already reached the
maximum threshold results for the DDI-DrugBank
dataset. On the other hand, there is much room for
improvement on the DDI-MedLine dataset. The
results reported in (Liu et al., 2015) are better
than those provided by the WBI system. However,
since the authors only provide results for the whole
DDI corpus, we cannot know the performance of
their system on each dataset and whether their sys-
tem is able to overcome the WBI system on the
DDI-MedLine dataset.

In future work, we will first train the Word2vec
tool using a large set of MedLine abstracts. It
could provide better results than those obtained
from the Word2vec model trained on Wikipedia.
Since MedLine is a biomedical literature database,
Medline abstracts should provide better word rep-
resentations for drug entities than those obtained
from Wikipedia articles. We also plan to extend
the experimentation to the ChemdNER corpus in
order to compare our approach to the participating
systems of the BioCreative [V CHEMDNER task.
We also intend to carry out an error analysis to de-
termine the main causes for wrong detection and
classification.

Furthermore, we will still explore additional
word embedding features for the drugNER task.
In particular, we plan to generate vectors to rep-
resent, not only words, but also phrases because
many biomedical concepts are multiwords. Addi-
tionally, the parameters of CRF algorithm will be
fine-tuned through cross-validation on the training
set for improving the classification results on the
test set.

Finally, we would like to investigate the con-
tribution of word embeddings for the relation ex-
traction task, especially, the extraction of DDIs.
We will also explore how the DINTO ontology
can be used to improve the DDI extraction task.
We strongly believe that this ontology could be a
valuable resource for the research on Biomedical
Information Extraction and would like to encour-
age the research community to use the DINTO on-
tology, which is available for research purposes at
https://code.google.com/p/dinto/.
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System

Feature set

CRF

CRFD
CRPFclusterK50Wiki
CRFclusterK50MedLine
CRFclusterK150Wiki
CRFclusterK150MedLine
CRFclusterK500Wiki
CRFclusterK50MedLine
CRFvec50Wiki
CRFvec50MedLine
CRFvecl00Wiki
CRFvec100MedLine
CRFvec200Wiki
CRFvec200MedLine

standard feature set

baseline + DINTO feature

CRFD’s features + word cluster from Word2Vec trained with k=50 on Wikipedia
CRFD’s features + word cluster from Word2Vec trained with k=50 on MedLine

CRFD’s features + word cluster from Word2Vec trained with k=150 on Wikipedia
CRFD’s features + word cluster from Word2Vec trained with k=150 on MedLine
CRFD’s features + word cluster from Word2Vec trained with k=500 on Wikipedia
CRFD’s features + word cluster from Word2Vec trained with k=500 on MedLine
CRFD’s features + word vectors of dimension 50 from Word2Vec trained on Wikipedia
CRFD’s features + word vectors of dimension 50 from Word2Vec trained on MedLine
CRFD’s features + word vectors of dimension 100 from Word2Vec trained on Wikipedia
CRFD’s features + word vectors of dimension 100 from Word2Vec trained on MedLine
CRFD’s features + word vectors of dimension 200 from Word2Vec trained on Wikipedia
CRFD’s features + word vectors of dimension 200 from Word2Vec trained on MedLine

Table 2: List of experiments.

Exact criterion Strict criterion

P R| F1 P R| F1

WBI 0.90 | 0.89 | 0.90 | 0.88 | 0.87 | 0.87
CRF 0.70 | 0.85 | 0.77 | 0.69 | 0.82 | 0.75
CRFD 0.72 1 0.84 | 0.77 | 0.68 | 0.81 | 0.74
CRF clusterK50Wiki 0.72 1 0.89 | 0.79 | 0.68 | 0.83 | 0.75

" CRFclusterK150Wiki 0.73 1 0.89 | 0.80 | 0.68 | 0.83 | 0.74
5 | CRFclusterKS00Wiki 0.72 1 0.89 | 0.80 | 0.68 | 0.83 | 0.74
% | CRFclusterK50MedLine | 0.72 [ 0.86 | 0.79 | 0.69 | 0.82 | 0.75
£ | CRFclusterK150MedLine | 0.72 | 0.86 | 0.79 | 0.68 | 0.82 | 0.74
E CRFclusterK500MedLine | 0.72 | 0.86 | 0.79 | 0.69 | 0.82 | 0.75
g CRFvec50Wiki 0.71 |1 0.84 | 0.77 | 0.69 | 0.81 | 0.74
CRFvecl00Wiki 0.72 1 0.84 | 0.77 | 0.69 | 0.81 | 0.74
CRFvec200Wiki 0.72 1 0.85 |1 0.78 | 0.68 | 0.80 | 0.74
CRFvec50MedLine 0.72 1 0.84 | 0.78 | 0.69 | 0.82 | 0.75
CRFvecl00MedLine 0.73 1 0.86 | 0.79 | 0.68 | 0.81 | 0.74
CRFvec200MedLine 0.73 1 0.85 | 0.79 | 0.68 | 0.80 | 0.74
WBI 0.81 | 0.74 | 0.77 | 0.61 | 0.56 | 0.58
CRF 0.69 | 0.54 | 0.61 | 0.62 | 0.44 | 0.52
CRFD 0.79 | 0.57 | 0.66 | 0.70 | 0.47 | 0.56
CRF clusterK50Wiki 0.74 | 0.63 | 0.68 | 0.66 | 0.48 | 0.56
CRFclusterK150Wiki 0.73 | 0.63 | 0.68 | 0.67 | 0.49 | 0.57

E CRFclusterK500Wiki 0.72 | 0.64 | 0.68 | 0.65 | 0.51 | 0.57
é CRFclusterK50MedLine | 0.74 | 0.59 | 0.66 | 0.64 | 0.46 | 0.53
§ CRFclusterK150MedLine | 0.75 | 0.63 | 0.68 | 0.66 | 0.49 | 0.56
E' CRFclusterK500MedLine | 0.73 | 0.62 | 0.67 | 0.67 | 0.49 | 0.57
& | CRFvec50Wiki 0.77 | 0.57 | 0.66 | 0.68 | 0.47 | 0.56
CRFvecl100Wiki 0.78 | 0.56 | 0.66 | 0.66 | 0.46 | 0.54
CRFvec200Wiki 0.77 | 0.57 | 0.66 | 0.68 | 0.46 | 0.55
CRFvec50MedLine 0.79 | 0.57 | 0.66 | 0.66 | 0.45 | 0.54
CRFvecl00MedLine 0.81 | 0.57 | 0.66 | 0.69 | 0.46 | 0.55
CRFvec200MedLine 0.78 | 0.57 | 0.66 | 0.68 | 0.46 | 0.55

Table 3: Experimental results.
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