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Abstract

Meaning conveyance is bottlenecked by
the linguistic conventions shared among
interlocutors. One possibility to convey
non-conventionalized meaning is to em-
ploy known expressions in such a way that
the intended meaning can be abduced from
them. This, in turn, can give rise to ambi-
guity. We investigate this process with a
focus on its use for semantic coordination
and show it to be conducive to fast agree-
ment on novel meaning under a mutual ex-
pectation to exploit semantic structure. We
argue this to be a motivation for the cross-
linguistic pervasiveness of systematic am-
biguity.

1 Introduction

Semantic heterogeneity is an inherent aspect of
human communication. Nevertheless, success-
ful communication relies on mutual intelligibil-
ity. That is, an expression’s meaning has to be as-
sumed to be jointly known, or at least be abducible
provided other information. Here, the latter com-
munication strategy is addressed. In particular, we
focus on the repurposing of an expression to con-
vey novel meaning, derived from the expression’s
conventional meaning and the context it appears
in.! As a consequence, single forms may come to
be associated with multiple meanings.

We argue such repurposing motivated ambigu-
ity to be driven by two main forces: the predictive
power of semantic structure and potential for con-
founding. On the one hand, using the same expres-
sion to convey similar yet non-identical meanings
in different contexts allows for the interpretation

In the following, context is construed broadly as any
source of information beyond an expression’s literal mean-
ing. It is understood as a condensed prior of the association
strength with which an interpretation comes to mind (Franke,
2009).
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of one in terms of the other, modulo context. On
the other hand, if the contexts these meanings ap-
pear in are either too similar, or too dissimilar, the
intended interpretation may fail, leading to subop-
timal communication.

Ambiguity in cooperative communication has
been argued to be motivated by effort and cost
minimization. Santana (2014) shows that ambi-
guity is evolutionarily advantageous when disam-
biguating contexts are available and cost is asso-
ciated with a larger vocabulary size. In a similar
spirit, Piantadosi et al. (2012) argue ambiguity to
enable a reuse of forms that are easy to produce
and comprehend (for example, shorter, phonotac-
tically unmarked, expressions). Thus, according
to this view, ambiguity’s advantage mainly lies in
effort reduction in production while safeguarding
comprehension through contextual information.

More generally, the argument is that if context is
(at least partially) shared, informative, and cheap,
less information needs to be carried by signals.
Following Piantadosi et al. this can readily be
illustrated by comparing the amount of informa-
tion required to disambiguate a meaning ¢t € T
with and without context K using Shannon en-
tropy (Shannon, 1948). If K is informative about
T, then H(T) > H(T|K). That is, context can
alleviate the need for distinct forms for distinct
meanings. However, this ignores the subtler is-
sue of how the information of K relates to that
of T'. In structured domains not all elements are
equal: similarity can introduce noise to mean-
ing discriminability or, conversely, emphasize the
contrast between dissimilar meanings. Crucially,
there are many alternatives ranging from ineffi-
cient to efficient contextual exploitation. In turn,
this depends on the meaning-form associations
of a language and their relation to the contexts
they appear in. Other things being equal, an
ambiguous language that colexicalizes contextu-
ally distinguishable meanings will be more effi-
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cient, compression-wise, than one that colexical-
izes contextually indistinguishable ones.

The tacit prediction of past research is that lan-
guages maximize the utility of ambiguity when
colexicalizing meanings that appear in contexts
as distinct as necessary to avoid misunderstand-
ing. Thus, if compression and ease of transmis-
sion are ambiguity’s main driving force, it is not
expected for related meanings to be expressed by
a single form, as this could make them more prone
to be confused. In the following, we argue that
ambiguity also has motivations at the semantics-
pragmatics interface, where interlocutors may ex-
ploit semantic structure to coordinate on novel
meaning.

2 Regularities in semantic structure and
their relation to context

Assessing the relation between novel meaning,
conventional meaning, and the contexts they ap-
pear in, presents many difficulties. We begin by
considering already conventionalized ambiguous
expressions as a proxy for form coexistence of dis-
tinct meanings. We do this to support two claims.
First, that (at least) some cases of ambiguity in
natural language are motivated by semantic relat-
edness (Apresjan, 1974; Nunberg, 1979; Puste-
jovsky, 1995).2 Second, that context and seman-
tic relatedness interact. An in-depth discussion of
either claim is outside the scope of the present con-
tribution. However, albeit often presupposed and
of certain intuitive appeal, it should be stressed
that neither is innocuous.

Semantic relatedness. First evidence for se-
mantic regularities in ambiguity comes from the
wide range of genealogically unrelated languages
that colexify the same meaning pairs. For instance,
the CLiCS corpus (List et al., 2014) lists 297 En-
glish noun pairs whose meaning is expressed by
a single form in at least 10 languages from three
or more language families. For example, 106 lan-
guages from 40 families express ‘flesh’ and ‘meat’
by a single form. Such cross-linguistic regulari-
ties are not expected should an expression’s form
be ambiguity’s main driving force. On a more
general level, a number of systematic meaning al-
ternations, such as producer-product, as in Rem-
brandt, or material-artifact, as in glass, have also

2A more differentiated classification of ambiguity is not

required for the present purpose. Thus, we purposefully avoid
referring to polysemy, metonomy, or metaphor explicitly.
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been attested across multiple languages (Srini-
vasan and Rabagliati, 2015), although with no-
tably less cross-linguistic coverage.

Furthermore, a body of experimental evidence
suggests that the processing of forms that conflate
related meanings is distinct from that of unrelated
ones (for an overview see Simpson (1984) and Ed-
dington and Tokowicz (2015)). More specifically,
semantic relatedness is generally judged as facil-
itatory for semantic access in comparison to both
monosemous and homonymous expressions.

The experiments of Rodd et al. (2012) on the
acquisition of novel meaning through the use of
forms already associated with conventional mean-
ing are of particular relevance for the claim that
reuse of semantic material is conducive to agree-
ment on non-conventionalized meaning. Their re-
sults suggest that non-conventionalized meanings
are recalled better if they are related to the con-
ventional meaning of a known expression. Sim-
ilarly, in lexical decision tasks, subjects exhib-
ited increased performance for novel ambiguous
words with related meanings but not for unrelated
ones. More generally, Srinivasan and Snedeker
(2011) show that four-year olds generalize seman-
tic alternations of ambiguous expressions to novel
monosemous forms that lexicalize a meaning par-
ticipating in such alternations. In other words, hu-
man interlocutors appear to expect semantic rela-
tions to be exploited and generalize known alter-
nations.

Context, disambiguation, and prediction.
Contextual information not only has a facilitatory
effect on the interpretation of ambiguous expres-
sions (Frazier and Rayner, 1990; Klepousniotou
and Baum, 2007). It can furthermore be employed
to predict the number of distinct meanings a
form has (Hoffman et al., 2013). In particular,
distributional semantic models have been shown
to provide well-performing context-dependent
vectorial representations for the meanings of am-
biguous expressions by clustering an expression’s
co-occurrence counts. Using such methodology,
Reisinger and Mooney (2010) found a negative
correlation between the variance of cluster sim-
ilarities and that of human sense annotations:
The more similar co-occurrence clusters of an
ambiguous form were, the less human raters
agreed on their distinct meanings, suggesting
an inverse relationship between distributional
similarity and semantic discriminability. Boleda



et al. (2012) show how distributional models can
be used to predict regular meaning alternations
for novel words. Here, the similarity of a form’s
co-occurrence vector to the centroid of two alter-
nation’s representations is used to assess whether
the form participates in the alternation. As above,
this research provides some support to the idea
that natural languages do not solely maximize
contextual contrast between meanings but that
there are regularities between semantic relations
and context, reflected in regular colexification
patterns.

3 Improving coordination

Taken together, the preceding survey provides in-
direct evidence for the claim that semantic relat-
edness plays a role for (at least some types of)
ambiguity, as well as for an interplay between in-
terpretation, context, and meaning-multiplicity. In
the following, we show that a joint expectation to
exploit semantic relations and context leads to im-
proved coordination on novel meaning.

We assume the information provided by con-
text to be shared and noiseless, i.e. interlocutors
have access to the same contextual information.’
Furthermore, we restrict our analysis to coopera-
tive communication. As a consequence, context is
taken to be informative about a speaker’s intended
meaning. The set of meanings compatible with
a context k;, the support of the meaning distribu-
tion conditioned on k;, is denoted by K*, K} =
{t|p(t|k;) > 0}. As we are interested in novel use
of conventionalized expressions, a fixed message
inventory M is considered, where p(t|m, k;) = 1
for exactly one m € M provided that t € K.
That is, the messages in M are already conven-
tionally associated with some meanings, guaran-
teeing communicative success for those meanings.
I(m) is the conventional interpretation of a mes-
sage, I(m) = arg max, p(tjm, K).*

So far, when communicating about conven-
tional meaning, interlocutors need not make use
of contextual information. Things are different,
however, when conveying novel meaning. In such
cases, the best a receiver can do is to guess in-

3This assumption is made mainly for expository conve-
nience. As shown by Juba et al. (2011), ambiguity also pro-
vides an efficient solution for uncertainty about the degree to
which the contextual prior of interlocutors matches.

“The conventional interpretation of a message is, gener-
ally speaking, independent of a particular context k; as long
as I(m) € K.
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tended ¢ based on the contextual information pro-
vided; p(t|m, k;) o< p(t|k;) if I(m) ¢ K. That
is, if a message’s conventional meaning is ruled
out, the best a literal receiver can do is to inter-
pret based on the contextually conditioned mean-
ing distribution. We refer to this communicative
strategy as .9].

Languages that enable strategies akin to S; are
at the stage at which Santana (2014) and Pianta-
dosi et al. (2012) predict ambiguity to be advan-
tageous: whenever 7' can be partitioned to allow
a message to be associated with two contextually
disjoint meanings. However, this sidesteps the ad
hoc interpretation of such ‘surprise’ messages in
a conventionally incongruent context, as well as
the regularities surveyed above. Particularly, it’s
unclear how meaning can come to be associated
with disjoint contexts and whether there are ways
to improve this process beyond best guesses.

Under the assumption that there are regularities
interlocutors may exploit them to coordinate. The
conventional meaning associated with a message
can be repurposed in such a way that, in unison
with context, a receiver can abduce the intended
non-conventional meaning. In accord with the pre-
ceding discussion, we assume two factors to play
a key role in this process: the relation between the
conventionalized and non-conventionalized mean-
ings, as well the information context provides
about them. The former indicates the ease to pre-
dict or derive one meaning from the other. The lat-
ter is a factor for potential equivocation. We call
this strategy Sp,.

The above can be summarized as follows:
Given a context k;, a meaning to convey ¢, and
amessage m, if I(m) € K and I(m) = t, then

p(tlm, k;) =1
If I(m) ¢ K7, then

ey

p(tim, ki) oc wip(t|R(I(m),t)) +wap(tlk:) (2)

where R(z,y) stands for a relation between x and
y, and w; and ws are weights, wi + wy 1.
The weights control how much import relations
have for the non-conventionalized interpretation
of a message based on its conventional meaning.
S; corresponds to wy; = 0 and S;,, to wy > 0. Cru-
cially, for a message m, and all meanings ¢ and ¢/
compatible with context k, if p(¢|R(I(m),t)) >
p(t'|R(I(m),t")) > p(t|k), then coordination on
t improves for any value of w, greater than zero.



Thus, S,, can aid coordination on non-
conventionalized meaning if (i) there is a relation
that appropriately captures the structure of 7', and
(i) interlocutors have a mutual expectation to ex-
ploit this relation in both production and compre-
hension. Put differently, S, has an advantage over
S; in cases where the relation is more informa-
tive about the intended meaning than the mean-
ing distribution conditioned on the context. In all
other cases performance depends on the value of
the weights and the information provided by con-
text.

3.1 Coordination without prior expectation
of a particular relation

Prima facie, the above hinges not only on a mu-
tual expectation to use semantic relations to guide
coordination, but on the mutual expectation to ex-
ploit a particular relation. To see whether coordi-
nation improves without this assumption we com-
pare the performance of S; and S, in adaptive
two-player Lewisian signaling games.

A Lewisian signaling game (Lewis, 1969),
(T, M, A, p*,ug,up), consists of a set of mean-
ings T, signals M, and acts A. p* is a proba-
bility distribution over 7', and ug and up are the
sender’s and receiver’s respective utility functions.
In cooperative signaling sender and receiver have
a joint payoff. Thus, a single utility function «
can be considered, u: T x M x A — R. Mean-
ings are assumed to be equiprobable, p*(t) = ﬁ,
and for each ¢; there is exactly one a; such that
u(t;,m,a;) = 1if i = j. Otherwise, the players
receive no payoff. Note as well that a receiver’s
correct interpretation of a sender’s intended mean-
ing is the sole factor influencing the game’s out-
come. In this sense, meaning-signal associations
are arbitrary.

A game iteration begins with a stochastically
determined meaning for the sender to convey. To
this end, the sender sends a signal. Upon recep-
tion of the signal, the receiver selects an act, which
in turn determines the players’ payoff. Before in-
teracting, sender and receiver have no, or only a
partial set of conventions to draw from. Thus, the
players’ task is to establish a meaning-signal map-
ping that maximizes their expected utility, i.e. to
establish an efficient communication system. To
this end, we adopt a common choice for learn-
ing in signaling games; Roth-Erev reinforcement
learning (RL) (Roth and Erev, 1995). RL pro-
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vides a good fit to the behavior of human subjects
in comparable tasks (Roth and Erev, 1995; Erev
and Roth, 1998; Bruner et al., 2014), is a well-
understood learning mechanism, and has conve-
nient convergence properties (Beggs, 2005; Cat-
teeuw and Manderick, 2014). Furthermore, given
its simplicity, RL presupposes little sophistication
from players.

As with other reinforcement learning algo-
rithms, successful actions in a state of affairs in-
crease a player’s propensity for the same action
given the same state. More specifically, a player’s
actions are informed by her accumulated rewards.
These are values associated with state-action pairs
and represent the success of an action in a given
state. In signaling games, states are meanings for
the sender and signals for the receiver, and their
respective actions are signals and acts. Given a
state p, a player will select an action ¢ with a prob-
ability proportional to its accumulated rewards,

p(qlp) %. After a game iteration,

the accumulated rewards of selected state-action
pairs are updated by the players’ payoff. As a con-
sequence, a successful meaning-signal-act triple
(ti,mj, a)) makes a sender more propense to send
m; given ; in future interactions. Analogously,
the receiver is more propense to select a; given
m;. In this way, players (ideally) learn to commu-
nicate efficiently through iterated interactions.

We expand this setup by adding structure to the
set of meanings, a set of contexts, as well as two
types of players corresponding to S; and S;,,. To
add structure, 1" is modeled as a n-dimensional
grid of natural numbers, 7" = [o, r]". The relations
in T" are given by the Manhattan distance between
two elements; R(x,y) = Y .~ |x; — y;|. For ex-
ample, R((1,1),(3,4)) = 5. These choices were
made to accommodate the simple learning and se-
lection mechanisms of the players. In particular .S;
receivers proceed by best guesses and only learn
through positive feedback. If T were large or con-
tinuous it could take a prohibitive amount of time
until the first successful action is performed.

The set of contexts K corresponds to all convex
subsets of T'. That is, if = and y are elements of a
context, then either R(x,y) = 1 or there is a third
element z in the context such that R(z,y) = 1 and
R(y, z) = 1. Consequently, the information about
meaning conveyed by a context can be represented
by the points it contains. The more elements a con-
text has, the less informative it is. Two extremes



in K are its singletons and the set containing all
points in 7. The former are contexts where only
one meaning is probable and thusly jointly known
to be the intended meaning, p(t|k) = 1if t € k
and |k| = 1. The latter context is not informative
about meaning, p(t|k) = p(t) if T = k. More
generally, this means that p(t|k) = ﬁ ift € k
and 0 otherwise.

In contrast to classic signaling games, a game
iteration now beings with both a meaning to con-
vey, as well as with the determination of a context.
While the meaning is a sender’s private informa-
tion, the context is public and shared across all
players. In line with the preceding discussion the
only restriction we impose is that sampled ¢ has to
be an element of sampled k. That is, context never
rules out a speaker’s intended meaning.

In what follows, we compare the performance
of two types of players; S; and .S;,,. Both receivers
act in accordance to (1) to interpret convention-
alized meaning, and (2) for non-conventionalized
meaning. They differ in that .S; is given by w; =
0, whereas S,, corresponds to any value of w;
greater than zero. The same applies to S; and .S,,
senders, mutatis mutandis.

3.2 Simulations

We compare the iterations needed for S; and S,
players to achieve reasonably efficient communi-
cation by means of signals already associated with
conventional meaning. Their task is to employ
these signals to convey novel meaning. Crucially,
players employing S, begin the game with no
bias towards a particular relation to exploit. This
means that, while exploration for .S; involves only
coordinating on new form-meaning associations,
S players additionally explore different potential
relations.

On the one hand, we expect that once a suit-
able relation, i.e. one that holds pairwise between
all conventionalized and novel meanings, is found,
coordination is faster. On the other hand, con-
sidering multiple relations, or settling on a rela-
tion that does not hold between all pairs, may lead
to suboptimal communication and prolong explo-
ration. (Recall that the degree to which relations
affect players’ choices is controlled by the value
of wy.) Furthermore, it is clear that once a new
convention for the (now) ambiguous signals is es-
tablished, high values of w; will interfere with —
rather than aid — coordination.
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Figure 1: Exemplary instance of an iteration in
[1,4)2. Shapes correspond to meanings. Dia-
monds are conventionalized and squares are not.
Filled out squares are meanings for which play-
ers need to establish conventions. The dashed line
encloses contextually probable points in this par-
ticular iteration.

We compare the effect of different weight val-
ues in 100 games of 2000 iterations per value. As
mentioned above, w; = 0 corresponds to S;. For
Sy we consider values for wy € [.8,.98]. The
set of meanings T is [1, 4], yielding 16 potential
meanings to choose from, as well as seven distinct
relations. Each game is initialized with three ran-
domly sampled meanings taken to be convention-
alized and three novel meanings to coordinate on.

The players’ performance depends on how
many iterations they require to reach an expected
utility greater than 0.66 for the latter set of mean-
ings. This corresponds to a better performance
than the best suboptimal pooling equilibrium in a
signaling game with three meanings, signals, and
acts (ignoring the added listener-uncertainty about
which three meanings could possibly be intended
in the present setup). Reaching this threshold in-
dicates substantial learning as this task is complex
for unsophisticated agents. In principle, any el-
ement in 7' could be the intended meaning and
learning with RL is slow until at least some suc-
cessful interactions have transpired. In the worst
case, the probability of guessing the right meaning
for a receiver using Sj is % Figure 1 illustrates an
exemplary instance of a single game iteration.

To make the exploitation of relations viable, we
ensure that at least one value of the Manhattan dis-
tance holds between conventionalized and novel
elements. For instance, if points (1, 3),(2,1) and
(4,3) are conventionalized, and (3, 3), (3,2) and



wWo mean SD Cohen’s d
095 792 294 3.34
090 1238 286 1.34
0.85 1474 289 0.26
0.80 1569 324 -0.08

Table 1: Iterations needed to reach an expected
utility greater than 0.66. Cohen’s d indicates the
difference to the mean of we = 1; 1533 (SD =
140).

wWo mean SD  Cohen’sd
0.95 0.70 0.047 0.49
090 0.64 0.054 1.88
0.85 0.60 0.051 2.69
0.80 0.56 0.061 3.19

Table 2: Expected utility after 2000 iterations. Co-
hen’s d indicates the difference to the mean of
we = 1;0.73 (SD = 0.04).

(2,4) are novel meanings to convey, then a dis-
tance of 3 allows for their pairwise association. In
general, multiple relations hold between conven-
tionalized and novel elements, allowing for more
than one relation to be considered. As a conse-
quence, an advantage of .S,,, over 5] is not certain.

Results & evaluation. In the following, two re-
sults are reported. First, the mean of the itera-
tions both types of signalers needed to reach an
expected utility greater than 0.66. Second, their
mean expected utility after 2000 iterations, indi-
cating long term effects of different w;-values.

Detailed excerpts of the results, showcasing
general trends and the effect size between values
of wy = 1(5)) and wo < 1 (5,,), are shown in Ta-
bles 1 and 2, for iterations required and expected
utility after 2000 iterations, respectively. Figures
2 and 3 depict plots for all weight values. In the
former figure points below the horizontal uninter-
rupted line show values for which S,,, performed
better than S;. In the latter figure points above this
line indicate better performance.

Generally, our expectations were met. The
higher w1, the less efficient a communicative sys-
tem was after a game’s conclusion. However, even
with respect to expected utility after 2000 itera-
tions, the mean of S, players was higher than
that of .S; players for low w; -values. For instance,
players with w; = 0.02 reached a mean of 0.76
(SD = 0.023), which is significantly higher than
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Figure 2: Mean of iterations needed to reach an
expected utility greater than 0.66 with 95% confi-
dence intervals. The horizontal uninterrupted line
indicates the mean of wy = 1; 1533 [1505, 1561].

0.75

r

0.70
0.65

S

0.60

e
)T,HW

0.80

Mean of expected utility at 2000 iterations

0.55

0.82 0.84 0.86 0.88 0.90

Wy

0.92 0.94 0.96 0.98

Figure 3: Mean of expected utility after 2000 it-
erations with 95% confidence intervals. The hor-
izontal uninterrupted line indicates the mean of
wg = 1;0.73 [0.717,0.735].

that of w; = 0 (Cohen’s d = —1.11). Crucially,
these results show that prior agreement on a single
relation is not necessary to uphold the advantage
of exploiting semantic relations over best guesses.
This is evinced by the range of values that reached
the imposed threshold in significantly less itera-
tions than .5;.

In this setup low values of w; performed best
with respect to learning speed, as well as longer
term communicative efficiency. This adds to our
previous assumption in that low yet positively val-
ued wy improves early exploration without inter-
fering with exploitation. Put differently, a slight
bias towards relation exploitation is useful both in
short and long term, whereas a major reliance on



this mechanism can have negative effects in the
long run, at least when multiple relations are vi-
able candidates.

Overall, even when multiple relations are avail-
able, S,, can nevertheless be conducive to fast
agreement on novel meaning. This, however,
comes at a cost when weights are static. After im-
proving the search for novel meaning, high values
of w; interfere with further interactions. This is
due to the present setup allowing for the “right” re-
lation to hold between more than one of the mean-
ings to convey. As a consequence, .S; generally
fared better over time.

4 General discussion

To recapitulate, we argued that repurposing ex-
pressions in novel contexts improves coordination
when interlocutors exploit semantic regularities.
Moreover, our simulations show this advantage to
hold without prior agreement on a particular as
well. The generality of the latter result, however,
is constrained by the setup considered. On the one
hand, only a small set of meanings and relations
was used. Furthermore, simplifying assumptions
were made to model context and its relation to
meaning. On the other hand, human agents are
able to learn and reason about their interlocutors in
more sophisticated ways than our agents, and draw
from more information sources. Thus, while its re-
lation to natural language structure and reasoning
is tentative, on a more general level the present
analysis applies to systems where coder and en-
coder share an expectation to repurpose informa-
tion through regular means.

Returning to natural language, our argument
partially resembles Grice’s modified Occam’s ra-
zor: “senses should not be multiplied beyond ne-
cessity” (Grice, 1978). In a nutshell, Grice argues
that, should it be predictable that a speaker would
use a particular expression to convey something
in a given context, then there is no need to as-
sume this to be a separate meaning of the expres-
sion. Without dwelling on the issue whether the
meanings considered here constitute novel mean-
ings in their own right — as done so far — the cru-
cial point is that exploiting relations enables pre-
dictable interpretation-multiplicity. In this sense,
players using .S,,, can be seen as learning to pre-
dict and convey meaning based on the structure of
semantic space.

Having a way to predict interpretations, in
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turn, was shown to lead to faster coordination on
non-conventionalized meaning. Furthermore, the
longer term comparisons between S; and S, sug-
gest that, should the information provided by rela-
tions be insufficient to tease apart meaning alter-
nations throughout varying contexts, interlocutors
perform best when their choices are only weakly
influenced by them. This aligns well with re-
cent research on learning through generalization
(O’Connor, forthcoming). O’Connor’s results add
strength to the claim that generalization speeds up
learning whilst paying a cost in precision. Com-
municatively efficient meaning alternations need
to be frequent, and the participating meanings dis-
criminable by the contexts they appear in. In the
long run, when potential for confounding exists
and high precision is required, interlocutors fare
better when coining a new signal for a novel mean-
ing or by drawing from additional information to
reduce communicative uncertainty.

We see two main venues for future research.
First, there is a need for further analysis involving
differently sized and structured meaning spaces,
different relations, the addition of noise to the in-
formation provided by context, as well as an anal-
ysis of population dynamics in larger agent com-
munities.> Second, our general proposal requires
empirical validation. Here, one possibility is to
test its performance on corpus data to predict un-
witnessed meaning alternations in a similar spirit
to the work of Reisinger and Mooney (2010) and
Boleda et al. (2012) surveyed above.

A further issue left undiscussed is that of the
cost of ambiguity. In the current proposal cost
implicitly came into play as equivocation poten-
tial when multiple relations are available for ex-
ploitation. Other sources of cost may relate to
lexical storage, as assumed by Santana (2014), or
processing cost. In particular the latter requires
a more detailed treatment. Past experiments sug-
gest ambiguous words with related meanings to
be processed faster than monosemous or homony-
mous words (Rodd et al., 2002; Klepousniotou
and Baum, 2007), as well as finer-grained dis-
tinctions within their class (Klepousniotou et al.,
2008). These aspects relate to issues of lexical
storage, lexical representation and lexical access,

5As noted by an anonymous reviewer, the simplicity of
Lewisian signaling games may have to be abandoned to fully
explore and expand this proposal. A potentially suitable al-
ternative is given by the language game paradigm as laid out
in, for example, Steels (2012).



neither of which were addressed here.

Our overall proposal is based on relations of
unspecified nature. To conclude this discussion,
we submit that one possibility to model seman-
tic relatedness in a more concrete but framework-
independent way is to equate it to transforma-
tional complexity between representations, given
by the Kolmogorov complexity of one representa-
tion conditioned on the other (Chater and Hahn,
1997). Informally, K (z|y) is a complexity mea-
sure given by the shortest program that takes y as
input and returns x. Kolmogorov complexity is
well-understood and widely applicable. Chiefly,
it is independent of the representations required
for particular applications and provides a good fit
for human similarity judgments (see Hahn et al.
(2003) for details). Lastly, it addresses the prob-
lems of metric-based similarity relations raised by
Tversky (1977), who shows that neither triangle
inequality nor symmetry need hold for human sim-
ilarity judgments. The same is true of transfor-
mational complexity, as it is compatible with both
symmetric and asymmetric relations.

5 Conclusion

Conveying and comprehending novel meaning re-
lies on the interlocutors’ mutual reasoning about
what is contextually relevant. Among others,
meaning can be expressed by composing conven-
tionalized forms, coining new expressions, or by
exploiting semantic relations by scaffolding on
conventionalized meaning. The present investi-
gation focused on the latter as a communication
strategy for fast coordination. We showed that, if
a specific relation is mutually expected to be ex-
ploited, this mechanism provides a robust solution
for reliable and fast coordination. However, when
multiple relations are likely candidates, repurpos-
ing comes at a risk of lower precision. As a con-
sequence, its advantage depends on the relations
available, their regularity across semantic space,
previous successful exploitation thereof, and the
contexts in which the relevant meanings appear in.

Our analysis draws its main motivation from
the cross-linguistic pervasiveness of ambiguous
expressions that lexicalize related meanings. In
a sense, it is not surprising that certain meaning
clusters exhibit systematic alternations. Without
risk for confounding, they provide a safe and effi-
cient expansion of a language’s expressive range.
In other words, relation exploitation provides a
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partial solution to lexical bottlenecks. Learning
and predicting alternations is not only important
for our understanding of human communication,
but also to overcome analogous bottlenecks faced
by computational systems (Navigli, 2009).

More generally, we argued that natural language
ambiguity is motivated by more than form-based
considerations. When members of a linguistic
community are biased towards regularities, repur-
posing conventionalized material provides an effi-
cient means to convey novel meaning.
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