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Abstract

The categorical compositional distributional
model of Coecke et al. (2010) provides a lin-
guistically motivated procedure for computing
the meaning of a sentence as a function of the
distributional meaning of the words therein.
The theoretical framework allows for reason-
ing about compositional aspects of language
and offers structural ways of studying the un-
derlying relationships. While the model so
far has been applied on the level of syntac-
tic structures, a sentence can bring extra in-
formation conveyed in utterances via intona-
tional means. In the current paper we ex-
tend the framework in order to accommodate
this additional information, using Frobenius
algebraic structures canonically induced over
the basis of finite-dimensional vector spaces.
We detail the theory, provide truth-theoretic
and distributional semantics for meanings of
intonationally-marked utterances, and present
justifications and extensive examples.

1 Introduction

Distributional models of meaning, in which a word
is represented as a high dimensional vector of con-
textual statistics in a metric space, provide a con-
vincing framework for lexical semantics that has
been found useful in a number of natural language
processing tasks (Schütze, 1998; Landauer and Du-
mais, 1997; Manning et al., 2008). Despite their
success at the word level, the underlying hypothe-
sis of these approaches does not naturally scale up
to phrases or sentences due to the infinite capacity
of language to produce new meanings from a finite
vocabulary and a set of grammar rules.

Coecke et al. (2010) provide a solution to the
problem by noticing that the category of finite-
dimensional vector spaces and linear maps is ho-
momorphic to a grammar expressed as a pregroup
(Lambek, 2008); specifically, both share compact
closed structure (Kelly, 1972). In practice this
means that any grammatical derivation based on the
type-logical identities of the individual words in a
sentence can be translated to a (multi-)linear map
which, when applied on the vectorial representations
of the words therein, results in a sentence vector.
The grammatical type of a word determines the vec-
tor space in which this word lives. Taking nouns to
be simple vectors in a basic vector space N , an ad-
jective, for example, becomes a linear mapN → N ,
or equivalently, a matrix in N ⊗ N ; furthermore, a
transitive verb is a bi-linear mapN⊗N → S, living
in N ⊗ S ⊗N . Composition takes the form of ten-
sor contraction, which is a generalization of matrix
multiplication to higher order tensors.

In general, the model resembles a quantitative
linear-algebraic version of the formal semantics ap-
proach (Montague, 1970), in the sense that syntax
strictly guides the semantic composition. Interest-
ingly, syntax seems to co-exist with a distinct struc-
tural layer, the purpose of which is to optimize the
message that an utterance conveys. This aspect is
known as information structure, and at the phrase
or sentence level is expressed as a distinction be-
tween a theme part (information that is generally
agreed to be known to both of the interlocutors) and
a rheme part—information that is new for the ad-
dressee. The exact relation that holds between syn-
tactical and information structure is an interesting
and controversial topic. For example, a theme does
not have to comprise a valid grammatical constituent
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in the strict sense of the term, as it is evident in the
following example:

(1) Q: Do you need anything?
A: [I would like]T [some tea]R

The distinction between a theme and rheme is de-
noted by the presence of a boundary that can be
expressed by phonological, morphological or even
syntactical means, depending on the language. Fur-
thermore, the presence of such boundaries suggest
the existence of a distinct composition operator re-
lated to information structure and different than the
one that would be normally used for syntax.

In this paper we extend the categorical model of
Coecke et al. (2010) in a way to accommodate an
information structure layer of composition. In or-
der to achieve this, we model intonational bound-
aries (the devices for defining information struc-
ture in English) by using the multiplication part of
the Frobenius algebra that is canonically induced
over any vector space with fixed basis, in order to
endow equal contribution of the theme and rheme
on the vectorial representation of a sentence, thus
putting emphasis on the appropriate part. The re-
sulting model can be seen as containing two types of
composition operators: the usual tensor contraction
for accommodating syntax, and the Frobenius multi-
plication for accommodating information structure.
We discuss the implications in terms of the resulting
vectorial representations for phrases and sentences,
and provide connections with existing models from
the current literature of compositional distributional
semantics. Various examples demonstrate the poten-
tial of the model.

2 Categorical compositional distributional
semantics

The categorical model of Coecke et al. (2010) as-
signs semantic representations to phrases and sen-
tences of language, based on their grammatical
structure and the semantics of individual words. In
its most abstract form, this model can be expressed
in terms of a structure-preserving passage between
grammar and meaning:

F : Grammar→ Meaning

Given a sequence of words w1 · · ·wn, its categor-
ical meaning is defined to be:

Jw1 · · ·wnK := F(α)(Jw1K, · · · , JwnK) (1)

Here, α is derived from the grammatical relation-
ships amongst the words in the sequence. This no-
tion can be formalised in a coherent way, if both the
grammar and the meaning are expressed in a high
level logical structure, referred to by compact clo-
sure. Lambek’s pregroup algebras (Lambek, 2008)
and vector space distributional semantics are exam-
ples of compact closed structures. Stipulating that
the grammar is expressed in a pregroup algebra and
that the meaning of words are vectors constructed
using the distributional hypothesis (Harris, 1968),
Eq. 1 gets a more concrete form:1

−−−−−−→w1 · · ·wn := F(α)(−→w 1 ⊗ · · · ⊗ −→wn) (2)

In the proceeding subsections we make these no-
tions precise and provide intuitions and examples.

2.1 Pregroup grammars
A pregroup grammar is a pregroup algebra, linked to
the vocabulary of a language via the notion of a type
dictionary. We define these structures below.

A pregroup algebra is a partially ordered monoid
where each element has a left and a right adjoint. It
is denoted by a tuple (P,≤, ·, 1, (−)l, (−)r), where
(P,≤) is a partially ordered set, and · is a monoid
multiplication with 1 as its unit. For each element
p ∈ P there are pl, pr ∈ P , referred to by p’s left
and right adjoints, satisfying the following four in-
equalities:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

When a pregroup algebra is generated over a base
set B, it is denoted by P (B). Given the vocabu-
lary of a language Σ and a set of its basic gram-
matical types B, a pregroup grammar is a relation
D ⊆ Σ×P (B) that assigns grammatical types from
the pregroup algebra P (B) to the words of the vo-
cabulary Σ. Such a pregroup grammar is denoted by
P (B,Σ).

As an example, suppose B = {n, s}, where n
stands for a well-formed noun phrase and s for a
well-formed sentence. Suppose further that Σ =
{Mary, snores, likes,musicals}. The pregroup dic-
tionary consists of the following set:

{
(Mary, n), (snores, nrs), (likes, nrsnl), (musicals, n)

}

1One can translate the types from other type logics, such as
the syntactic calculus and CCG to pregroups and carry on with
the same calculations. There is also recent work that directly
assigns vector semantics to CCG (Lewis and Steedman, 2013).
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One says that a sequence of words w1w2 · · ·wn

for wi ∈ Σ forms a grammatical sentence, according
to a pregroup grammar P (B,Σ), whenever we have:

t1 · t2 · . . . · tn ≤ s
for (wi, ti) ∈ D. The above inequality is often re-
ferred to by grammatical reduction. For example,
‘Mary likes musicals’ is a grammatical sentence,
since we have the following reduction:

n · nr · s · nl · n ≤ 1 · s · 1 = s (3)

2.2 Distributional models
The only piece of information provided by a deriva-
tion like the one in Eq. 3 is whether the sentence
in question is well-formed or not. Furthermore, we
are unable to distinguish between words of the same
type. Distributional models of meaning provide a
solution to these problems by following the distri-
butional hypothesis (Harris, 1968), which states that
semantically similar words must appear in similar
contexts. Hence, the semantic representation of a
word can be given in terms of its distributional be-
haviour in a large corpus of text. In its simplest form,
a word vector is comprised by numbers that show
how many times the target word co-occurs with ev-
ery other word in a selected subset of the vocabulary
(usually the most frequent content-bearing words).
This allows the representation of words as points in
some high dimensional space, where semantic relat-
edness can be measured (usually by cosine distance)
and evaluated. For a concise introduction to dis-
tributional models, see (Turney and Pantel, 2010).
We will now proceed to show how the quantitative
approach of distributional models can be combined
with the compositional model of Section 2.1 into a
unified account.

2.3 Categorical generalization
The theory of categories generalises algebraic con-
structions to categorical ones (Mac Lane, 1971).
Herein, instead of sets, functions or relations, one
has objects A,B and morphisms f : A → B. The
generalised binary operation over these is referred
to by a product. Posing different conditions on the
objects, morphisms, or the product results in differ-
ent kinds of categories. A monoidal category has a
product with a unit I , that is A ⊗ I ∼= I ⊗ A ∼= A.
These categories are generalisations of partially or-
dered monoids: elements of the partial order be-

come objects of the category and the partial order-
ings between them become morphisms. Further-
more, compact closed categories are generalisations
of pregroups, where the adjunction inequalities cor-
respond to the following ε and η morphisms:

εr : A⊗Ar → I ηr : I → Ar ⊗A
εl : Al ⊗A→ I ηl : I → A⊗Al

These maps needs to adhere to four axioms, re-
ferred to as yanking equations, which ensure that all
relevant diagrams commute.

The importance of the theory of categories for this
paper is that finite-dimensional vector spaces and
linear maps also form a compact closed category, de-
noted by FVect. Herein, objects are vector spaces,
morphisms are linear maps, and the product is the
tensor product between vector spaces whose unit is
the scalar field of the vector spaces, in our case, real
numbers (R). In the presence of a fixed basis (which
is the case we are interested in) the adjoints become
identity, that is we have V r ∼= V l ∼= V , for a vector
space V spanned by {−→v i}i. As a result the four ε
and η maps reduce to two:

ε : V ⊗ V → R η : R→ V ⊗ V
The ε map takes the inner product of two vectors

and the η map produces a diagonal matrix. The fact
that both pregroup algebras and vector spaces form
compact closed categories allows us to develop a
structure preserving passage between the two math-
ematical structures, thus enabling us to bridge the
grammatical structure to distributional semantics.

2.4 From grammar to distributions
A structure preserving passage from grammatical
structures (in the form of a pregroup grammar) to
semantics (in the form of vector spaces) is given by
a map denoted as follows:

F : P (Σ,B)→ FVect (4)

This is a strongly monoidal passage, which means
that it has the following compositional properties for
juxtapositions of types in a pregroup grammar:

F(1) = R (5)
F(p · q) = F(p)⊗F(q) (6)

F(pr) = F(pl) = F(p) (7)
F(p ≤ q) = F(p)→ F(q) (8)
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On the level of basic types we assign a vector
space to each basic type, that is, F(n) = N and
F(s) = S. As a result of the above assignments,
words that have simple types, for example noun
phrases, will become vectors in vector space N .
Words that are functions of one argument become
matrices, e.g. intransitive verbs with type nr · s
are elements of N ⊗ S; and words that are func-
tions of two arguments, e.g. transitive verbs with
type nr · s · nl, become tensors of order 3, living
in N ⊗ S ⊗N for the specific case. The grammati-
cal reductions are translated to compositions of mor-
phisms, and in particular ε-maps.

−−−−−−−−→
Mary snores = F(n · nr · s)(−−−→Mary⊗ snores)

= (εrN ⊗ 1S)(
−−−→
Mary⊗ snores)

A simple computation shows that the above is
equal to

−−−→
Mary × snores; similarly, for the meaning

of a transitive sentence we obtain:

−−−−−−−−−−−−−→
Mary likes musicals =

−−−→
Mary× likes×−−−−−→musicals

Note that tensor contraction (in spaces with fixed
basis) is associative, so there is no need to keep track
of brackets in the above. The situation is similar to
pregroups, where the monoid multiplication is again
associative.

2.5 Frobenius algebras
Compact closed categories on their own do not have
much structure: there is a binary operation and the
maps ε and η. The expressive power of these cat-
egories can be increased using Frobenius algebras.
We define these below.

Given a compact closed category C, an object
X ∈ C has a Frobenius structure on it if there ex-
ist the following morphisms:

∆: X → X ⊗X ι : X → I

µ : X ⊗X → X ζ : I → X

These have to satisfy certain conditions, the most
important to us being the Frobenius condition:

(µ⊗ 1X) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X)

Vector spaces with fixed basis do have such struc-
tures over them, generally referred to by copying and
merging. For −→v ∈ V,w ∈ V ⊗ V , we have that

∆(−→v ) ∈ V ⊗ V is a diagonal matrix whose diag-
onal elements are weights of −→v , and µ(w) ∈ V is
a vector consisting only of the diagonal elements of
w.

These structures have been used in previous work
to encode lower dimensional verb matrices into
higher dimensional tensors (Kartsaklis et al., 2012;
Kartsaklis et al., 2014) and to pass the information
around sentences with relative clauses by copying
and merging (Sadrzadeh et al., 2013; Sadrzadeh et
al., 2014).

2.6 Graphical calculus
In the presence of higher order tensor product
spaces, calculations can become quite complex. The
formalism of compact closed categories and Frobe-
nius structures is complete with regard to a graphical
calculus (Selinger, 2011) that simplifies the compu-
tations to a great extend. We briefly overview the
main components of this language.

Objects are depicted by lines and morphisms by
boxes. Tensor products between objects and mor-
phisms are given by juxtaposition of their diagrams,
while composition of morphisms amounts to con-
necting outputs to inputs. Examples are as follows:

A

A f

B

A

A C f

A B f g B

B D h

C

The ε maps are depicted by cups, η maps by caps,
and yanking by their composition and straightening
of the strings. For instance:

Al

A Al
A

Al A Al A=

The diagrams corresponding to the Frobenius
morphisms are as follows:

(µ, ζ) = (∆, ι) =

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture of
a Frobenius computation can be reduced to a normal
form (so-called a “spider”) that only depends on the
number of input and output strings of the nodes:
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. . . · · ·
=

. . . · · ·

Elements within the objects (for the case of vector
spaces, vectors) are depicted by morphisms from the
unit. These are shown by triangles with a number of
strings emanating from them. The number of strings
denotes the order of the tensor; for instance, the dia-
grams for−→v ∈ V, v′ ∈ V ⊗W , and v′′ ∈ V ⊗W⊗Z
are as follows:

V V W V W Z

3 Information structure and intonation

The term information structure collectively refers to
techniques that aim to enhance the communication
between two interlocutors in order to optimize the
conveyed message for the benefit of the addressee
(Chafe, 1976). One such technique, for example, is
to emphasize a particular part of the utterance that
is important for the listener by changing the spoken
pitch:

(2) Q: What does Mary like?
A: Mary likes MUSICALS

The emphasis imposes a specific information
structure to the uttered sentence, essentially splitting
it in two parts: The part in upper-case above is what
Steedman (2000) calls rheme—the information that
the speaker wishes to make common ground for the
listener; the rest of the sentence, i.e. what the lis-
tener already knows, is called theme. The question
in (2) puts the listener in a specific attentional state,
in the context of which an answer such as:

(3) A: #MARY likes musicals

will be infelicitous, that is, not compatible with that
state.

The distinction between theme (or topic) and
rheme (or comment) has great significance from an
information structure point view, since it defines a
generic shape for the sentence that directly reflects
the attentional needs of the addressee. A further di-
mension that can be found in both rheme and theme
distinguishes between the focus, that is, the specific

word that receives most of the intonational empha-
sis, and the background, which consists of the rest of
the words in the specific text segment. Note that in
contrast to rheme/theme distinction, focus and back-
ground seem to operate at the lexical level.2

Furthermore, we should point out that although
the examples we use in this paper are mainly based
on question/answer dialogues, this is not by any
means the only case where the presence of a specific
information structure can be useful. For example,
consider the dialogue:

(4) –I think Mary likes jazz.
–Mary likes MUSICALS.

Information structure can be expressed in differ-
ent ways that may vary from language to language.
In English, for example, the means for defining in-
formation structure is intonation: variations of spo-
ken pitch, the purpose of which is to emphasize parts
of the utterance that might be important for the con-
veyed message, as we saw above in our examples.
However, in other languages such as Japanese or
Cantonese, the intonational boundaries can be also
specifically marked by morphological devices, e.g.
special particles (Féry and Krifka, 2008). Finally,
the position of a text segment in a sentence can also
be an indication of its information-structural role. In
English, for example, themes tend to appear at the
beginning of a clause.

In this paper we concentrate on the sentence-level
distinction between rheme and theme.

4 Grammar and intonation

The presence of a distinct layer of information struc-
ture that seems to co-exist with the grammatical
structure of a sentence, poses the interesting ques-
tion regarding the exact relationship that holds be-
tween those different structural aspects. For exam-
ple, although the text segment “Mary likes” forms
a perfectly acceptable theme, most linguists would
agree that it does not also comprise a valid grammat-
ical constituent. In spite of this claim, though, it is
interesting to note that a number of categorial gram-
mars, including Combinatory Categorial Grammar
(CCG) (Steedman, 2001), treat text segments like
the above as possible syntactic constituents. Con-
sider the following ditransitive sentence:

2Actually many authors use the term focus as a synonym for
rheme; the definitions we give in this paper follow (Steedman,
2000).
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(5) John gave Mary a flower

In CCG, this sentence has a number of different
syntactic derivations, two of them are the following:

John gave Mary a flower

NP ((S\NP)/NP)/NP NP NP
>

(S\NP)/NP
>

S\NP
<

S

(9)

John gave Mary a flower

NP ((S\NP)/NP)/NP NP NP
>T >

S/(S\NP) (S\NP)/NP
>B

S/NP
>

S

(10)

Note that (9) proceeds by first composing the
part corresponding to the verb phrase (“gave Mary
a flower”); later, in the final step, the verb phrase is
composed with the subject ‘John’. The situation is
reversed for (10), where the use of type-raising and
composition rules of CCG allow the construction of
the fragment “John gave Mary” as valid grammat-
ical text constituent, which is later combined with
the direct object of the sentence (‘a flower’). Steed-
man (2000) argues that this form of different syntac-
tic derivations that one can get even for very sim-
ple sentences when using CCG (some times referred
to with the somewhat belittling term “spurious read-
ings”), actually serve to reflect variations in infor-
mation structure. Each one of the above deriva-
tions subsumes a different intonational pattern, dis-
tinguishing the rheme from the theme when the sen-
tence is used for answering different questions: (9)
answers to “Who gave Mary a flower?”, whereas
(10) to “What did John give to Mary?”.

In other words, the claim here is that (a) surface
structure and information structure coincide; and (b)
the role of information structure is to provide a par-
ticular interpretation of the surface structure. Let us
define this important idea in a precise way, since it
will be the cornerstone of the model presented in this
paper:

Postulate 4.1 Intonational boundaries in an utter-
ance determine the intended syntactic structure.

In our grammatical formalism, pregroup gram-
mars, variations in a grammatical derivation similar
to above are only implicitly assumed, since the or-
der of composition remains unspecified. This fact is

apparent in the pregroup derivation of the example
sentence, where both (9) and (10) are subsumed into
the following reduction diagram:

John gave Mary a flower
n nrs nlnl n n (11)

Furthermore, it is directly reflected in our seman-
tic space through the functorial passage, via the fact
that tensor contraction is associative:

−−→
John× (gave×−−−→Mary×−−−→flower) = (12)

(
−−→
John× gave×−−−→Mary)×−−−→flower

Eq. 12 constitutes a natural manifestation of the
principle of combinatory transparency (Steedman,
2001): no matter in what order the various text con-
stituents are combined, the semantic representation
assigned to the sentence is always the same; in other
words, information structure should not affect se-
mantic conditions. Note, however, that even in the
strict setting of formal semantics this is not always
the case. Consider the behaviour of the following
sentence under the presence of the focus-sensitive
particle ‘only’:

(6) a. John only gave Mary A FLOWER

b. John only gave MARY a flower

The use of different intonational focus clearly
changes the semantic value of the sentence: (6a) is
true if the only thing that John gave to Mary was a
flower (but he might have given things to other girls
as well), while (6b) is true if the only person who
got a flower from John was Mary.

In the more relaxed and quantitative setting of a
compositional distributional model of meaning, the
idea of having vectorial representations of words and
sentences that reflect intonational patterns seems
even more legitimate. This concept is aligned with
the distributional nature of such models: given a
text corpus containing information structure anno-
tations (of any kind), we would assume that the
co-occurrence vector of a word under focus (say,−−−→
BOOK) would slightly differ from that of the vec-
tor representing the normal use of the word (

−−→
book).3

Furthermore, we would expect that, after the com-
position, this difference would be also reflected in

3In the trivial case, this would be true by the presence of
intonational markers in the immediate context of a word under
focus, as opposed to its normal use.
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the vector representing the meaning of the entire
sentence. From the next section we start working
towards imposing this behaviour on the categorical
model of Coecke et al. (2010).

5 Intonation in pregroups

Traditionally, a notational system describing intona-
tion consists of markings that indicate pitch accents
and boundaries. Using the notation of Pierrehum-
bert and Hirschberg (1990), for example, we get the
following for our example sentence:4,5

(7) [MARY]R [likes MUSICALS]T
H∗ L L+H∗ LH%

The prosody starts with a sharp pitch accent (H∗)
that puts the focus on ‘Mary’, and continues with
a rapid fall to low pitch (L boundary) that signifies
a transition from rheme to theme. Within theme
now, the focus goes to ‘musicals’ which gets the
less rapidly rising pitch L+H∗, whereas the bound-
ary LH% expresses a rising continuation that marks
the end of theme. In the case that theme precedes
the rheme, we have the following pattern:

(8) [MARY likes]T [MUSICALS]R
L+H* LH% H∗ LL%

As mentioned earlier, this paper mainly addresses
the rheme/theme aspect of information structure,
which is directly related to boundary markings. We
start by representing an intonational boundary using
a special token ., for which the following relations
hold:

theme . rheme or rheme / theme (13)

Naturally, . is equivalent to LH%, while / cor-
responds to L in the Pierrehumbert and Hirschberg
(1990) notation. It is very important to emphasize
at this point that the above introduced tokens are far
from an ad-hoc means for achieving a goal. Recall
from our discussion in Section 3 that while in En-
glish the means of imposing information structure is
purely phonological, this is not necessarily the case
for other languages. As a concrete case, in Buli (a
Gur language spoken in Ghana), the rheme is pre-
ceded by a focus marker, which again can be inter-
preted as an information-structural boundary since it

4Example taken from (Steedman, 2000).
5From now on we explicitly mark themes and rhemes in

our examples for clarity.

separates the theme from rheme; this is shown in the
following example (Fiedler et al., 2006):

(9) Q: What did the woman eat?
A: Ò NÒb kà túé

3sg eat (FM) beans

To formalize this mixing of syntactical and infor-
mation structure in the context of a pregroup gram-
mar, we add the two boundary markers to the vocab-
ulary and introduce two new atomic types:

Theme: θ Rheme: ρ (14)

An intonation pregroup grammar then will have
the following form:

P (Σ ∪ {., /}, {n, s, θ, ρ})
For the case of a simple transitive sentence, we

get the following boundary types, based on the fact
that now the boundary (and not the verb) becomes
the head of our sentence:

. : θr · s · ρl / : ρr · s · θl (15)

The type dictionary changes accordingly: a tran-
sitive verb such as ‘like’ will be assigned two more
types nr · θ and θ · nl depending whether it pro-
duces a left-hand theme or a right-hand theme in the
sentence; similarly, nouns will be assigned the extra
type ρ. For the two cases of Eq. 13, we obtain the
following derivations:

Mary likes . musicals

n nr θ θr s ρl ρ (16)

Mary / likes musicals
ρ ρr s θl θ nl n (17)

After transferring this to FVect via our functor
in Eq. 4, and extending its action on atomic types
by defining F(θ) = Θ and F(ρ) = P , we get the
obvious semantic counterpart:

Mary likes . musicals

N Nr Θ ΘrSP l P

(18)

There are some important observations based on
the derivation in (18) above. Firstly, our simple sen-
tence now is given in terms of a theme and a rheme,
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as required, both of which contribute equally to its
construction. Additionally, note that our verb is not
any more a function of two arguments (of a subject
and an object) as in the canonical case, but of a sin-
gle noun: it takes as input a subject in order to return
a theme. Hence, in contrast to a typical case of a
transitive verb, the semantic representation of which
requires a tensor of order 3, in this case the corre-
sponding linear map takes the form N → Θ, which
can be canonically represented by a matrix N ⊗Θ.

The question of how to properly model intona-
tion in compositional distributional semantics is ev-
idently epitomized in choosing an appropriate form
for the tensor of the . token in (18). In order to pro-
vide an answer to this, we first need to examine the
concepts of rheme and theme from a semantic point
of view.

6 A semantic truth-theoretic argument

We use as an example the following simple case:

(10) Q: Who does John like?
A: [John likes]T [MARY]R

From an extensional point of view, the semantic
value of the theme can be seen as a set of alternative
options (Rooth, 1992), each one of which may be
used as a response to the given question:

JJohn (might) likeK = {x|John (might) like x}

As a consequence, the role of the rheme now is
to restrict the set of alternatives to a specific choice
(Steedman, 2000). Note that this action of restrict-
ing the available choices is responsibility of the into-
national boundary; indeed, the boundary can be seen
as a binary operator that performs the merging of the
theme with the rheme, restricting the alternatives set
of the theme to a specific response:

(11) [John likes]T . [MARY]R :=
.([John likes]T,[MARY]R)

This is what Diagram (18) shows; in our multi-
linear setting, the boundary becomes a bi-linear map
Θ⊗P → S that performs the required “restriction”.
Now, what is the most appropriate way to model this
operation in the extensional setting discussed above?
Note that by simply checking if rheme is contained
in the alternatives set is not sufficient; this would
return true or false as an answer to a question that
expects a person. A more appropriate choice then

is to model the boundary by using set intersection:
we take the meaning of rheme to be a singleton that
contains the answer, and the meaning of the sentence
to be the intersection of rheme with theme:

{Mary} ∩ {x|John (might) like x} (19)

The answer will be again the singleton {Mary} if
Mary is included in the set of people who John po-
tentially likes, and the empty set otherwise. Thus
we have achieved our goal: the theme set has
been restricted according to the provided response.
We generalize this argument to an arbitrary pair of
rheme and theme (with Stheme denoting theme’s cor-
responding alternative set) as follows:

.(rheme, theme) = {rheme} ∩ Stheme{
rheme if rheme ∈ Stheme
∅ o.w.

(20)

6.1 From sets to vector spaces
We transfer the above reasoning to vector spaces, by
encoding sets and relations in vectorial forms. The
vectorial form of a set is a vector space (let it be
N = {ni}i) whose basis vectors are the elements
of the set. For the sake of demonstration (and this
will become clear as the section reads on), we define
our sentence space to be a one dimensional space
where the origin denotes falsity and everything else
denotes truth. One can take this to be a dimension
in any vector space; here we take it to be in N and
denote its basis vector with a basis vector ofN . Fur-
thermore, a binary relation such as likes(x, y) can
be represented as an adjacency matrix W in which
Wij is 1 if the pair (i, j) is contained in the relation
and 0 otherwise. Note that this matrix is isomorphic
to a tensor in N ⊗ S ⊗N , since our sentence space
is one-dimensional.

Let us apply categorical composition to compute
a vectorial representation for the theme of our sen-
tence, “John likes”.

(εrN ⊗ 1S)


−→n3 ⊗


∑

ij

Wij
−→ni ⊗−→nj




 =

∑

ij

Wij〈−→n3|−→ni〉−→nj =
∑

ij

Wijδ3i
−→nj =

∑

j

W3j
−→nj (21)

Hence the vectorial representation of “John likes”
becomes indeed the subset of all individuals who
might be liked by the person denoted by vector −→n3,
and can be seen as the semantic value of the theme
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of our sentence. The next step is to compose this
theme with the rheme ‘Mary’; in other words, we
must decide an appropriate type of composition for
our intonational boundary. Let us first try again stan-
dard categorical composition:

(1S ⊗ εlN )




∑

j

W3j
−→nj


⊗−→n1


 =

∑

j

W3j〈nj |n1〉 =
∑

j

W3jδj1 = W31 (22)

Note that this corresponds to a set membership
test; the result is 1 if Mary is included in the set of
alternative responses and 0 otherwise. However, as
noted before, in information structure terms a more
appropriate operation would be to take the intersec-
tion of the singleton {Mary} with the set of alterna-
tives. Interestingly, set intersection now corresponds
to element-wise vector multiplication (in this work
denoted by symbol �) and the vector space equiva-
lent of Eq. 19 becomes:

∑

j

W3j
−→nj


�−→n1 =

{ −→n1 if W31 = 1−→
0 o.w.

(23)

The result is now ‘Mary’, if Mary is included in
the set of valid answers, and the zero vector other-
wise. The fact that the meaning of our sentence be-
comes an element of the noun space demonstrates
clearly that, in information structure terms, there is
a necessity for a shared vector space between sen-
tences and nouns (or noun phrases)—a direct con-
sequence of the fact that now the meaning of a sen-
tence is mainly focused on a specific noun or noun
phrase therein. Furthermore, since a sentence is now
expressed as a merging of a theme and a rheme, it is
also required that Θ = S = P (and equal to what
we took to be N in the preceding). In the next sec-
tion we encode the above reasoning in the abstract
form of compact closed categories and then present
an instantiation in vector spaces.

7 Intonation in compact closed categories
with Frobenius structure

The point with regard to shared spaces is accom-
plished by the following types assignment:

F(x) = W ∀x ∈ {n, s, θ, ρ} (24)

As a consequence of the above, the vector spaces
assigned to transitive verbs are computed as follows:

F(nr · θ) = F(θ · nl) = W ⊗W
Furthermore, boundaries are assigned to the fol-

lowing vector space:

F(θr · s · ρl) = F(ρr · s · θl) = W ⊗W ⊗W

We have now arrived at a central point of this pa-
per. As the semantic representation of a boundary,
we assign the following morphism:

(1W ⊗ µW ⊗ 1W ) ◦ (ηW ⊗ ηW ) (25)

Note that the above is indeed an element in W ⊗
W ⊗W :

., / : I ∼= I ⊗ I ηW⊗ηW−−−−−→W ⊗W ⊗W ⊗W (26)
1W⊗µW⊗1W−−−−−−−−→W ⊗W ⊗W

The reasoning behind our assignment will be-
come clear in a moment. For now, we proceed to
a formal definition:

Definition 7.1 The meaning vector of a sentence ex-
pressed in information structure terms is given by:

(1W ⊗ µW ⊗ 1W ) ◦ (ηW ⊗ ηW )(
−−−→
theme⊗−−−→rheme) (27)

when theme precedes the rheme, or as follows in the
opposite case.

(1W ⊗ µW ⊗ 1W ) ◦ (ηW ⊗ ηW )(
−−−→
rheme⊗−−−→theme) (28)

These vectors are depicted as follows:

.
theme rhemetheme rheme

W W=W WWW W

(29)

/
rheme themerheme theme

W W=W WWW W

(30)

Note that the normal forms at the right-hand side
of the diagrams above are direct applications of the
Frobenius condition. Furthermore, either the theme
or rheme here might correspond to large text con-
stituents, i.e. phrases or even sentences. In this case,
the proposed framework guarantees that an appro-
priate vector will be created for them based on cate-
gorical composition.
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8 Vector space instantiation

Our justification for using the semantic form of Eq.
25 for the boundary comes from the fact that it pro-
duces normal forms as below:

µ(
−−−→
theme⊗−−−→rheme) µ(

−−−→
rheme⊗−−−→theme) (31)

This is exactly how element-wise vector multipli-
cation is defined from a categorical perspective:

−→v1 −→v2

µ(−→v1 ⊗−→v2) = −→v1 �−→v2 = V V
(32)

As a result, the linear algebraic instantiations of
Definition 7.1 become as follows:

−−−→
rheme�−−−→theme

−−−→
theme�−−−→rheme

We stress again the fact that rheme and theme can
have complex structures, and their vector meanings
will reflect this strutter. For simple transitive sen-
tences6 of the form “subject verb . object” or “sub-
ject / verb object”, we get linear algebraic meanings
as follows:

(
−−→
subj× verb)� −→obj

−−→
subj� (verb× −→obj)

As an example of a composed theme, consider:

.Mary likes musicals Mary likes musicals

=
W W W WWW W W W W W

(33)
A vector is computed for the theme ‘Mary likes’

according to the rules of the grammar, and then this
vector is element-wise multiplied with the vector of
the rheme (which, in this example, is just the distri-
butional vector of the word).

9 Interpretation

The transition from the set-theoretical framework to
high dimensional real vector spaces poses the ques-
tion what is the role of element-wise vector multi-
plication in the latter setting. Compositional mod-
els based on element-wise vector addition or mul-
tiplication are usually referred to as vector mixture

6We provide more complicated examples later in Sect. 11.

models—a term that emphasizes on the equal con-
tribution of each word to the final result, which pro-
duces a kind of average of the input vectors. Note
that this behaviour stands in direct contrast with the
categorical compositional approach, in which the
type-logical identities of words strictly depend on
their grammatical role. Due to their simplicity, vec-
tor mixture models have been studied extensively
(Mitchell and Lapata, 2008), demonstrating steady
and reasonably good performance in a number of
tasks.

The significance of the Frobenius operators for
our model (as opposed to some other form of com-
binatory mechanism) is that their concrete manifes-
tation in a vector space setting imposes exactly this
vector mixture behaviour, in the form of element-
wise vector multiplication. In other words, the result
is a combination of two compositional approaches,
vector mixtures and categorical models, in a unified
framework: while categorical composition is still
applied to compute vectorial representations for a
theme and a rheme, the two parts contribute equally
to the final result via element-wise multiplication
imposed by the Frobenius operators. This puts the
necessary focus on the appropriate part of the sen-
tence, reflecting the variation in meaning intended
by the intonational pattern.

To what extent the notion of a rheme as a means
for restricting the theme applies in FVect? Note
that, from a geometric perspective, element-wise
vector multiplication acts as a scaling of the basis;
for example, ( xy )�( 2.0

0.5 ) transforms the vector space
in which the first vector lives so that the units on
the x-axis are doubled and the units on the y-axis
are halved.7 Furthermore, a zero value in one vector
would completely eliminate the corresponding com-
ponent in the other. Hence, the concept of restricting
the theme has now taken a new quantitative form,
generalizing appropriately our initial intuition (mo-
tivated by set intersection) to the multi-dimensional,
real-valued setting of FVect.

10 Relation to previous work

How does the above derivations correlate to the
premises of the original framework, in which ‘likes’
is a transitive verb with type nr ·s ·nl? Note that an-
other application of the Frobenius condition on the
normal form of Diagram (33) will give us:

7Of course we can think of a similar scaling taking place
on the two axes of the second vector by factors x and y.
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Mary likes musicals Mary likes musicals

= W W W WW W W W W

likes

W⇒ (34)

In other words, the semantic representation of
word ‘likes’ can be still regarded as a bi-linear map,
faithfully encoded in a tensor of order 3, as required
by the framework. In this case, the tensor of ‘likes’
in FVect is seen as created by applying the mor-
phism 1W ⊗∆W on a matrix representing the verb
‘likes’. The limitation, of course, is that now the
middle wire carrying the result (the sentence vector
space) cannot be any more differentiated from the
two argument wires (the noun vector spaces), since
it is produced by copying one of them.

Note that these are the Frobenius models of Kart-
saklis et al. (2014), referred to as Copy-Subject and
Copy-Object, and originally used as a means for
faithfully encoding a verb matrix to a tensor of order
3, thus restoring the functorial relation between the
semantic representation and the grammatical type.
The present theory8 offers an alternative more com-
plete account that goes far beyond providing a con-
venient way to expand a matrix to a cube.

11 Covering complex intonational patterns

So far we examined simple cases of intonation, in
which our sentence consisted of a single rheme and
a theme. In this section we turn our attention to some
more interesting examples.

11.1 Multiple rhemes
We will first examine the case of a sentence with
more than one rhemes. Imagine the following ques-
tion/answer dialogue:

(12) Q: Who likes whom?
A: [JOHN]R [likes]T [MARY]R

In our pregroup notation, this introduces two dis-
tinct intonational boundaries in the sentence. The
derivation takes the following form:

John / likes . Mary
ρ ρr s θl θ θ θr s ρl ρ (35)

8An early account of which also appears in the doctoral
thesis of the first author (Kartsaklis, 2015).

Note that the type of ‘likes’ now becomes θ · θ;
in other words, the theme is not any more a function
(no adjoint is present in the type), but a higher or-
der atomic entity. This is directly reflected in FVect
where we get:

.John likes Mary John likes Mary

=

/

(36)

The result of this computation is now a matrix and
not a vector. Indeed, if we follow the linear algebraic
calculations we get:

(µW ⊗ µW )(
−−→
John⊗ likes⊗−−→mary) = (37)

(
−−→
John⊗−−−→Mary)� likes

The behaviour above follows the premises of the
proposed model: Since our theme is a matrix, the
calculations follow naturally, producing another ma-
trix as the rheme (the tensor product of the two indi-
vidual rhemes) that restricts as required the theme
via element-wise multiplication. Note that this
means that a sentence with one rheme would not be
comparable with a sentence with two rhemes, since
it would live in a different space. That is again not
surprising: the shape of theme defines the shape of
the sentence vector space, and only themes of the
same order can be compared to each other.

11.2 Relational words as rhemes
We have conveniently avoided to discuss until now
the case in which the rheme is not a noun phrase, but
a relational word as below:

(13) Q: How does John feel about Mary?
A: [John]T [LIKES]R [Mary]T

In pregroups we model such a situation by the fol-
lowing derivation:

John . likes / Mary
θ θr s ρl ρ ρ ρr s θl θ (38)

Note that this time the verb becomes a higher or-
der rheme, getting the type ρ ·ρ. However, when this
is transferred to FVect the symmetry of the cate-
gory and the commutativity of the Frobenius algebra
means that the vector of the sentence becomes equal
to that of Example (12). In general, problems due
to commutativity of the Frobenius operators can be
resolved if one moves to non-commutative versions
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of Frobenius algebras. Piedeleu et al. (2015) explore
such constructions in the context of language by ele-
vating the categorical model of Coecke et al. (2010)
to an open quantum system setting, in which words
are represented as mixed states.

11.3 Nested rhemes
Consider the following case:

(14) What was the book Mary wrote about?
[Mary wrote a book about]T [ART]R

The interesting point here is that the intonational
boundary is placed in a position that constitutes a
glaring violation of the grammatical structure, which
in the normal case has the following form:

Mary wrote a book about art
n nr snl n nlnnr n (39)

For cases like these we should recall that our
framework is entirely built on the assumption of
Postulate 4.1: in the context of information struc-
ture, intonational boundaries determine the intended
syntactical structure. For our case, we get:

Mary wrote a book about . art
n nr θ nl n nrn θr s ρl ρ (40)

The linear-algebraic result follows trivially as the
usual element-wise composition of the theme with
the rheme.

11.4 Rheme in the middle of sentence
In many cases a noun phrase can serve as the rheme
while being placed in the middle of the sentence,
splitting the theme into two parts:

(15) Did Mary write an essay about art?
[Mary wrote]T [A BOOK]R [about art]T

In these cases, the left-hand intonational boundary
gets the type θr · ρ · ρl, as below:

Mary wrote . a book / about art
n nr θ θr ρ ρl ρ ρr s θl θ nr n (41)

In other words, a new rheme is produced that is
used as input to the right-hand intonational bound-
ary. In Fvect we get the following interaction:

Mary wrote a book about art

(42)

By application of the spider equality (Section 2.6)
we get the normal form below, which computes a
meaning for the sentence as the element-wise multi-
plication of the vectors composed for the two themes
with the vector of the rheme:

Mary wrote a book about art

(43)

12 Conclusion and future work

The present paper provides a first account of into-
nation and information structure for the emerging
field of categorical compositional distributional se-
mantics. In a more generic level, it lays the ground-
work for a model capable of accommodating two
different types of composition over a distributional
setting. An experimental evaluation is deferred for
the future, preferably in the context of a question-
answering task. There is also a lot of interesting
work to be done on the theory side. At the cur-
rent stage, for example, the semantic value of in-
tonational boundaries is given by direct assignment
of a specific morphism—a common practice in the
past for the relevant literature. A future direction,
then, more aligned with the categorical nature of the
model, would be to embed the appropriate transla-
tion into the functorial passage itself. This challeng-
ing goal requires novel theoretical contributions that
will elevate the concept of a pregroup grammar to a
new entity equipped with Frobenius structure.

Finally, the categorical compositional model of
Piedeleu et al. (2015) is very relevant to our inter-
ests, since it can accommodate a variety of non-
commutative Frobenius algebras the linguistic intu-
ition of which in relation to this work remains to be
explored.
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