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Abstract

The implications of a specific pseudometric on
the collection of languages over a finite alpha-
bet are explored. In distinction from an ap-
proach in (Calude et al., 2009) that relates to
collections of infinite or bi-infinite sequences,
the present work is based on an adaptation
of the “Besicovitch” pseudometric introduced
by Besicovitch (1932) and elaborated in (Cat-
taneo et al., 1997) in the context of cellular
automata. Using this pseudometric to form
a metric quotient space, we study its proper-
ties and draw conclusions about the location of
certain well-understood families of languages
in the language space. We find that topolo-
gies, both on the space of formal languages
itself and upon quotient spaces derived from
pseudometrics on the language space, may of-
fer insights into the relationships, and in par-
ticular the distance, between languages over a
common alphabet.

1 Introduction

The question of distance between languages, and
comparison of possible definitions, has relatively
less consideration in the literature than other lan-
guage issues, with notable exceptions being (Bers-
tel, 1973) and (Salomaa and Soittola, 1978). This
may seem surprising, considering that the current
digital climate necessitates the measurement of like-
ness between texts and languages, for instance in
search engine entries and results. Ad hoc measures
of differences exist based upon rooted tree distances,
but these are more like attempts to incorporate the
intuitive notion of differences between words than
overall differences between languages. In Linguis-

tics, as well, there is as yet no accepted way of mea-
suring the distance between two dialects of a lan-
guage, with each employing the same vocabulary.

This paper borrows a pseudometric from cellular
automata theory to use language density and form
a topology on the set of languages (consisting of
words of finite length over a fixed alphabet). A
similar pseudometric is discussed in (Cattaneo et
al., 1997). Our goal is to continue a systematic re-
view and categorization of language distances, with
a view to determining what gives rise to apparent
weaknesses and strengths of each. As seen in (Sa-
lomaa and Soittola, 1978) and (Yu, 1997) language
density is understood as the number of words in a
language, conceived of as a function ̺(n) of word
length n. This is shown to convey information about
the nature of a language. Analysis of language den-
sity over finite words may be confined to the treat-
ment of regular languages (Yu, 1997; Kozik, 2005),
or seen as a probability density of distance between
infinite sequences (Kozik, 2006).

Herein we continue the approach of (Kozik, 2006)
of capturing distances between arbitrary languages,
specifically by looking at features of the topology
generated by each. We consider that languages—
natural or formal—are most beneficially understood
as potential or actually infinite objects. As such, lan-
guage patterns may or may not be adequately de-
fined syntactically. We continue the work of Kozik
in grasping language differences as word density of
distinctions at the limit. Since such a limit may not
exist, we look at a pseudometric inspired by Besi-
covitch (1932) that captures, in fact, the upper den-
sity limit of language differences.

Next, we consider “where,” in the resulting “Besi-
covitch” topology of the language space, individual
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languages lie. We also look at how this relates to the
Chomsky hierarchy of languages. We find that the
pseudometric space of languages is not complete,
and look at the lifting of the pseudometric to a quo-
tient metric space. The hope is that this considera-
tion may contribute to a list of relative advantages
and disadvantages associated with various candidate
language topologies. Our contribution is thus con-
ceived as a part of a broader exploration in search of
the most useful topology of language spaces, with
eventual application to linguistic problems like mea-
suring the distance between dialects over a common
vocabulary. We have tried to study the Besicovitch
topology and its quotients in some detail, but some
proofs have been condensed to outlines due to space
limitations.

1.1 Early approaches

Nelson (Nelson, 1980) elaborated work by Wal-
ter (Walter, 1975) which constructed a topologi-
cal space from a space of rewriting grammars by
means of successive divisors of grammatical deriva-
tions. The resulting topologies of both languages
and grammatical derivations are equivalent to quasi-
ordered sets, and have the property that each point
has a smallest open neighborhood. If such a topol-
ogy is T1 then it is discrete.

An equivalence relation between languages was
suggested by Marcus (Marcus, 1966; Marcus, 1967)
based on equivalence of word contexts. Improved
and elaborated by Dincǎ (Dincǎ, 1976), this ap-
proach treats the space of languages as a semigroup
over the alphabet, and a distance in the quotient
space (dividing by context equivalence) measures
the distance between context classes of strings with
respect to some chosen language.

The above described approaches, while not with-
out interest where linguistic applications are in view,
do not yield a “sufficiently smooth” topology of a
language space. The first approach similar in spirit
to our main thread was published by Vianu (1977),
who applied the metric proposed earlier by Bod-
narchǔk (1965). This approach has a number of vari-
ants, but we will point out the most important con-
clusions to be drawn from them as well as possible
limitations of this approach.

1.2 Current literature on language topologies
and distances

Language spaces allowing infinitary words, on the
other hand, can be more easily endowed with ad-
equate topologies arising out of the word topology
(Calude et al., 2009), but this will not be a topic of
discussion here because there seems to be no appli-
cation of infinitary word languages to the study of
natural human languages.

2 Preliminaries

In this section we review some basic definitions
from formal language theory and review the best-
known approach to language distance, namely, what
we will call the Cantor metric.

2.1 Notation and Definitions

For the most part, we adopt notation common to for-
mal language theory. There are a few modifications
in the interest of brevity and, hopefully, clarity of ex-
pression. We consider a language as a set of words
which are concatenated from symbols in an alpha-
bet Σ with finite cardinality α. We will deal only
with words of finite length (as opposed to the words
discussed, for instance, in (Calude et al., 2009)). By
a language space we mean the collection of all pos-
sible languages, namely, 2Σ

∗
.

Sets. We frequently employ the symmetric set dif-
ference of sets A and B, denoted A△B.

Words. The length of word w will be denoted
|w| and will always be non-negative. The empty
word, which is the unique word of length zero, will,
as usual, be denoted λ. When we need to refer to
the ith symbol of the word w, we will denote this
by w[i], preserving ordinary subscripts for the enu-
meration of words. The fundamental operation on
symbols is (non-commutative) concatenation, which
is represented multiplicatively. We use the Kleene-
∗ (-star) and -+ (-plus) operations in the usual way.
Moreover, Σn denotes the set of all words of length
n, and Σ<n denotes the set of all words of lengths
up to n− 1.

Languages. The empty language is simply the
null set, ∅. Concatenation extends from words to
languages. That is, if L and M are languages, then
LM = {uv : u ∈ L, v ∈ M}. Suppose L is a
language over Σ and n ∈ N ∪ {0}. Then we de-
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note by Ln (respectively L<n, for n > 0) the set
L ∩ Σn (respectively,

⋃n−1
i=0 L

i). For example, L0 is
either ∅ or {λ}. The density of language L is the se-
quence {̺n}n∈N such that ̺i = |Li|. Then |L<n| is
the nth partial sum of the series

∑
̺. Finally, given

languages L and M , we denote by L△nM (respec-
tively, L△<n M ) the symmetric set difference be-
tween words of length n (respectively, less than n)
in the two languages.

Remark 1. Note that

|Σ<n| = αn − 1

α− 1
. (1)

2.2 Language norms, metrics and the Cantor
space

In setting out to find ways to adequately express
the “distance” between two languages, we consider
how to adapt the notions of size and separation into
the realm of formal symbols. We already observe
that the first defined language distance, i.e., the dis-
tance between two languages, in the literature, de-
rives from the density of their symmetric set dif-
ference. The metric mentioned by (Vianu, 1977) is
based on the shortest word in L△M . Indeed, this
leads to a full metric, and a metric topology on 2Σ

∗
.

By analogy to the norm in a normed space represent-
ing distance from a zero point, and hence magnitude,
a “language norm” can be elaborated from a pseudo-
metric.

The reader will recall that a pseudometric d on
space X is a function that maps X × X to R≥0,
such that d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) + d(y, z) ≥ d(x, z). We call a pseudomet-
ric a language distance just in case it additionally
is such that, if L ∩ N = ∅ and M ⊆ N , then
d(L,M) ≤ d(L,N).

Then, to every language distance we may asso-
ciate a function ‖·‖d : 2Σ

∗ → R≥0 by defining
‖L‖d = d(L, ∅). Note that ‖·‖d has the following
properties:

‖∅‖d = 0 (2)

‖L ∪M‖d ≤ ‖L‖d + ‖M‖d (3)

L ⊆M =⇒ ‖L‖ ≤ ‖M‖ (4)

We define a language norm as any such function on
languages.

Lemma 2. To each language norm ‖·‖ there cor-
responds a unique language distance d such that
d(L,M) = ‖L△M‖.

The contrapositive of Lemma 2 also holds. That
is, for any language distance d on 2Σ

∗
, the function

‖·‖ : 2Σ
∗ → R≥0 such that ‖L‖ = d(L, ∅) defines a

unique language norm.

2.3 The Cantor language metric and topology
on 2Σ

∗

A Cantor language space
Two languages can be compared by beginning

with the shortest word in each language and pro-
ceeding to longer words. A first notion of distance
is obtained using the word-length of the first distinc-
tion between languages so observed. To this end,
let the language space then be normed by assigning
the norm 0 to ∅ and by associating each non-empty
language to a power of 1/2, as follows.

Definition 3. The language norm ‖·‖1 : 2Σ
∗ → R

is as follows: for L ∈ 2Σ
∗
,

‖L‖1 =

{
0 if L = ∅,
2−min{|w|:w∈L} otherwise.

(5)

Observe that − log2‖L‖1 ∈ N for all non-empty
L.

To this language norm corresponds the following
language metric.

Definition 4. The function d1 : 2Σ
∗ × 2Σ

∗ → R is
a metric, where, for L and M in 2Σ

∗
, d1(L,M) =

‖L△M‖1
To see that d1 is in fact not only a pseudomet-

ric but a metric, consider that d1(L,M) = 0 iff
L△M = ∅, i.e., iff L = M . Let τ1 be the metric
topology induced on 2Σ

∗
by d1. For reasons to be

made clear below, we call ‖·‖1, d1, and τ1 the Can-
tor norm, distance, and topology, respectively, on a
language space.

The open neighborhoods of radius ǫ > 0 around
some language L ∈ 2Σ

∗
, denoted Bǫ(L) = {M ∈

2Σ
∗
: d1(L,M) < ǫ}, form the standard basis for

τ1. Since distances between distinct languages are
powers of 1/2, it follows that elements of the stan-
dard metric basis for (2Σ

∗
, τ1) form the collection

C = {B2−n(L) : n ∈ N, L ∈ 2Σ
∗}. (6)
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Definition 5 ((Vianu, 1977; Genova and Jonoska,
2006)). The language cylinder set CL,k of length
k ∈ N around language L ∈ 2Σ

∗
is:

CL,k
def
= {M ∈ 2Σ

∗
: L ∩ Σ≤k =M ∩ Σ≤k}. (7)

Now let Ck
def
= {CL,k : L ∈ 2Σ

∗} be the col-
lection of all language cylinder sets of length k.
From (6) and (7) it follows that the collection C

def
=⋃

k∈N Ck, comprising all language cylinder sets, is
the standard basis for (2Σ

∗
, τ1).

Cantor topology on a language space
As it turns out, τ1 is equivalent to the topology of

the Bodnarchǔk metric space discussed in (Vianu,
1977). We quickly recap the properties of this topol-
ogy on a language space, as proven in (Vianu, 1977)
and (Genova and Jonoska, 2006).

Lemma 6. In (2Σ
∗
, τ1), every cylinder set is both

closed and open.

Lemma 7. A sequence {Li}i∈N ⊂ 2Σ
∗

converges to
language L in (2Σ

∗
, τ1) iff for all m ∈ N, |(Li △m

L)| = 0 for all but finitely many i. In this case we
write Li → L.

From this and the fact L∩Σ≤i → L we also have:

Corollary 8. The finite languages are dense in a
space of languages under the τ1 topology.

Lemma 9. The topological space (2Σ
∗
, τ1) is home-

omorphic to the Cantor space.

Thus the terminology “Cantor language space,
topology,” etc.1

Corollary 10. (2Σ
∗
, τ1) is compact, perfect, and to-

tally disconnected.

3 Besicovitch pseudometric, language
norm and topology

We now consider a language distance that is in many
respects more satisfactory than the Cantor distance

1As pointed out by an anonymous reviewer, the Cantor
topology can be understood as the profinite completion of an
algebra of recognizable languages (Gehrke, 2009). While this
does not modify the topological characteristics of the space, it
does raise the interesting point that the Besicovitch topology,
the main subject of this paper, likely cannot be so conceived: the
Besicovitch metric (quotient) space is not complete, by Corol-
lary 31.

d1, by exploiting the general philosophy of compar-
ing languages by comparing finite sections of lan-
guages. We then show several results, including that
neither finite nor locally testable languages are dense
in the topology induced. We call this alternative
pseudometric the Besicovitch distance, denoted by
dζ . Under the topology induced, a language space
is not compact. Rather, it has a geometry which be-
comes apparent from the vantage point of a metric
quotient space.

The original Besicovitch pseudometric expressed
the distance between two almost-periodic real-
valued functions (Besicovitch, 1932) φ,ψ ∈ ℓ1 as

dBp(φ,ψ)
def
= lim sup

n→∞

1

2n+ 1

n∑

−n

|φ(x)− ψ(x)|.

Because this pseudometric depends on the evalu-
ation of the two functions only at discrete inter-
vals, it is naturally adaptable to expressing distances
between objects with a bound proportion of dif-
ferences, as with the distance between cellular au-
tomata (Cattaneo et al., 1997); our adaptation to lan-
guages is in some sense a generalization thereof.

3.1 A Besicovitch pseudometric on language
spaces

We begin by defining a Besicovitch-style language
norm. Rather than halting at a particular term of the
density of the symmetric set difference between two
languages, this norm considers the derived infinite
series |L△<nM | in ratio to the total possible words
over Σ∗ (given by (1)) as n goes to infinity.

Definition 11. Let ‖·‖ζ for fixed alphabet Σ be the
function defined:

‖L‖ζ def
= lim sup

k→∞

|(L ∩ Σ<k)|
|Σ<k| (8)

We call ‖·‖ζ the Besicovitch language norm.
Then let dζ be the function mapping (L,M) to

‖L△M‖ζ , and call it the Besicovitch language dis-
tance.

By Lemma 2, distance dζ is a language pseudo-
metric.

Remark 12. The Besicovitch distance dζ between
languages
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1. can be described as the upper density of their
set-difference;

2. turns out to constitute (like the Besicovitch lan-
guage norm) a continuous, surjective mapping
of 2Σ

∗
into the unit interval [0, 1];

3. for a language and its complement is 1, since
(L ∩Σk)△ (¬L ∩Σk) = Σk for every k ∈ N;

4. constitutes a strict pseudo-metric if |Σ| > 1,
since, for instance, ‖M‖ζ = 0 where M =
{a}, so dζ(M, ∅) = 0 even though M 6= ∅;

5. given languages L,M ∈ 2Σ
∗
, can be written

as follows:

dζ(L,M) = lim sup
k→∞

∣∣∣L△<k M
∣∣∣
(
α− 1

αk − 1

)

We present the following without proof.

Lemma 13. If L and M are disjoint languages in
2Σ

∗
, then ‖L‖ζ + ‖M‖ζ = ‖L ∪M‖ζ .

Corollary 14. For L,M ∈ 2Σ
∗
, ‖L‖ζ + ‖M‖ζ =

‖L ∪M‖ζ if and only if ‖L ∩M‖ζ = 0.

Corollary 15. For all L,M ∈ 2Σ
∗
, ‖L‖ζ+‖M‖ζ ≥

‖L ∪M‖ζ .

The conclusion here is that ‖·‖ζ is truly “norm-
like.” For the remainder of this section, we drop
most subscripts ζ .

To establish surjectivity, we first need a way to
construct a language with a specified arbitrary norm.

Definition 16. Given 0 ≤ r ≤ 1, consider the se-
quence ř〈α〉

def
= {⌊rαk⌋}k∈N. Then we call Lr the set

of r-simple languages in 2Σ
∗
, defined as follows:

Lr
def
=

{
L ∈ 2Σ

∗
: {|(L ∩Σi)|}i∈N = ř〈α〉

}
.

Lemma 17. For r ∈ [0, 1] there is at least one
r-simple language; moreover for each particular
value r, every r-simple language has norm r.

Proof. By construction, for each r ∈ [0, 1] the se-
quence ř〈α〉 exists. We can select řk words in Σk for
all k. This amounts to the construction of a language
L in Lr for each r ∈ [0, 1]. But then ‖L‖ = r, which
establishes the claim.

Now we have established our hoped-for result.

Corollary 18. The Besicovitch language norm is a
surjective mapping from 2Σ

∗
onto [0, 1].

In addition, it is relatively easy to see that diag-
onalization yields that there are uncountably many
r-simple languages for each r ∈ [0, 1].

3.2 Besicovitch distance quotient space

The Besicovitch distance equivalence induces a
quotient space on 2Σ

∗

We next form collections of languages at distance
zero from each other and map each such collection
to a point in a quotient space, which can then be
metrized. So, given L,M ∈ 2Σ

∗
, let L ∼ζ M if

dζ(L,M) = 0.

Proposition 19. The relation ∼ζ is an equivalence
on 2Σ

∗
.

Proof. Reflexivity and symmetry are apparent and,
if L,M,N ∈ 2Σ

∗
such that L ∼ M and M ∼ N ,

then 0 = d(L,M) + d(M,N) ≥ d(L,N). From
Remark 12(1), L ∼ N .

The collection of ∼ equivalence classes will be
called the Besicovitch quotient space over 2Σ

∗
, de-

noted QΣ
ζ . Here we will drop the ζ subscript for

notational clarity and assume the language space
2Σ

∗
unless otherwise noted. Elements of the quo-

tient space (points in Q) will be denoted with sans-
serif letters L,M,N, . . ., while collections of such
points will be denoted with corresponding bold let-
ters L,M,N, . . . . Let η : 2Σ

∗ → QΣ
ζ denote the quo-

tient mapping which takes a language to its ∼ equiv-
alence class.

Remark 20. As a partition of 2Σ
∗
, the mapping η is

well-defined and surjective, but not injective since it
is a quotient mapping. The set operations of union,
intersection and complementation are preserved by
mappings from collections of points in Q to the sets
of languages of which they are equivalence classes.
In particular, every topology on QΣ

ζ is the quotient
of a topology on 2Σ

∗
.

When language L is a member of language family
L, and every member of L is contained in an equiv-
alence class in the collection of points L ⊆ Qζ , we
will write L ∈ L and L ⊆ L instead of the more
tedious η(L) = L and η(L) ⊆ L.
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Lemma 21. For languages L,M ∈ 2Σ
∗
, L ≁ M

iff there exists a positive integer m such that, for
infinitely many word-lengths n, |(L △<n M)| ≥
|Σ<n−m|.

Proof. (⇒) Suppose there is no suchm. That would
mean that, for each m ∈ N, there is a word length
nm such that k > nm implies |(L △<k M)| <
|Σk−m|. We can then construct an increasing se-
quence {ki}i∈N where k0 = 0 and ki (i > 0) is the
least integer greater than ki−1 such that |(L △<k′

M | > |Σ<k′−i| =
∑k′−i−1

j=0 |Σj | = αk′−i−1
α−1 if

k′ > ki. But, if this were true, then the Besicov-
itch distance between the two languages would be
0, since a straightforward calculation shows that, for
each m ∈ N, dζ(L,M) is bounded above by α−m.

(⇐) Assume that, for some m ∈ N and for n
sufficiently large, |(L △<n M)| ≥ |Σn−m|. Then
a similarly straightforward calculation shows that
‖L△M‖ = lim supk→∞

|L△<kM |
|Σ<k| is bounded be-

low by, for instance, α−m/2. Thus, L ≁ζ M .
Note that when two languages are similar, the se-

quence used in the first part of the proof is finite.

Definition 22. Given languages L,M ∈ 2Σ
∗
, we

will denote by Kζ(L,M) the (possibly finite) in-
creasing integer sequence {ki}i∈N in accord with
the above lemma. Indeed, Kζ(L,M) is infinite pre-
cisely when L ∼M .

We note that ifKζ(L,M) has at least i terms, then
ki > i and, by considering the words in L△M of
length greater than mi, we have a first estimate of
the distance between two languages, namely, α−i.

By Lemma 21, the unique sequence Kζ(L,M)
expresses the relative location of languages in the
quotient space Qζ .

The quotient space has a natural metric quotient
topology

We define the metric dζ on the Besicovitch quo-
tient space as the lifting of Besicovitch distance d.

Definition 23. Let the distance dζ be-
tween points L and M in Qζ be set equal to
inf

{
d(L,M) : L ∈ η−1(L),M ∈ η−1(M)

}
.

Lemma 24. For L,M ∈ Qζ , dζ(L,M) = 0 iff L =
M.

Proof. Only the implication left to right requires a
proof. Suppose that d(L,M) = 0. Now suppose,
contrary to the claim, that there is some language
L ∈ L but not M. We conclude from the preced-
ing definition 23 that there exists M ∈ M such that
d(L,M) = ǫ > 0. But then, for arbitrary languages
L′ ∈ L and M ′ ∈ M, the triangle inequality provides
us that

ǫ ≤ d(L,M) ≤ d(L,L′) + d(L′,M ′) + d(M ′,M)

≤ d(L′,M ′). (9)

Thus d(L,M) ≥ ǫ/2 > 0 by the preceding defini-
tion, Q.E.A.

Corollary 25. For L,M ∈ 2Σ
∗

the diagram below
commutes, showing the isometry between Besicov-
itch language space and quotient space.

2Σ
∗ × 2Σ

∗ η×η //

d %%❏❏
❏❏

❏❏❏
❏❏❏

Qζ × Qζ

dzz✈✈✈
✈✈✈

✈✈✈

R≥0

It is by now evident that the Besicovitch quotient
space is a metric space under distance d. Moreover
we have:

Corollary 26. If languages L,M are in point L ∈
Qζ , then ‖L‖ = ‖M‖.

This just means that the d metric topology on
Qζ is the quotient of the pseudo-metric topology in-
duced by d on 2Σ

∗
. Let τ̃ζ denote the collection of

open sets in Qζ under the d metric topology, and let
τζ denote the collection of language sets in 2Σ

∗
such

that η(τζ) = τ̃ζ . We will call τζ the Besicovitch lan-
guage topology.

Convergence has a novel interpretation in the
quotient space

From Remark 12, the Besicovitch language topol-
ogy is not T1, and so convergence to a language is
not well-defined in (2Σ

∗
, τζ). But there is no such

difficulty with the quotient space.

Lemma 27. A sequence {Li}i∈N in Qζ converges to
the point L ∈ Qζ iff the following: ∀m ∈ N ∃km ∈
N such that i > km means that, if language Li ∈ Li
and L ∈ L then there exists integer Ni for which
k > Ni implies |(L△k Li)| < αk−m.
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Note that, unlike the case of the Cantor space, in
the Besicovitch language (quotient) topology, a con-
vergent sequence of points converges to ∼ equiva-
lence with the (languages in the) limit point.

The quotient space is perfect but not compact
We can next address the compactness question for

the Besicovitch quotient space, since it is a met-
ric space, by determining whether every infinite se-
quence of points has a convergent subsequence. We
ultimately show here that neither Qζ nor 2Σ

∗
is com-

pact, although Qζ is a perfect set.
We first establish the latter property using the fol-

lowing fact.

Lemma 28. Every point in (Qζ , τ̃) is a condensation
point.

Proof. Every open set M in (Qζ , τ̃) includes the
image of an open interval in the subset topology
of [0, 1] and, by a diagonalization, is uncountable.
Each number in M has a distinct open inverse im-
age in (Qζ , τ̃).

It then follows immediately that Qζ is perfect.
To make progress on the compactness question,
we construct a family of two-sided word ideals in
Σ∗ which, when split into non-disjoint right ideals,
yields an infinite sequence in the quotient space with
no convergent subsequence. We will call I a right,
left, or two-sided word ideal of the monoid Σ∗ just
in case there is a word w ∈ Σ∗ such that I = wΣ∗,
I = Σ∗w, or I = Σ∗wΣ∗ respectively. Note this is
just like the definition of ideal in a monoid (Howie,
1995) except we are restricting the reference to a sin-
gleton set containing particular word w. Now let Jw
denote the two-sided word ideal Σ∗wΣ∗. Then for
k ∈ N, the kth section of Jw is ΣkwΣ∗ ( Jw, which
is denoted Jw,k.

Lemma 29. For i, j ∈ N and where |w| = l,

d(Jw,i, Jw,j) = 2α−l. (10)

We can also compute the norm of Jw,i when
|w| = l:

‖Jw,i‖ = lim sup
k→∞

|ΣiwΣ<k−i−l|
|Σ<k|

= lim sup
k→∞

∑k−i−l−1
s=0 αi+s

|Σ<k|

= lim sup
k→∞

αk−l−αi

α−1

αk−1
α−1

= lim sup
k→∞

α−l

[
αk − 1

αk − 1
− αi+l − 1

αk − 1

]

= α−l. (11)

From Lemma 29 and the above calculation, taking
Jw,i

def
= η(Jw,i), the sequence {Jw,i}i∈N is such that

no subsequence can converge, yet every language in
each point of the sequence has the same norm.

Lemma 30. The Besicovitch quotient space Qζ is
not compact.

Proof. It is sufficient to display an infinite sequence
of languages belonging to distinct ∼ equivalence
classes separated from each other by a distance
greater than some fixed ǫ > 0. Then the η-images of
these languages will form an infinite sequence in Qζ

which has no convergent subsequence.
To this end, consider the language sequence

Ja
def
= {Ja,i}i∈N where a ∈ Σ. Two distinct

terms Ja,i and Ja,j are at distance 2α−1, from the
previous lemma, so consider the sequence L =
{Li}i∈N, where Ja,i ∈ Li for all i ∈ N. By Corol-
lary 25, there is no convergent subsequence of L,
since d(Li, Lj) > α−1 if i 6= j.

Since sequential compactness is not defined in the
pseudo-metric language space, we exhibit the fol-
lowing result to clear up any remaining doubts about
compactness there.

Corollary 31. The metric d is not complete.

Proof. (Outline) It suffices to exhibit a sequence
of points which are Cauchy convergent in Qζ , but
which do not converge to any point in Qζ . We then
produce a sequence, Cauchy in Q, but containing
the non-convergent sequence L from the proof of
Lemma 30 as a subsequence.

Corollary 32. A language space is not compact un-
der the Besicovitch topology.

Proof. Let O be an open cover of 2Σ
∗

defined by

O = {{M : d(L,M) < α−1} : L ∈ 2Σ
∗}.
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We then have by Lemma 30 that any finite subset of
O contains at most finitely many languages in Ja.
Therefore O has no finite subcover.

While establishing noncompactness has been im-
portant, it will also be useful to establish a relation
to a known compact space. This is the subject of the
next subsection.

3.3 A second lifting of the quotient space

To obtain a compact space for exploring the most
general features of the Besicovitch topology on lan-
guage spaces, we define the language norm ‖·‖ζ as
a quotient map from Qζ into [0, 1]. This will result
in a total of three spaces: the non-T1 language space
under the topology induced by Besicovitch distance,
the quotient space topologized by the metric quo-
tient topology, and a compact upper quotient space
with a well-known topology. We proceed as with
the definition of Qζ by defining an equivalence re-
lation, the equivalence classes, and the quotient map
which takes points in Qζ to their equivalence classes.
We call the collection of equivalence classes the up-
per Besicovitch quotient space, denoted Nζ . We ul-
timately show that the topological space Nζ under
the quotient topology is homeomorphic to the unit
interval.

Take points L,M ∈ Qζ . Let L ≡ζ M if ‖L‖ζ =
‖M‖ζ for all L ∈ L and M ∈ M; let 〈L〉ζ = {M ∈
Qζ : M ≡ζ L}, and denote by Nζ the collection
{〈L〉ζ : L ∈ Qζ}, write elements of Nζ in calligraphy
font L,M,N , . . ., and denote collections of such el-
ements in corresponding bold letters L,M,N , . . .;
let κ be the map from Qζ to Nζ which takes L to its
equivalence class 〈L〉ζ . Finally, for r ∈ [0, 1], let rζ
denote {L ∈ Qζ : ‖L‖ζ = r ∀L ∈ L}.

Remark 33. It is obvious that ≡ is an equivalence
relation. Moreover, the quotient map κ is well-
defined, by Corollary 26. Since rζ = 〈M〉ζ for each
M ∈ rζ , this implies by Remark 12 that rζ = M for
precisely one M ∈ Nζ .

We next equip the upper quotient space with a
metric. Let the distance function ρ : Nζ × Nζ →
[0, 1] be defined such that, if L = rζ and M = sζ
for some r, s ∈ [0, 1], then ρ(L,M) = |r − s| as a
metric on Nζ . The collection U of basis sets under

the induced topology equals:

{{L ⊂ Nζ : rζ ∈ L if |r−s| < ǫ > 0} : s ∈ [0, 1]}.
(12)

Remark 34. The set U is apparently equivalent to
the subset topology on the unit interval. To wit, there
is a homeomorphism between Nζ and [0, 1] if the
function ρ induces the quotient topology on Nζ .

We continue to abuse the notation as was done
with languages and the quotient space, and write
L ∈ rζ or equivalently L ∈ L to mean language L is
found in points of the equivalence class rζ . We write
L ⊆ rζ to mean that each language in the class L is
in a point (not necessarily all in the same point) in
the equivalence class rζ . We write L ⊆ L to mean
that the image κ(η(L)) is a subset of the collection
of elements L ⊆ Nζ . We will next show that, with
exactly two exceptions, rζ is always an uncountable
subset of Qζ .

Lemma 35. The ≡ equivalence classes 0ζ and 1ζ
are singletons in Qζ .

Proof. The ≡ class 0ζ contains only the ∼ class
η(∅), since ‖L‖ = d(L, ∅). Thus, L ∈ 0ζ implies
d(L, ∅) = 0, which implies L ∼ ∅.

On the other hand, suppose languages L and M
and points L and M are such that L ∈ L and M ∈ M
and L,M ∈ 1ζ . By Remark 12, ‖¬L‖ = ‖¬M‖ =
0, which we have just seen means ¬L ∼ ¬M . But
since L\M = ¬M\¬L, it is true that L △ M =
¬L △ ¬M . Therefore d(L,M) = ‖L △ M‖ =
‖¬L △ ¬M‖ = d(¬L,¬M) = 0. Hence, L ∼
M . Since L,M were arbitrary, it follows that L =
M and that 1ζ contains just a single point, viz. the
equivalence class η(Σ∗).

Since 1 is a singleton, given a point L there is ex-
actly one point in Qζ at distance 1. If L,M ∈ Qζ

and d(L,M) = 1, then points L,M will be called
antipodes, which we denote as L = ¬M.

Lemma 36. Every point L ∈ Qζ has a unique an-
tipode in the Besicovitch quotient space.

Proof. From Corollary 25 this is the same as claim-
ing that, if two languages are at distance 1 from the
same language L ∈ L, then they are ∼-equivalent.
But this is a consequence of the identity

(L△M1)△ (L△M2) =M1 △M2. (13)
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We can show this because if d(L,M1) = 1 and
d(L,M2) = 1, it follows that L△M1 and L△M2

are in 1 (from Def. 11), implying by Lemma 35 that
d(L△M1, L△M2) = 0, requiring M1 ∼M2.

Corollary 37. For L ∈ 2Σ
∗
, ‖¬L‖ = 1− ‖L‖.

In addition we note that L ∈ 0 iff ¬L ∈ 1, and
also that 〈¬L〉 = 〈L〉 if and only if ‖L‖ = 1

2 for any
language L ∈ L.

For each point L ∈ Qζ , the L-rotation of point
M ∈ Qζ , denoted ηL(M), is defined as the point
η(L△M) for some language L ∈ L. The L-rotation
of the Besicovitch quotient space, denoted Q

Σ,L
ζ , is

then the collection {ηL(M) : M ∈ Qζ}. The L-
rotation of the ≡-equivalence class r, denoted rL,
is defined as the set {M ∈ Qζ : d(M, L) = r}. The
L-rotation of the upper Besicovitch quotient space,
meaning the collection {rL : r ∈ [0, 1]}, will be
denoted Nζ,L.

Lemma 38. Q
Σ,L
ζ is equivalent as a set to Qζ , and

L-rotation is a bijection of the quotient space onto
itself. Moreover, Nζ,L is a bijection with Nζ .

There are uncountably many ≡ equivalence
classes, because the norm ‖·‖ is surjective onto the
unit interval. In addition, we now proceed to show
that no open set in Qζ is contained in a single ≡
equivalence class. This is the essential condition for
the proof that ρ is the quotient of d. We begin with
a straightforward proposition.

Proposition 39. For L ∈ 2Σ
∗

where ‖L‖ = r and
0 ≤ s ≤ r(≤ 1), there exists language M ⊂ L such
that ‖M‖ = s.

Proof. For s = 0, let M = ∅, Q.E.D. For s = r, let
M = L, Q.E.D. Now assume s ∈ (0, r). Note that
s/r > 0; form language sequence L = {L∩Σi}i∈N,
and using this define the integer sequence {mi}i∈N
such that

mi = ⌊(s/r)|(L ∩ Σi)|⌋. (14)

There exists a language sequence {Mi}i∈N such that
Mi ⊆ L∩Σi and |Mi| = mi. Then we can calculate
that 0 ≤ (s/r)|(L ∩ Σ<k)| = |(M ∩ Σ<k)| < k, so
‖M‖ = (s/r)‖L‖ = s, and M ⊆ L; Q.E.D.

Remark 40. The above result can be reversed, in
that if 0 ≤ r ≤ s ≤ 1, then for any language L ∈ r

there exists language M ⊇ L such that M ∈ s. The
target language is L in case 0 = r = s, Σ∗ in case
s = 1, and in case s ∈ (0, 1) may be constructed as
in Proposition 39 by inverting the fractions in (14)
et seq.

Lemma 41. No open set in Qζ is a subset of a ≡
equivalence class.

Proof. Since Qζ is perfect, this follows for the
classes 0ζ and 1ζ directly from Lemmas 35 and 28.
Otherwise, suppose L ∈ 2Σ

∗
and L ∈ Qζ such that

L ∈ L ∈ r. For any open set L ⊂ Qζ containing
L, there is a number ǫ′ > 0 such that d(L,M) < ǫ′

implies M ∈ L.
It is sufficient to exhibit a language M ∈ M such

that ‖M‖ 6= ‖L‖ and d(L,M) < ǫ′. Let ǫ =
min{r/2, ǫ′/2}. Note that ǫ′ > ǫ > 0. Our selection
of ǫ guarantees the following: 0 < ǫ < r ≤ 1, which
implies that

0 < r − ǫ < r (15)

Then by Proposition 39 there is a language M ⊂ L
such that ‖M‖ = r−ǫ. But since r−ǫ < r, ‖M‖ 6=
‖L‖. It also follows that d(L,M) = ‖L △M‖ =
‖L\M‖. However, ‖L‖ = ‖M‖ + ‖L\M‖ from
Corollary 14. Thus d(L,M) = ‖L‖ − ‖M‖ = r −
(r − ǫ) = ǫ.

Corollary 42. If L ∈ τζ is an open set in the Besi-
covitch topological space and language L ∈ L, then
there exists ǫ > 0 such that for every real number

r ∈ (‖L‖ − ǫ, ‖L‖+ ǫ) ∩ [0, 1]

there exists language M ∈ L such that M ∈ r.

This corollary states that, under the Besicovitch
topology, representatives of some continuous inter-
val of norm values can be found in every open set in
the language space. This means that, as was claimed
in Remark 12(1), the language norm ‖·‖ζ is a con-
tinuous map from 2Σ

∗
onto [0, 1].

Theorem 43. The upper quotient space Nζ is home-
omorphic to (and so essentially is) the unit interval
[0, 1].

Ideals simplify exploration of the elements of the
upper quotient space

Earlier we defined the (word) ideals of Σ∗. To
elaborate on this, recall the earlier discussion of
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r-simple languages (v. Def. 16), and consider the
monoid ideals of Σ∗.

Lemma 44. If real number r ∈ [0, 1], there exists a
right ideal of Σ∗ in Lr.

Proof. If r = 1 then w = λ trivially satisfies the
lemma. So we assume r ∈ (0, 1). Since by Def. 16
0 ≤ ř1 < α, there is a subset I1 of Σ (actually, at
least α subsets) such that |I1| = ř1. Note from the
definition of Lr that řk ≤ rαk < řk + 1 for all k ∈
N. Multiplying through by α gives the inequality

řkα ≤ rαk+1 < řkα+ α. (16)

But for k + 1 we have

řk+1 = ⌊rαk+1⌋ ≤ rαk+1 < řk+1 + 1. (17)

Since all values are non-negative integers we can
combine the preceding two equations to yield

řkα ≤ řk+1 < řkα+ α. (18)

It follows that řk+1 = řkα + tk for some tk ∈ N
such that 0 ≤ tk < α. Therefore for all k ∈ N,
řkα ≤ αk+1 − α.

Thus there exists language T1 ⊆ Σ2\I1Σ such
that |T1| = t1, so that |I1Σ ∪ T1| = ř2. Set I2 =
I1Σ∪T1. Continuing in this fashion, let Tk for each
k ∈ N be a language such that Tk ⊆ Σk+1\IkΣ
and |Tk| = tk. Finally, for k ∈ N define language
I ∈ 2Σ

∗
such that I ∩ Σk = Ik, which is to say let

I =
⋃

i∈N Ii. Then by construction, I ∈ Lr, and
wΣj ⊆ I for all w ∈ I and every j ∈ N. Thus
IΣ∗ ⊆ I .

The preceding result provides further evidence
that right ideals are ubiquitous in the Besicovitch
topological space. We now develop our understand-
ing of the ideals to comprehend the elements of the
upper quotient space. We begin by extending the no-
tion of “sections of a word ideal.”

Definition 45. An n-word ideal in the monoid Σ∗ is
a language JF such that

JF = Σ∗w1Σ
∗w2 . . .Σ

∗wnΣ
∗

for some finite language F = {w1, w2, . . . , wn}
over Σ∗. Then fF =

∑n
i=1|wi| is the length of F . If

v = (v1, . . . , vn) is a vector over N1×n, then the v-
section of JF is denoted JF,v and is the right ideal
defined as:

JF,v = Σv1w1Σ
v2w2Σ

v3 · · ·ΣvnwnΣ
∗.

Lemma 46. For every vector v over N1×n and every
language F such that |F | = n, ‖JF,v‖ = α−fF .

Proof. Let v1 + v2 + . . . + vn = S. Then when
k ≥ fF + S, |JF,v ∩ Σk| = αk−fF . Therefore,

lim
k→∞

∑k−1
i=0 α

i−fF − |JF,v ∩ Σ<k|
∑k−1

i=0 α
i

= lim
k→∞

∑fF+S−1
i=0 αi−fF

∑k−1
i=0 α

i

= lim
k→∞

αS−1
α−1

αk−1
α−1

= 0,

which implies that ‖JF,v‖ = α−fF .

In addition to the above result, it is possible to ex-
tend the proofs of Lemmas 44 and 30 to the n-word
ideals by induction. Taken together, these results tell
us that points in the upper quotient space contain
languages that “closely resemble” unions of sections
of ideals of Σ∗, in the following sense: cardinal-
ity of sections of these languages (as word length
increases) must approximate the cardinality of the
unions of (sections of) ideals.

We conclude this section by showing that all ≡
classes except 0ζ and 1ζ are uncountable.

Lemma 47. For any real number r ∈ (0, 1), the
element r ∈ Nζ is uncountable.

Proof. From Lemma 44, there is an r-simple lan-
guage L. In fact, there exist at least two r-simple
languages, since for each r ∈ (0, 1),

0 ≤ |L ∩ Σk| <
[
r +

1− r

2

]
αk

=

(
r + 1

2

)
αk < rαk.

This means that for k ∈ N there exists a subset of
Σk\L = ¬(L ∩ Σk) consisting of the lesser of ei-
ther ⌊rαk⌋ or

⌊(
1−r
2

)
αk

⌋
words, and there exists

a subset of L ∩ Σk consisting of the same number
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of words. This means there exists an r-simple lan-
guage at distance s = min{2r, 1 − r} from L. We
now construct this language in the following way:
let tk = min

{
⌊rαk⌋,

⌊(
1−r
2

)
αk

⌋}
; let Tk be a lan-

guage such that |Tk| = tk and Tk ⊆ ¬(L ∩ Σk),
which is possible since |¬(L ∩ Σk)| ≥ 2tk; and
let Fk ⊆ L be such that |Fk| = tk, which is pos-
sible since tk ≤ |L ∩ Σk|. Let T =

⋃
i∈N Ti,

F =
⋃

i∈N Fi, and let N = L\F . Then language

L′ def= N ∪ T is the language formed by exchanging
tk words in L for tk words in ¬L. Thus the number
of words in L△k L′ is 2tk = sαk for each k ∈ N.
Hence, d(L,L′) = s and, since L and L′ contain the
same number of words of each length, they have the
same norm. Since L is r-simple, so is L′.

For all t ∈ R such that 0 ≤ t ≤ s, since s ≤ r
there exists language F ′ ⊆ F ⊆ L such that ‖F ′‖ =
t/2, and there exists language T ′ ⊆ T = L′ ∩ ¬L
such that ‖T ′‖ = t/2 (by Proposition 39). Then it

can be shown that if language Lt
def
= (L\F ′) ∪ T ′ is

such that

Lt = (L\F ) ∪ (F\F ′) ∪ T ′ = N ∪ (F\F ′) ∪ T ′,

so Lt △ L′ = (T\T ′) ∪ (F\F ′). Thus d(Lt, L
′) =

s− t.

3.4 The Chomsky hierarchy

In this final section we show a few results which re-
late our Besicovitch topologies to the classical lan-
guage classes.

The finite and locally testable languages are not
dense

A major inadequacy of the Cantor topology was
the density of the finite languages. By contrast, these
are confined to a single ∼-equivalence class in the
Besicovitch topology.

Lemma 48. The finite languages are all in 0ζ .

Proof. If language L is finite, there exists N ∈ N
such that n > N implies L ∩ Σn = ∅, and hence
also that |L△n ∅| = 0.

This naturally leads to the question, addressed
presently, what happens if the description of an infi-
nite language is entirely finitary?

We first remind the reader that a language L is
locally testable just in case there is a fixed inte-
ger k (called a window length) and a proper sub-
set F ( Σk such that, if every factor of word w of
length k is in F then w ∈ L. The important thing
about the locally testable family is that the member-
ship question “Is w ∈ L?” is decidable by inspect-
ing subsequent k-length factors ofw. We next define
a larger class of “generally testable” languages with
the property that every locally testable language is a
subset of some generally testable language.

Definition 49. A language L is generally testable if
there exists a window length n ∈ N and a set of
permitted factors S ⊆ Σn, where L = S∗Σ<n.

From this definition we see that word w ∈ L
if and only if w ∈ Σ<n or w can be written
u1u2 · · · utv, where ui ∈ S for all i ∈ Nt and
v ∈ Σ<n. It is interesting that the size of a gen-
erally testable language is not really limited, but yet
we have the following result.
Lemma 50. Every generally testable language in
2Σ

∗
is in 0ζ with the exception of Σ∗, which is in

1ζ .

Proof. (Outline) Let the permitted factors of a word
in L be S ⊆ Σn. If |S| = s, suppose s = αn. But
then S = Σn, L = Σ∗, and therefore L ∈ 1ζ .

On the other hand, if s < αn, and word w ∈
L, there exist unique non-negative integers q and r,
such that |w| = nq + r and 0 ≤ r < n, and words
u1, u2, . . . , uq in S, and word v in Σr such that w =
u1u2 . . . uqvWe deduce that |L ∩ Σ|w|| = sqαr.

We can therefore easily see that the proportion of
the number of words L<i to those in Σ<k is maxi-
mized at word lengths where q = n − 1, i.e., where
i = nk + n− 1. We conclude the following:

‖L‖ ≤ lim sup
k→∞

∑
i = 0ksi|(|Σ<n

|Σ<kn+n| . (19)

By our assumption, s ≤ αn−1. Straightforward cal-
culation shows the right side of the above equation
tends to zero, because it is bound above by

lim sup
k→∞

1

2

(αn − 1)k

(αn)k
.

Thus, L ∈ 0ζ .
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Corollary 51. Every locally testable language be-
longs to 0ζ .

Proof. Suppose L is a locally testable language over
Σ with window length n and permitted factors S (
Σn. Consider the generally testable language L′

with the same window length and the same permit-
ted factors as locally testable language L. Then
L ⊆ L′ and, by the properties of a language norm,
‖L‖ ≤ ‖L′‖; meanwhile ‖L′‖ = 0 from the preced-
ing lemma.

Regular languages are dense in the upper
quotient space

We have now seen that all finite and locally
testable languages belong to 0ζ . On the other hand:

Lemma 52. Regular languages are dense in the up-
per quotient space Nζ .

Proof. Let r ∈ [0, 1]. The claim is that for all ǫ > 0
there exists a regular language L such that |‖L‖ −
r| < ǫ. If ǫ ≥ min{r, 1− r}, either ∅ or Σ∗ satisfies
the claim, Q.E.D. So we assume that ǫ < min{r, 1−
r}. Then r < r + ǫ < 1. Let integers n and q be
such that r < qα−n ≤ r + ǫ ≤ (q + 1)α−n, and
0 < q < αn. From this we have

0 < qα−n − r < ǫ. (20)

Let language Sǫ ⊆ Σn have cardinality q. Consider
the right ideal SǫΣ∗, which is a disjoint union of the
q right word ideals wΣ∗ with w ∈ Sǫ. Note that
each of these is a 1-word ideal section JF,v, where
F = {w} for w ∈ Sǫ and v = (0). Therefore by
Lemmas 13 and 46,

‖SǫΣ∗‖ =
∑

w∈Sǫ

‖wΣ∗‖

= qα−n

From (20) this means that |‖SǫΣ∗‖ − r| < ǫ as
required. Finally, by the Myhill-Nerode Theorem
(Nerode, 1958) SǫΣ∗ is a regular language, since all
but finitely many words in SǫΣ∗ can be followed by
Σ∗.

This means that the linear, context-free, context-
sensitive, and recursively enumerable languages are
all dense in the upper quotient space. We still do not

know where all these families lie in the lower Besi-
covitch topological spaces, but we conjecture that
the regular languages are indeed also dense in the
Besicovitch topology (2Σ

∗
, τζ).

Non-r.e. languages are dense in both quotient
spaces

We can show fairly simply that the non-
recursively enumerable languages are ubiquitous in
the Besicovitch topological spaces. Because dζ is a
strict pseudo-metric, the ∼ equivalence classes are
uncountable. We present the following without their
(uncomplicated) proofs due to space limitations.

Lemma 53. The single element of the class 0ζ is un-
countable in 2Σ

∗
and contains a non-r.e. language.

Corollary 54. Every ∼ equivalence class contains
a non-r.e. language.

4 Conclusion

We have attempted to improve upon previous defi-
nitions of distance between languages in a language
space. After considering previous work by Vianu
(1977) which defined a language distance using the
density of their symmetric set difference, we pro-
gressed to a new adaptation of a pseudometric in-
spired by Besicovitch (1932). In a language space,
the Besicovitch pseudometric was developed which
is essentially the upper density of the set-difference
between languages. By lifting to the quotient space
Qζ using Besicovitch equivalence, a natural metric
topology was developed and shown to be perfect but
not compact. Another step of lifting brought us a
compact “upper” quotient space Nζ homeomorphic
to the unit interval. The ideals of this upper space
were studied, also invoking the notion of word ideal
defined herein. In the last section it was shown that
neither the finite nor locally testable languages are
dense in Nζ . Finally, the regular languages were
shown to be dense in Nζ , and the non-r.e. languages
were shown to be dense in both Qζ and Nζ .
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