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Abstract

This paper shows how the parsing problem for
general Abstract Categorial Grammars can be
reduced to the provability problem for Multi-
plicative Exponential Linear Logic. It follows
essentially a similar reduction by Kanazawa,
who has shown how the parsing problem for
second-order Abstract Categorial Grammars
reduces to datalog queries.

1 Introduction

Kanazawa (2007; 2011) has shown how parsing
and generation may be reduced to datalog queries
for a class of grammars that encompasses mildly
context-sensitive formalisms. These grammars,
which he calls context-free λ-term grammars, cor-
respond to second-order abstract categorial gram-
mars (de Groote, 2001).

In this paper, we show how Kanazawa’s reduction
may be carried out in the case of abstract categorial
grammars of a degree higher than two. The price to
pay is that we do not end up with a datalog query, but
with a provability problem in multiplicative expo-
nential linear logic (Girard, 1987). This is of course
a serious difference. In particular, it is not known
whether the multiplicative exponential fragment of
linear logic is decidable.

The paper is organized as follows. Section 2
presents some mathematical preliminaries concern-
ing the linear λ-calculus. We then introduce, in Sec-
tion 3, the notion of abstract categorial grammar.
Section 4 is the core of the paper, where we ex-
plain Kanazawa’s reduction. To this end, we proceed

by stepwise refinement. We first introduce an obvi-
ously correct but inefficient parsing algorithm. We
then improve it by successive correctness-preserving
transformations. Finally, we conclude in Section 5.

2 Linear λ-calculus

We assume from the reader some acquaintance with
the basic concepts of the (simply typed) λ-calculus.
Nevertheless, in order to fix the terminology and the
notations, we briefly reminds the main definitions
and properties that will be needed in the sequel. In
particular, we review the notions linear implicative
types, higher-order linear signature, and linear λ-
terms built upon a higher-order linear signature.

Let A be a set of atomic types. The set T (A) of
linear implicative types built upon A is inductively
defined as follows:

1. if a ∈ A, then a ∈ T (A);

2. if α, β ∈ T (A), then (α−◦ β) ∈ T (A).

Given two sets of atomic types, A and B, a map-
ping h : T (A) → T (B) is called a type homo-
morphism (or a type substitution) if it satisfies the
following condition:

h(α−◦ β) = h(α)−◦ h(β)

A type substitution that maps atomic types to atomic
types is called a relabeling.

In order to save parentheses, we use the usual
convention of right association, i.e., we write α1 −◦
α2−◦· · ·αn−◦α for (α1−◦(α2−◦· · · (αn−◦α) · · ·)).

A higher-order linear signature consists of a triple
Σ = 〈A,C, τ〉, where:
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1. A is a finite set of atomic types;

2. C is a finite set of constants;

3. τ : C → T (A) is a function that assigns to
each constant in C a linear implicative type in
T (A).

Given, a higher-order linear signature Σ, we write
AΣ , CΣ , and τΣ , for its respective components.

The above notion of linear implicative type is iso-
morphic to the usual notion of simple type. Conse-
quently, there is no technical difference between a
higher-order linear signature and a higher-order sig-
nature. The only reason for using the word linear
is to emphasize that we will be concerned with the
typing of the linear λ-terms, i.e., the λ-terms whose
typing system corresponds to the implicative frag-
ment of multiplicative linear logic (Girard, 1987).

Let X be a infinite countable set of λ-variables.
The set Λ(Σ) of linear λ-terms built upon a higher-
order linear signatureΣ is inductively defined as fol-
lows:

1. if c ∈ CΣ , then c ∈ Λ(Σ);

2. if x ∈ X , then x ∈ Λ(Σ);

3. if x ∈ X , t ∈ Λ(Σ), and x occurs free in t
exactly once, then (λx. t) ∈ Λ(Σ);

4. if t, u ∈ Λ(Σ), and the sets of free variables of
t and u are disjoint, then (t u) ∈ Λ(Σ).

Λ(Σ) is provided with the usual notions of capture-
avoiding substitution, α-conversion, β-reduction,
and η-reduction (Barendregt, 1984). Let t and u be
linear λ-terms. We write t→→β u and t =β u for the
relations of β-reduction and β-conversion, respec-
tively, We use similar notations for the relations of
reduction and conversion induced by η and βη.

Let Σ1 and Σ2 be two signatures. We say that a
mapping h : Λ(Σ1) → Λ(Σ2) is a λ-term homo-
morphism if it satisfies the following conditions:

h(x) = x
h(λx. t) = λx. h(t)
h(t u) = h(t) (h(u))

Given a higher-order linear signature Σ, each lin-
ear λ-term in Λ(Σ) may possibly be assigned a lin-
ear implicative type in T (AΣ). This type assign-
ment obeys the following typing rules:

−Σ c : τΣ(c) (CONS)

x : α −Σ x : α (VAR)

Γ, x : α −Σ t : β

Γ −Σ (λx. t) : (α−◦ β)
(ABS)

Γ −Σ t : (α−◦ β) ∆ −Σ u : α

Γ,∆ −Σ (t u) : β
(APP)

where dom(Γ ) ∩ dom(∆) = ∅.
We end this section by reviewing some properties

that will turn out to be useful in the sequel.
The set of linear λ-terms being a subset of the

set of simply typed λ-terms, it inherits the universal
properties of the latter (e.g., strong normalization, or
existence of a principal type scheme). It also satis-
fies the usual subject-reduction property.

Proposition 1 Let Σ, t, u, Γ , and α be such that
Γ −Σ t : α and t→→β u. Then Γ −Σ u : α. ut

The set of simply typed λ-terms, which is not
closed in general under β-expansion, is known to be
closed under linear β-expansion. Consequently, the
set of linear λ-terms satisfies the subject-expansion
property.

Proposition 2 Let Σ, t, u, Γ , and α be such that
Γ −Σ u : α and t→→β u. Then Γ −Σ t : α. ut

The subject-reduction property also holds for the
relation of βη-reduction. This is not the case, how-
ever, for the subject-expansion property. This pos-
sible difficulty may be circumvented by using the
notion of η-long form.

A linear λ-term is said to be in η-long form when
every of its sub-terms of functional type is either a
λ-abstraction or the operator of an application. The
set of linear λ-terms in η-long forms is closed under
both β-reduction and β-expansion. Consequently,
the following proposition holds.

Proposition 3 Let t and u be λ-terms in η-long
forms. Then, t =βη u if and only if t =β u. ut
In the sequel, we will often assume that the linear λ-
terms under consideration are in η-long forms. This
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will allow us to only consider β-reduction and β-
expansion, while using the relation of βη-conversion
as the notion of equality between linear λ-terms.

Finally, it is known from a categorical coherence
theorem that every balanced simple type is inhab-
ited by at most one λ-term up to βη-conversion (see
(Babaev and Solov’ev, 1982; Mints, 1981)). It is
also known that the principal type of a pure linear λ-
term is balanced (Hirokawa, 1991). Consequently,
the following property holds.

Proposition 4 Let t be a pure linear λ-term (i.e., a
linear λ-term that does not contain any constant),
and let Γ − t : α be its principal typing. If u is
a pure linear λ-term such that Γ − u : α, then
t =βη u. ut

3 Abstract Categorial Grammar

This section gives the definition of an abstract cate-
gorial grammar (ACG, for short) (de Groote, 2001).

We first define a lexicon to be a morphism be-
tween higher-order linear signatures. Let Σ1 =
〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two higher-
order signatures. A lexicon L : Σ1 → Σ2 is a
realization of Σ1 into Σ2, i.e., an interpretation of
the atomic types of Σ1 as types built upon A2, to-
gether with an interpretation of the constants of Σ1

as linear λ-terms built upon Σ2. These two inter-
pretations must be such that their homomorphic ex-
tensions commute with the typing relations. More
formally, a lexicon L from Σ1 to Σ2 is defined to
be a pair L = 〈F,G〉 such that:

1. F : A1 → T (A2) is a function that inter-
prets the atomic types of Σ1 as linear implica-
tive types built upon A2;

2. G : C1 → Λ(Σ2) is a function that interprets
the constants ofΣ1 as linear λ-terms built upon
Σ2;

3. the interpretation functions are compatible with
the typing relation, i.e., for any c ∈ C1, the
following typing judgement is derivable:

−Σ2 G(c) : F̂ (τ1(c)) (1)

where F̂ is the unique homomorphic extension
of F .

Remark that Condition (1) compels G(c) to be
typable with respect to the empty typing environ-
ment. This means that G interprets each constant
c as a closed linear λ-term. Now, defining Ĝ to be
the unique homomorphic extension of G, Condition
(1) ensures that the following commutation property
holds for every t ∈ Λ(Σ1):

if −Σ1 t : α then −Σ2 Ĝ(t) : F̂ (α)

In the sequel, given such a lexicon L = 〈F,G〉,
L (a) will stand for either F̂ (a) or Ĝ(a), according
to the context.

We now define an abstract categorial grammar as
quadruple, G = 〈Σ1, Σ2,L , S〉, where:

1. Σ1 and Σ2 are two higher-order linear signa-
tures; they are called the abstract vocabulary
and the object vocabulary, respectively;

2. L : Σ1 → Σ2 is a lexicon from the abstract
vocabulary to the object vocabulary;

3. S is an atomic type of the abstract vocabulary;
it is called the distinguished type of the gram-
mar.

Every ACG G generates two languages: an ab-
stract language, A(G ), and an object language
O(G ).

The abstract language, which may be seen as a
set of abstract parse structures, is the set of closed
linear λ-terms built upon the abstract vocabulary and
whose type is the distinguished type of the grammar.
It is formally defined as follows:

A(G ) = {t ∈ Λ(Σ1) : −Σ1 t : S is derivable}

The object language, which may be seen as the set of
surface forms generated by the grammar, is defined
to be the image of the abstract language by the term
homomorphism induced by the lexicon.

O(G ) = {t ∈ Λ(Σ2) : ∃u ∈ A(G ). t =βη L (u)}

Both the abstract language and the object lan-
guage generated by an ACG are sets of linear λ-
terms. This allows more specific data structures such
as strings, trees, or first-order terms to be repre-
sented. A string of symbols, for instance, can be
encoded as a composition of functions. Consider an
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MAN : N

WOMAN : N

WISE : N −◦N
As : N −◦ (NPs −◦ S)−◦ S
Ao : N −◦ (NPo −◦ S)−◦ S

SEEK : ((NPo −◦ S)−◦ S)−◦NPs −◦ S
INJ : S −◦ S

Figure 1: The abstract vocabulary Σ1

MAN := man : σ

WOMAN := woman : σ

WISE := λx.wise + x : σ −◦ σ
As := λxp. p (a + x) : σ −◦ (σ −◦ σ)−◦ σ
Ao := λxp. p (a + x) : σ −◦ (σ −◦ σ)−◦ σ

SEEK := λpx. p (λy. x+ seeks + y) : ((σ −◦ σ)−◦ σ)−◦ σ −◦ σ
INJ := λx. x : σ −◦ σ

Figure 2: The lexicon L : Σ1 → Σ2

arbitrary atomic type s, and define σ 4
= s −◦ s to

be the type of strings. Then, a string such as ‘abbac’
may be represented by the linear λ-term:

λx. a (b (b (a (c x)))),

where the atomic strings ‘a’, ‘b’, and ‘c’ are declared
to be constants of type σ. In this setting, the empty
word is represented by the identity function:

ε
4
= λx. x

and concatenation is defined to be functional com-
position:

+
4
= λα. λβ. λx. α (β x),

which is indeed an associative operator that admits
the identity function as a unit.

We end this section by giving a fragment of a cate-
gorial grammar that will serve as a running example

throughout the rest of this paper.1

The abstract vocabulary, which specifies the ab-
stract parse structures, is given in Fig. 1. In this
signature, the atomic types (N , NPs, NPo, S,
S) must be thought of as atomic syntactic cate-
gories. The lexicon, which is given in Fig. 2, al-
lows the abstract structures to be transformed in sur-
face forms. These surface forms are strings that are
built upon an object vocabulary, Σ2, which includes
the following atomic strings as constants of type σ:
man,woman,wise, a, seeks.

For such a grammar, the parsing problem consists
in deciding whether a possible surface form (i.e.,

1This grammar, which follows the categorial type-logical
tradition (Moortgat, 1997), has been devised in order to present
the main difficulties encountered in ACG parsing: it is higher
order (it assigns third-order types to the quantified noun phrases,
and a fourth-order type to an intensional transitive verb such as
seek); it is lexically ambiguous (it assigns two different lexi-
cal entries to the indefinite determiner); and it includes a non-
lexicalized entry (the coercion operator INJ).
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term t ∈ Λ(Σ2)) belongs to the object vocabulary
of the grammar. Spelling it out, is there an abstract
parse structure (i.e., a term u ∈ Λ(Σ1) of type S)
whose image through the lexicon is the given sur-
face form (i.e., L (u) = t).

Consider, for instance, the following string:

a + wise + woman + seeks + a + wise + man (2)

One can show that it belongs to the object language
of the grammar. Indeed, when applying the lexicon
to the following abstract term:

As (WISE WOMAN)
(λx. INJ (SEEK (λp. Ao (WISE MAN)

(λy. INJ (p y)))
x)) (3)

one obtains a λ-term that is βη-convertible to (2). In
fact, it is even the case that (2) is ambiguous in the
sense that there is another abstract term, essentially
different from (3), whose image through the lexicon
yields (2).2 This abstract term is the following:

As (WISE WOMAN)
(λx. Ao (WISE MAN)

(λy. INJ (SEEK (λp. INJ (p y))
x))) (4)

4 Development of the parsing algorithm

In this section, we develop a parsing algorithm based
on proof-search in the implicative fragment of linear
logic. We start with a simple non-deterministic algo-
rithm, which is rather inefficient but whose correct-
ness and semi-completeness are obvious. Then, we
proceed by stepwise refinement, preserving the cor-
rectness and semi-completeness of the algorithm.

By correctness, we mean that if the parsing algo-
rithm answers positively then it is indeed the case
that the input term belongs to the object language of
the grammar. By semi-completeness, we mean that
if the input term belongs to the object language of
the grammar, then the parsing algorithm will even-
tually give a positive answer.

In the present state of knowledge, semi-
completeness is the best we may expect. Indeed,

2If the grammar was provided with a Montague semantics,
the abstract parse structures (3) and (4) would correspond to the
de dicto and de re readings, respectively.

the ACG membership problem is known to be
equivalent to provability in multiplicative exponen-
tial logic (de Groote et al., 2004; Yoshinaka and
Kanazawa, 2005), the decidability of which is still
open.

4.1 Generate and test

Our starting point is a simple generate and test algo-
rithm:

1. derive S using the rules of implicative linear
logic with the types of the abstract constants
(Fig. 3) as proper axioms;

2. interpret the obtained derivation as a linear
λ-term (through the Curry-Howard isomor-
phism);

3. apply the lexicon to the resulting λ-term, and
check whether it yields a term βη-convertible
to the input term.

N (MAN)
N (WOMAN)
N −◦N
N −◦ (NPs −◦ S)−◦ S
N −◦ (NPo −◦ S)−◦ S
((NPo −◦ S)−◦ S)−◦NPs −◦ S
S −◦ S

Figure 3: The type of the abstract constants as proper
axioms

The above algorithm is obviously correct. It is
also semi-complete because it enumerates all the
terms of the abstract language. Now, if the input
term belongs to the object language of the grammar
then its abstract parse structure(s) will eventually ap-
pear in the enumeration.

4.2 Type-driven search

The generate and test algorithm proceeds by trial
and error without taking into account the form of the
input term. In order to improve our algorithm, we
must focus on the construction of an abstract term
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whose image by the lexicon would be the input term.
To this end, we take advantage of Proposition 4.

In general, the input term is not a pure λ-term.
Consequently, in order to apply Proposition 4, we
must consider each occurrence of a constant in the
input term as a fresh free variable. Applying this
idea to our example, we obtain the following prin-
cipal typing that characterizes uniquely the input
string (in η-long β-normal form):

a1 : s1 −◦ s0, wise1 : s2 −◦ s1,
woman : s3 −◦ s2, seeks : s4 −◦ s3,
a2 : s5 −◦ s4, wise2 : s6 −◦ s5, man : s7 −◦ s6
− λz. a1 (wise1 (woman

(seeks (a2 (wise2 (man z))))))) : s7 −◦ s0

The types assigned to the constant occurrences of
the input term induce a new specialized object vo-
cabulary, which we will call ΣS

2 . We take for
granted the definition of the forgetful homomor-
phism

| · | : ΣS
2 → Σ2

that allows to project ΣS
2 on Σ2. Roughly speak-

ing, this forgetful homomorphism consists simply in
identifying the several occurences of a same object
constant. Remark that at the level of the types, this
forgetful homomorphism is a relabeling because the
input string has been given in η-long form. In our
case, this relabeling is the following one:

|si| = s (0 ≤ i ≤ 7)

The next step is to adapt the abstract vocabulary
and the lexicon to this specialized object vocabulary.
We start with the abstract atomic types. Let a ∈
AΣ1 , and define the set ξ(a) as follows:

ξ(a) = {α ∈ T (AΣS
2
) : |α| = L(τΣ1(a))}

For instance, we have:

ξ(N) = {si −◦ sj : 0 ≤ i ≤ 7 & 0 ≤ j ≤ 7}

Then we define the set of atomic types of the spe-
cialized abstract signature as follows:

AΣS
1
= {aα : a ∈ AΣ1 & α ∈ ξ(a)}

and we let
LS(aα) = α

Back to our example, it means that the specialised
abstract signature contains 64 copies of N :

Ns0−◦s0 , Ns0−◦s1 , . . . Ns0−◦s7 ,
...

...
. . .

...
Ns7−◦s0 , Ns7−◦s1 , . . . Ns7−◦s7 .

In order to accommodate the abstract constants, we
look at the lexicon. Consider the first two lexical
entries. Their typing, according to the specialized
object vocabulary, is as follows:

MAN := λz.man z : s7 −◦ s6
WOMAN := λz.woman z : s3 −◦ s2

Accordingly, we let the specialized abstract vocabu-
lary contain the following two constants:

MAN : Ns7−◦s6
WOMAN : Ns3−◦s2

Consider now the third entry:
WISE := λxz.wise (x z) : (s−◦ s)−◦ s−◦ s

There are two ways of specializing it. On the one
hand, the object constant wise may be replaced by its
first occurrence (wise1) or by its second one (wise2).
On the other hand, each occurrence of the atomic
type s may be instantiated by one of s0, s1, ..., s7.
This give rise to 8,192 a priori possibilities. These
possibilities, however, do not all correspond to ac-
tual typing judgements. Filtering out the ill-typed
ones (which is effective since typing is decidable),
we are left with 16 new lexical entries which obey
the following schemes:

WISE1i := λxz.wise1 (x z) :
(si −◦ s2)−◦ si −◦ s1 (0 ≤ i ≤ 7)

WISE2i := λxz.wise2 (x z) :
(si −◦ s6)−◦ si −◦ s5 (0 ≤ i ≤ 7)

and we add the following 16 constants to the spe-
cialized abstract vocabulary:

WISE1i : Nsi−◦s2 −◦Nsi−◦s1 (0 ≤ i ≤ 7)
WISE2i : Nsi−◦s6 −◦Nsi−◦s5 (0 ≤ i ≤ 7)

By proceeding in the same way with the other lex-
ical entries, we obtain a new specialized abstract sig-
nature ΣS

1 together with a new specialized lexicon:

L S : ΣS
1 → ΣS

2

Clearly, there exists a forgetful homomorphism be-
tween ΣS

1 and Σ1, and the specialized abstract sig-
nature and specialized lexicon are such that the fol-
lowing diagram commutes:
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Σ2

ΣS
2

|·|

��
Σ1

L //

ΣS
1

L S
//

|·|

��

We may now use the specialized grammar to drive
the proof-search on which the generate and test algo-
rithm is based. Remember that the specialized object
type assigned to the input string is s7−◦s0. Our pars-
ing problem is then reduced to the following proof-
search problem:

derive Ss7−◦s0 using the rules of implicative
linear logic with the types of the specialized ab-
stract constants as proper axioms.

Now, suppose that we derive Ss7−◦s0 , and that
t ∈ Λ(ΣS

1 ) is the specialized abstract linear λ-term
corresponding to this derivation. By construction of
the specialized grammar, we have that:

−ΣS
2

L s(t) : s7 −◦ s0 (5)

Then, by Proposition 4, we have that

L s(t) =βη λz. a1 (wise1 (woman (seeks
(a2 (wise2 (man z)))))) (6)

because

−ΣS
2
λz. a1 (wise1 (woman (seeks

(a2 (wise2 (man z)))))) : s7 −◦ s0 (7)

amounts to a principal typing. Finally, by taking
t′ = |t|, we obtain a term t′ ∈ Λ(Σ1) such that:

L (t′) =βη λz. a (wise (woman (seeks
(a (wise (man z)))))) (8)

This shows the correctness of the algorithm.
To establish its semi-completeness, suppose that

there exists an abstract linear λ-term t′ ∈ Λ(Σ1)
such that (8). From this, one can easily construct
a term t ∈ Λ(ΣS

1 ) of type S such that |t| = t′

and Equation (6) holds. Since the lexical entries are
given in η-long forms, so is L s(t). Then, because
the specialized input term is in η-long β-normal
form, by Proposition 3, we have that:

L s(t)→→β λz. a1 (wise1 (woman (seeks
(a2 (wise2 (man z)))))) (9)

Then, (5) follows from (7) and (9) by Proposition 2.
From this, it is not too difficult to establish that t is
of type Ss7−◦s0 .

4.3 Proof-search in the implicative fragment of
linear logic

The type-driven algorithm that we have sketched
presents two serious defects. On the one hand, the
construction of the specialized grammar is both time
and space consuming. For our simple running exam-
ple, for instance, we would obtain 6,226 specialized
lexical entries. On the other hand, the reduction de-
pends upon the input string.

In order to circumvent these difficulties, consider
again the specialized lexical entries corresponding
to the third lexical entry of the original grammar:

WISE10 := λxz.wise1 (x z) :
(s0 −◦ s2)−◦ s0 −◦ s1

WISE11 := λxz.wise1 (x z) :
(s1 −◦ s2)−◦ s1 −◦ s1

...
WISE17 := λxz.wise1 (x z) :

(s7 −◦ s2)−◦ s7 −◦ s1
WISE20 := λxz.wise2 (x z) :

(s0 −◦ s6)−◦ s0 −◦ s5
WISE21 := λxz.wise2 (x z) :

(s1 −◦ s6)−◦ s1 −◦ s5
...

WISE27 := λxz.wise2 (x z) :
(s7 −◦ s6)−◦ s7 −◦ s5

In fact, all the specialized object types assigned to
these lexical entries are instances of the principal
typing of the corresponding lexical entry of the orig-
inal lexicon:

wise : j −◦ i − λxz.wise (x z) : (k −◦ j)−◦ k −◦ i

This means that if the specialized object vocabulary
assigns the constant wise with the following type:

wise : j −◦ i (10)

then the specialized abstract vocabulary should con-
tain abstract constants obeying the following type
scheme:

Nk−◦j −◦Nk−◦i (11)
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man[i, j] − N [i, j]

woman[i, j] − N [i, j]

wise[i, j] − N [j, k]−◦N [i, k]

a[i, j] − N [j, k]−◦ (NPs[i, k]−◦ S[l,m])−◦ S[l,m]

a[i, j] − N [j, k]−◦ (NPo[i, k]−◦ S[l,m])−◦ S[l,m]

seeks[i, j] − ((NPo[j, k]−◦ S[l, k])−◦ S[m,n])−◦NPs[l, i]−◦ S[m,n]
− S[i, j]−◦ S[i, j]

Figure 4: The lexicon as a linear logic program

Γ − man[i, j]
Γ − N [i, j]

(M)
Γ − woman[i, j]
Γ − N [i, j]

(W)
Γ − wise[i, j] ∆ − N [j, k]

Γ,∆ − N [i, k]
(WI)

Γ − a[i, j] ∆ − N [j, k] Θ,NPs[i, k] − S[l,m]

Γ,∆,Θ − S[l,m]
(As)

Γ − a[i, j] ∆ − N [j, k] Θ,NPo[i, k] − S[l,m]

Γ,∆,Θ − S[l,m]
(Ao)

Γ − seeks[i, j] ∆,NPo[j, k]−◦ S[l, k] − S[m,n] Θ − NPs[l, i]

Γ,∆,Θ − S[m,n]
(S)

Γ − S[i, j]
Γ − S[i, j]

(I)

Figure 5: The lexicon as a set of inference rules

Writing N [j, k] for Nk−◦j and representing (10) by
the predicate wise[i, j], we may represent the depen-
dence between 10 and 11 by the following linear
logic sequent:3

wise[i, j] − N [j, k]−◦N [i, k]

Applying the same process to the other lexical en-
tries, we end up with the set of sequents given in Fig.
4. Our parsing problem amounts then to a proof-
search problem in linear logic:

3Following (Kanazawa, 2011) and (Kanazawa, 2007), when
writing N [j, k] for Nk−◦j , we write the variables in the reverse
order.

derive

a[0, 1],wise[1, 2],woman[2, 3], seeks[3, 4],
a[4, 5],wise[5, 6],man[6, 7] − S[0, 7]

using the rules of implicative linear logic with
the set of sequents of Fig. 4 as proper axioms.

We give in Fig. 6 and Fig. 7 (in the annex) the
derivations corresponding to the de dicto parsing (3)
and to the de re parsing (4). These two derivations
use the inference rules given in Fig. 5, which are
equivalent to the sequents of Fig. 4.
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