Omorfi—Free and open source morphological lexical database for Finnish

Tommi A Pirinen
Ollscoil Chathair Bhaile Atha Cliath
ADAPT Centre — School of Computing
Dublin City University, Dublin 9
tommi.pirinen@computing.dcu.ie

Abstract

This demonstration presents a freely
available open source lexical database
omorfi. Omorfi is a mature lexico-
graphical database project, started out
as a single-person single-purpose free
open source morphological analyser
project, omorfi has since grown to be
used in variety of applications including
spell-checking, statistical and rule-based
machine translation, treebanking, joint
syntactic and morphological parsing, po-
etry generation, information extraction. In
this demonstration we hope to show both
the variety of end-user facing applications
as well as the tools and interfaces for
computational linguists to make the best
use of a developing product. We show a
shallow database arrangement that has al-
lowed a great variety of contributors from
different projects to extend the lexical
database while not breaking the continued
use of existing end-applications. We hope
to show both the best current practices
for lexical data management and software
engineering with regards to continuous
external project integration of a constantly
developing product. As case examples we
show some of the integrations with follow-
ing applications: Voikko spell-checking
for Windows, Mac OS X, Linux and
Android, statistical machine translation
pipelines with moses, rule-based machine
translation with apertium and traditional
xerox style morphological analysis and
generation. morphological segmentation,
as well as application programming
interfaces for python and Java.

1 Introduction

Omorfi'! (open morfology for Finnish), as a
project is centred around morphological analysis
of Finnish. Morphology is a core for many if not
most natural language processing systems, espe-
cially in the case of such morphology-heavy lan-
guage as Finnish. However, the detail and even
the formatting of the result of morphological pro-
cessing varies from application to application. In
order to produce all the different formats of output
and details of data, one needs to maintain a large
database of all the bits and pieces of lexical in-
formation that is necessary to produce the wanted
readings, and that is exactly what omorfi has be-
come over the years. What we have in the current
version of omorfi, is a lexical database of roots,
morphs and combinatorics, that can be weaved for
use of different applications, documentations, and
automatic test suites by use of simple scripting.
The database is easy to maintain and update for
linguists and contributors. It is robust enough to
support a wide range of applications without the
progress of each application and changes to their
specific data bearing a negative effect to other ap-
plications.

2 Database

The word database, in context of omorfi is cur-
rently used in a very liberal sense, while we have
structured our data in a manner that resembles re-
lational database to the extent that it could be con-
verted into a one by quite simple and fast process,
we have opted to stick with basic tab-separated-
values format for basically two reasons: firstly,
computational linguists and computer scientists
are already well-versed to handle this type of files
with ease and efficiently on the command-line,
they integrate with the basics of unix taught to
any computational linguist in the past 20 years or

"https://github.com/flammie/omorfi/

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 313

so (Church, 1994), and the expected improvement
in the use of real relational databases comes from
the complexity of dozens of tables and billions of
rows of data, whereas lexicon will likely not reach
even million of root-words any time soon. For easy
editing the TSV files are importable and exportable
to all the commonly available free office products:
e.g., LibreOffice? and OpenOffice.

3 Application Data Format Generation

The application of morphs and morphotactics is
based on finite state morphology as documented
by Beesley and Karttunen (2003). In order to be
able to compile our lexical database into a finite-
state automaton format for efficient processing, we
generate a lexc file representation of the data, and
compile it using HFST (Lindén et al., 2011) soft-
ware that is available as a free and open source
system. The translation from tab-separated-values
into lexc is done by python scripts, an example of
formats is in listings 1 and 2. Transformation is
pretty straight-forward and easy to maintain.

lemma homonym new_para origin
Aabel 1 N_STADION wunihu
talo 1 N_TALO kotus
Oosti 1 N_TYYLI unihu

Figure 1: Lexical data in lexeme database, con-
sisting of a unique key of lemma and homonym
number, a paradigm for inflection and source of
origin, which is all the obligatory information for
each word to be added in the database. The origin’s
main importance is copyright’s rather than linguis-
tic information or database structure; in origins
unihu refers to a yet unnamed project in Univer-
sity of Helsinki and kofus stands for Nykysuomen
sanalista by kotus (RILF; research institute of lan-
guages in Finland)

The additional data can be added to each lex-
eme using the lemma and homonym number as an
identifier, these data are stored in a separate TSV
file that is joined to the database in figure 1 to
produce a master database. E.g., a named-entity
recognition project would add lines from Aabel 1
first to 0ésti 1 geo into a file of named en-

Thttp://libreoffice.org

tity classes to add “first name” information to Aa-
bel and ”geographical place” information to Odsti.
Then it can be accessed e.g., to generate readings
of PROPER=FIRST and PROPER=GEO into the lexc
code to be added to a specific named-entity cate-
gorising automaton, or the master database can be
queried for this information when the given lemma
is seen in the analysed text.

4 Applications

The applications we are demonstrating in this pa-
per are: statistical machine translation, rule-based
machine translation, spell-checking and correc-
tion, morphological segmentation, analysis and
generation.

For statistical machine translation, we are us-
ing moses® (Koehn et al., 2007). There are at
least two ways morphological processing can be
used in moses pipeline:segmentation (Dyer et al.,
2008) and factorisation (Koehn and Hoang, 2007).
In segmentation approach, the word-forms are re-
duced to smaller units, such as morphs, or just
words (i.e. root morphs with sufixes intact but
compounds broken), applying traditional statisti-
cal machine translation methods to morphs is sup-
posed to improve the translation quality by de-
creasing the amount of unseen tokens and match-
ing the morphs to many non-Finnish word-forms
more regularly (e.g., aligning suffixes to preposi-
tion). In factored translation, results of morpho-
logical analysis are stored in a vector, each com-
ponent of which can be used at any point of statis-
tical machine translation: typical components of
the vector are e.g., lemma, part-of-speech and full
morphosyntactic description.

For rule-based machine translation setting we
combine omorfi with apertium* (Forcada et al.,
2010). In apertium’s shallow rule-based machine
translation, omotrfi is used for morphological anal-
ysis, disambiguation and morphological genera-
tion.

For spell-checking we use voikko.” In spell-
checking and correction omorfi is used to locate
misspelled words and to find most likely correc-
tions given mispelling (Pirinen and Lindén, 2014).

The morphological analysis and segmentation
are tasks that the above-mentioned end-user pro-
grams depend on, but we also provide an API ac-

Shttp://www.statmt.org/moses/
“http://apertium.sf.net
Shttp://voikko.sf.net

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 314

LEXICON Nouns

[WORD_ID=Aabel] [POS=NOUN] [PROPER=FIRST] :0Aabel N_STADION ;

[WORD_ID=talo] [POS=NOUN]:0talo N_TALO ;

[WORD_ID=06sti] [POS=NOUN] [PROPER=GEQ] :006st N_TYYLI ;

Figure 2: Lexical data in lexc-compatible format for compilation.

cess for python and Java as well as convenience
bash scripts on top of direct access to the automata.

Given this wide array of applications it is obvi-
ous how importance of lexical data management
has gotten to more central position as the project
has progressed: maximal coverage of word-forms
for machine translation is not invariably a good
thing for spell-checker.

Acknowledgments

The research leading to these results has re-
ceived funding from the European Union Seventh
Framework Programme FP7/2007-2013 under
grant agreement PIAP-GA-2012-324414 (Abu-
MaTran).

Omorfi consists of a large body of work from
numerous academic and open source contributors,
including: Inari Listenmaa, Francis M Tyers, Ryan
Johnson, and Juha Kuokkala.

References

Kenneth R Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques.
CSLI, Stanford.

Kenneth Ward Church. 1994. Unix™ for poets.
Notes of a course from the European Summer School
on Language and Speech Communication, Corpus
Based Methods.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
Technical report, DTIC Document.

Mikel L. Forcada, Mireia Ginesti Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Gema Ramirez-Sanchez, Felipe
Sanchez-Martinez, and Francis M. Tyers. 2010.
Apertium: a free/open-source platform for rule-
based machine translation platform. Machine Trans-
lation.

Philipp Koehn and Hieu Hoang. 2007. Factored trans-
lation models. In EMNLP-CoNLL, pages 868—876.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177-180. Association for Computational Lin-
guistics.

Krister Lindén, Erik Axelson, Sam Hardwick,
Tommi A Pirinen, and Miikka Silfverberg. 2011.
Hfst—framework for compiling and applying
morphologies. Systems and Frameworks for
Computational Morphology, pages 67-85.

Tommi A Pirinen and Krister Lindén. 2014. State-
of-the-art in weighted finite-state spell-checking. In
Computational Linguistics and Intelligent Text Pro-
cessing, pages 519-532. Springer.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 315

