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Abstract

In this paper we explore how word vectors
built using word2vec can be used to im-
prove the performance of a classifier dur-
ing Named Entity Recognition. Thereby,
we discuss the best integration of word
embeddings into the classification prob-
lem and consider the effect of the size
of the unlabelled dataset on performance,
reaching the unexpected result that for this
particular task increasing the amount of
unlabelled data does not necessarily in-
crease the performance of the classifier.

1 Introduction

Supervised NLP systems suffer from a funda-
mental data bottleneck problem: though unprece-
dented amounts of data and the computational
power necessary for its processing have become
available, supervised training requires data that
has been annotated for a specific task. The pro-
cess of annotation in turn requires human time and
is thereby inherently connected to high costs, both
in terms of time and money.

Enhancing supervised methods with unsuper-
vised word representations can ameliorate this
problem. Word representations can be trained on
large unannotated corpora and can learn implicit
semantic and/or syntactic information. This in-
formation can then be used to augment a small
amount of annotated data, thereby reducing the
amount of annotated data necessary or improving
the accuracy of a classifier with a given amount of
annotated data.

Different word representations have been
shown to successfully improve various NLP tasks.
For example, Miller et al. (2004) use word clus-
ters during named entity recognition (henceforth
NER) and Bansal et al. (2014) use continuous
word representations as features for dependency

parsing (for a larger overview cf. Bansal et al.
(2014, p. 809)).

Naturally, the main goal of using word repre-
sentations is adding further information to a classi-
fication task. How to make this information max-
imally relevant depends on the task given. Thus,
whether we want two words to be considered sim-
ilar depends on the task in which they are being
classified (cf. Guo et al. (2014)). For example,
Bansal et al. (2014) train their word representa-
tions on dependency context instead of raw linear
context. In the following we will apply word vec-
tors to the task of NER.

Vector based word representations have a suc-
cessful history of use in information retrieval and
computational semantics as an implementation of
the long-standing linguistic hypothesis that words
that occur in similar contexts tend to have simi-
lar meanings (Harris, 1954). More recently, word
vectors have also been shown to be able to capture
linguistic regularities of both semantic (‘king’ to
‘man’ is like ‘queen’ to ‘woman’) and syntactic
nature (‘ran’ to ‘run’ is like ‘laughed’ to ‘laugh’ )
(Mikolov et al., 2013b).

We first discuss our method of extracting word
vectors and adding them to the classification task
before describing the task of NER and our more
experiments more concretely. In the final discus-
sion we primarily explore engineering options re-
lated to the incorporation of the word embeddings
and the size of the unlabelled data set.

2 Extracting the word vectors

The method used to extract word vectors,
word2vec, implements two models that take to-
kenised but otherwise non-processed text and de-
rive a feature vector for every type in this data set.
For this paper we used the continuous skip-gram
model, a neural network model that avoids multi-
ple hidden layers in order to allow extremely fast
and efficient training, for example when compared
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to most clustering algorithms. During training,
each word in the data set is used as an input to a
log-linear classifier, which learns word representa-
tions by trying to predict words occurring within a
certain range to either side of the word.! As those
words occurring further away from the input word
are less likely to be related to it, these words are
given less weight (cf. Mikolov et al. (2013a, p.
4f.) for the original presentation).

Having chosen a word representation, an almost
equally important choice regards the method by
which the chosen feature is incorporated into a lin-
ear model. Using word2vec embeddings for syn-
tactic parsing, Bansal et al. (2014) report that sim-
ply adding the relevant word vector to the feature
vector during training does not yield improved re-
sults. One solution presented for this problem is
clustering the word vectors (Guo et al., 2014). We
adopt this solution using choose k-means cluster-
ing and introduce the clusters into the classifica-
tion problem by adding a further feature represent-
ing the cluster of each word.

3 Named Entity Recognition

NER is a sequence prediction problem. Given a
tokenised text, the task is that of predicting which
words are locations, organisations or persons. To
be able to distinguish multiple adjacent instances
of the same type of named entity and a named en-
tity spanning multiple words, a beginning-inside-
outside (BIO) encoding is used (Sang and Veen-
stra, 1999).

Both training and testing data for the classifier
were taken from the annotated CoNLLO3 corpus
(Sang and De Meulder, 2003). This data, which is
a collection of news wire articles from the Reuters
Corpus, is annotated with part-of-speech (POS),
syntactic chunk and named entity tags. The fea-
tures we extracted given one word in the data are:
(1) tokens plus their POS tags in a window of £2
(2) token’s syntactic chunk in a window of £1
(3) upper-cased tokens in a window of +2 (4) ini-
tial capitalization pattern of tokens in a window
of +2 (4) the previous two predicted tags (5) the
conjunction of the previous tag and the current to-

'Bansal et al. (2014) report that the size of this range or
window has a significant impact on the resulting word vec-
tors. Large windows result in more semantically accurate
groupings, whereas smaller windows result in the grouping
of words with similar part-of-speech tags. Exploring various
window magnitudes was unfortunately not within the scope
of this paper.

ken (6) prefixes and suffixes of the token (7) more
elaborate word type information for the token (as
employed by Zhang et al. (2003)).

A very simple implementation of evaluation
was allowed by the CoNLLO3 scoring method
which evaluates whether the NER system cor-
rectly identified a full named entity. Furthermore,
the evaluation script gives a clear presentation of
performance in the different categories (person,
location, organisation, miscellaneous), though we
do not discuss the potential reasons for variations
in performance in these categories here.

4 Experimental setup

All of our experiments were based on the RCV1
corpus which contains one year of Reuters En-
glish newswire from August 1996 to August 1997
(Lewis et al., 2004). Preprocessing of the RCV1
corpus involved the extraction of text from the
news files as well as sentence and word tokeniza-
tion, both of which we did using the NLTK toolkit.

In order to evaluate the effect of the size of the
non-labelled corpus on performance we trained
word embeddings on different subsets of RCV1.
The smallest subset was the CoNLLO3 corpus.
Furthermore, we trained word2vec models on a
quarter, half and three quarters of RCV1. In Ta-
ble 1 below we give a rough estimate of the num-
ber of documents used for training each model
(where a document contains between a few hun-
dred and several thousand words) as well as the
number of words represented with word vectors
in the word2vec model. As could be expected
given the Zipf distribution of words, the number of
unique types does not grow linearly with the num-
ber of tokens in a model but begins to stagnate at
a large number of documents.

This effect is fortified by necessary design
choices: While training the CoNLLO3 corpus
we set the word2vec ‘min_count’ variable to one
(which means that all tokens will be considered)
whereas for the larger data sets it was set to the
default value of five (only words occurring at least
five times are represented) to reduce processing
costs.

word2vec was reimplemented for use in Python
by Rehurek and Sojka (2010). We use this imple-
mentation to build our models, using the default
setting for vector dimensionality (100), as well as
for the other parameters such as the number of
training iterations and the size of the window.
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data set | nrtypes nr documents
CoNLLO3 | 30290 1393
1/4RCVI1 | 145824 ~ 200000
1A RCV1 | 221066 ~ 400000
3/+4RCV1 | 289345 ~ 600000
RCV1 | 356843 ~ 800000

Table 1: Data set statistics.

The classification itself is a greedy implemen-
tation of the Linear Support Vector Classification
algorithm as implemented in the scikit-learn soft-
ware, using the default values (Pedregosa et al.,
2011). Linear SVC was shown by Ratinov and
Roth (2009) to perform comparably to more com-
putationally complex and costly search algorithms
such as beamsearch or Viterbi.

5 Discussion

During the following discussion of results when
referring to performance we are referring to per-
formance as indicated by the overall F-measure re-
turned by the CoNLLO3 evaluation script.

5.1 Cluster granularity

A practical challenge in generating clusters from
word embeddings lies in choosing the relevant
cluster granularity, i.e. the cluster granularity that
maintains the information relevant to the classifi-
cation task at hand.

Given the considerable time demands of gener-
ating clusters we performed all of our initial gran-
ularity experiments on the word2vec embeddings
constructed from the smallest dataset, CoNLLO3.
Through our first experiment, we attained a rough
idea of a task-adequate dimension of cluster gran-
ularity: We evaluated three dimensions of clusters
(100, 1000 and 5000) extrinsically by considering
their effect on the performance of the NER sys-
tem. Granularity 1000 performed best, suggesting
that this is the correct range of dimensionality.

In a next step, we manually inspected the
clusters built at this granularity (again from the
CoNLLO3 word2vec model). Though they were
rather noisy (e.g. numbers were included in al-
most every cluster?), they seemed to capture some
regularities. In Example 1 we give two excerpts

2To reduce this kind of noise, Turian et al. (2010) prepro-
cess the data by removing all sentences that are less than 90%
lowercase a-z (not counting whitespaces). In previous exper-
iments we did not find this measure to improve performance.

from clusters from this dataset, where the first is
primarily a collection of person names (and some
company names) and the second a collection of
city names. Clusters at granularity 1000 from the
larger datasets were similarly noisy.

(1) a. 0-61-151-7 1.4871 ... Alexia An-

gelica ... Jill Jimy Jolene Juliet
KTM Kandarr ... Yamaha Yi Zina
Zrubakova

b. AMSTERDAM ANKARA Auth ...
VIENNA WARSAW WELLINGTON
WINNIPEG

A solution to the cluster granularity problem
proposed in many papers (e.g. Miller et al. (2004))
is the combination of multiple granularities, for
example through hierarchical clustering. Surpris-
ingly, for training on the CoNLLO3 corpus the
combination of different cluster granularities (we
tried various combinations of 500, 1000 and 1500)
did not improve accuracy. To ascertain the va-
lidity of this finding for all of our word embed-
ding models, we repeated this experiment on the
word2vec model built using half of the RCV1 cor-
pus. Here, we found considerable improvement
in performance, with a growth in performance for
every added granularity (cf. Table 2), suggesting
that further improvement could be achieved with
an even greater number of clusters.?

granularity | performance
1500 | 82.83%
1000 + 1500 | 83.52%
500 + 1000 + 1500 | 83.81%

Table 2: Testing granularity with 1/2 RCV1.

5.2 Unlabelled corpus size

The second question we aimed to elucidate in this
paper is what effect the size of the unlabelled
corpus has on the performance of the NER sys-
tem. Given our experimental set-up, this essen-
tially boils down to the following question: Given
an unlabelled corpus that is both periodically and
stylistically similar to the testing data can we ex-
pect better performance the larger the corpus?

It is important to note that in particular in our
experiments the size of the unlabelled corpus does

3Limited processing power detained us from putting this
hypothesis to the test.
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not have a direct correlation to the percentage of
word types occurring in the testing data that are
also covered by the word embeddings model. This
can be explained with reference to Table 1 and
the setting of the word2vec ‘min_word’ variable
discussed above. Whether choosing to train the
model on all word types occurring in the training
data as well as additional unlabelled data will im-
prove performance by preventing the possibility of
unknown words.

We did not find evidence that suggests a direct
correlation between corpus size and performance.
Rather, the improvement stagnated at around half
of the RCV1 corpus. All results are given in Fig-
ure 1 and compared to the no cluster baseline; the
F-measures given are achieved from adding clus-
ters at granularity 1000, built from word2vec mod-
els trained on the various data sets, to the NER
classifier.
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Figure 1: F-measures given in percent.

One possible explanation for the stagnating per-
formance of the larger data set is that other training
settings need to be employed for optimal training
(e.g. higher vector dimensionality or more train-
ing iterations). Regardless of the validity of this
explanation, the results suggest that optimal train-
ing of a word embeddings model for a certain task
is a more complex problem than training it with
the maximum amount of data.

6 Conclusion

In conclusion, we would like to present a sum-
mary of our results: In Figure 2 we show the Lin-
ear SVC baseline (a) in comparison to our low-
est and our best performing experiment at clus-
ter granularity 1000 (CoNLLO3 and 3/4 RCV 1, (b)
and (c), respectively). Finally, we show the possi-
ble improvement through combination of multiple
granularities by comparing the results of using !/2
RCV1 with just 1000 clusters (d) and combining

this granularity with 500 and 1500 (e).
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Figure 2: F-measures given in percent.

The graph reemphasises the two key observa-
tions discussed above:

1. Performance of the NER model improved
with growth of the size of the unlabelled data
set but only to a limit (here at around 300000
types) at which it even started to drop.

2. Combining multiple cluster granularities led
to our best improvement. It did not improve
performance for smaller data sets.

We believe these findings adequately illumi-
nate the complexity of optimally enhancing NLP
tasks with unsupervised word representations of
any kind.

There are naturally a number of ways this
project could be replicated in a more sophisticated
way to yield a yet more sophisticated understand-
ing and therewith likely further gains in perfor-
mance. For one, the performance by named entity
class is potentially helpful data that was not con-
sidered here. For example, for result (e) in Figure
2 above, class-specific F-measures ranged from
74.77% (miscellaneous) to 91.47% (person). In-
terestingly, for the miscellaneous class few results
fell over the baseline (74.02%) whilst this was the
case for all results for the person class (baseline at
86.27%).

A further question worth exploring is how sim-
ilar the unlabelled data needs to be to the testing
data to achieve good results. Our data was from
the same time period (important for named enti-
ties) and the same domain (newspaper articles).
Exploring how much this can be altered to never-
theless maintain good results would be a valuable
question to answer for insights on optimal training
of word representation models.
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