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Abstract

We present a new approach to word sense
disambiguation derived from recent ideas
in distributional semantics. The input to
the algorithm is a large unlabeled cor-
pus and a graph describing how senses
are related; no sense-annotated corpus is
needed. The fundamental idea is to em-
bed meaning representations of senses in
the same continuous-valued vector space
as the representations of words. In this
way, the knowledge encoded in the lex-
ical resource is combined with the infor-
mation derived by the distributional meth-
ods. Once this step has been carried out,
the sense representations can be plugged
back into e.g. the skip-gram model, which
allows us to compute scores for the differ-
ent possible senses of a word in a given
context.

We evaluated the new word sense dis-
ambiguation system on two Swedish test
sets annotated with senses defined by the
SALDO lexical resource. In both evalu-
ations, our system soundly outperformed
random and first-sense baselines. Its ac-
curacy was slightly above that of a well-
known graph-based system, while being
computationally much more efficient.

1 Introduction

For NLP applications such as word sense disam-
biguation (WSD), it is crucial to use some sort of
representation of the meaning of a word. There
are two broad approaches commonly used in NLP
to represent word meaning: representations based
on the structure of a formal knowledge representa-
tion, and those derived from co-occurrence statis-
tics in corpora (distributional representations). In
a knowledge-based word meaning representation,

the meaning of a word string is defined by map-
ping it to a symbolic concept defined in a knowl-
edge base or ontology, and the meaning of the con-
cept itself is defined in terms of its relations to
other concepts, which can be used to deduce facts
that were not stated explicitly: a mouse is a type
of rodent, so it has prominent teeth. On the other
hand, in a data-driven meaning representation, the
meaning of a word in defined as a point in a ge-
ometric space, which is derived from the word’s
cooccurrence patterns so that words with a similar
meaning end up near each other in the vector space
(Turney and Pantel, 2010). The most important re-
lation between the meaning representations of two
words is typically similarity: a mouse is something
quite similar to a rat. Similarity of meaning is of-
ten operationalized in terms of the geometry of the
vector space, e.g. by defining a distance metric.

These two broad frameworks obviously have
very different advantages: while the symbolic rep-
resentations contain explicit and very detailed re-
lational information, the data-driven representa-
tions handle the notion of graded similarity in
a very natural way, and the fact that they typi-
cally have a wide vocabulary coverage makes it
attractive to integrate them in NLP systems for ad-
ditional robustness (Turian et al., 2010). How-
ever, there are many reasons to study how these
two very dissimilar approaches can complement
each other. Mikolov et al. (2013c) showed that
vector spaces represent more structure than pre-
viously thought: they implicitly encode a wide
range of syntactic and semantic relations, which
can be recovered using simple linear algebra op-
erations. For instance, the geometric relation be-
tween Rome and Italy is similar to that between
Cairo and Egypt. Levy and Goldberg (2014) fur-
ther analyzed how this property can be explained.

One aspect where symbolic representations
seem to have an advantage is in describing word
sense ambiguity: the fact that one surface form
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may correspond to more than one underlying con-
cept. For instance, the word mouse can refer to
a rodent or an electronic device. Except for sce-
narios where a small number of senses are used,
lexical-semantic resources such as WordNet (Fell-
baum, 1998) for English and SALDO (Borin et al.,
2013) for Swedish are crucial in applications that
rely on sense meaning, WSD above all.

Corpus-derived representations on the other
hand typically have only one representation per
surface form, which makes it hard to search
e.g. for a group of words similar to the ro-
dent sense of mouse1 or to reliably use the vec-
tor in machine learning methods that generalize
from the semantics of the word (Erk and Padó,
2010). One straightforward solution could be to
build a vector-space semantic representation from
a sense-annotated corpus, but this is infeasible
since fairly large corpora are needed to induce
data-driven representations of a high quality, while
sense-annotated corpora are small and scarce. In-
stead, there have been several attempts to cre-
ate vectors representing the senses of ambiguous
words, most of them based on some variant of the
idea first proposed by Schütze (1998): that senses
can be seen as clusters of similar contexts. Fur-
ther examples where this idea has reappeared in-
clude the work by Purandare and Pedersen (2004),
as well as a number of recent papers (Huang et
al., 2012; Moen et al., 2013; Neelakantan et al.,
2014; Kågebäck et al., 2015). However, sense dis-
tributions are often highly imbalanced, it is not
clear that context clusters can be reliably created
for senses that occur rarely.

In this work, we build a word sense disambigua-
tion system by combining the two approaches to
representing meaning. The crucial stepping stone
is the recently developed algorithm by Johansson
and Nieto Piña (2015), which derives vector-space
representations of word senses by embedding the
graph structure of a semantic network in the word
vector space. A scoring function for selecting a
sense can then be derived from a word-based dis-
tributional model in a very intuitive way simply by
reusing the scoring function used to construct the
original word-based vector space. This approach
to WSD is attractive because it can leverage corpus
statistics similar to a supervised method trained
on an annotated corpus, but also use the lexical-

1According to Gyllensten and Sahlgren (2015), this prob-
lem can be remedied by making better use of the topology of
the neighborhood around the search term.

semantic resource for generalization. Moreover,
the sense representation algorithm also estimates
how common the different senses are; finding the
predominant sense of a word also gives a strong
baseline for WSD (McCarthy et al., 2007), and is
of course also interesting from a lexicographical
perspective.

We applied the algorithm to derive vector rep-
resentations for the senses in SALDO, a Swedish
semantic network (Borin et al., 2013), and we used
these vectors to build a disambiguation system that
can assign a SALDO sense to ambiguous words
occurring in free text. To evaluate the system,
we created two new benchmark sets by processing
publicly available datasets. On these benchmarks,
our system outperforms a random baseline by a
wide margin, but also a first-sense baseline signif-
icantly. It achieves a slightly higher score than
UKB, a highly accurate graph-based WSD sys-
tem (Agirre and Soroa, 2009), but is several orders
of magnitude faster. The highest disambiguation
accuracy was achieved by combining the proba-
bilities output by the two systems. Furthermore,
in a qualitative inspection of the most ambiguous
words in SALDO for each word class, we see that
the sense distribution estimates provided by the
sense embedding algorithm are good for nouns,
adjectives, and adverbs, although less so for verbs.

2 Representing the meaning of words
and senses

In NLP, the idea of representing word meaning
geometrically is most closely associated with the
distributional approach: the meaning of a word
is reflected in the set of contexts in which it ap-
pears. This idea has a long tradition in linguistics
and early NLP (Harris, 1954).

The easiest way to create a geometric word
representation is to implement the distributional
idea directly: for each word, we create a vector
where each dimension corresponds to a feature de-
scribing the frequency of contexts where the tar-
get word has appeared. Typically, such a feature
corresponds to the document identity or another
word with which the target word has cooccurred
(Sahlgren, 2006), but in principle we can define
arbitrary contextual features, for instance the syn-
tactic context (Padó and Lapata, 2007). In addi-
tion, a dimensionality reduction step may be used
to map the high-dimensional sparse vector space
onto a smaller-dimensional space (Landauer and
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Dumais, 1997; Kanerva et al., 2000).
As an alternative to context-counting vectors,

geometric word representations can be derived in-
directly, as a by-product when training classifiers
that predict the context of a focus word. While
these representations have often been built using
fairly complex machine learning methods (Col-
lobert and Weston, 2008; Turian et al., 2010), such
representations can also be created using much
simpler and computationally more efficient log-
linear methods that seem to perform equally well
(Mnih and Kavukcuoglu, 2013; Mikolov et al.,
2013a). In this work, we use the skip-gram model
by Mikolov et al. (2013a): given a focus word, the
contextual classifier predicts the words around it.

2.1 From word meaning to sense meaning

The crucial stepping stone to WSD used in this
work is to embed the semantic network in a vec-
tor space: that is, to associate each sense si j with a
sense embedding, a vector E(si j) of real numbers,
in a way that makes sense given the topology of the
semantic network but also reflects that the vectors
representing the lemmas are related to those corre-
sponding to the underlying senses (Johansson and
Nieto Piña, 2015).

Figure 1 shows an example involving an
ambiguous word. The figure shows a two-
dimensional projection2 of the vector-space rep-
resentation of the Swedish word rock (meaning ei-
ther ‘coat’ or ‘rock music’) and some words re-
lated to it: morgonrock ‘dressing gown’, jacka
‘jacket’, kappa ‘coat’, oljerock ‘oilskin coat’,
långrock ‘long coat’, musik ‘music’, jazz ‘jazz’,
hårdrock ‘hard rock’, punkrock ‘punk rock’, funk
‘funk’. The words for styles of popular music and
the words for pieces of clothing are clearly sepa-
rated, and the polysemous word rock seems to be
dominated by its music sense.

The sense embedding algorithm will then pro-
duce vector-space representations of the two
senses of rock. Our lexicon tells us that there are
two senses, one related to clothing and the other to
music. The embedding of the first sense (‘coat’)
ends up near the other items of clothing, and the
second sense (‘rock music’) near other styles of
music. Furthermore, the embedding of the lemma
consists of a mix of the embeddings of the two

2The figures were computed in scikit-learn (Pe-
dregosa et al., 2011) using multidimensional scaling of the
distances in a 512-dimensional vector space.

senses: mainly of the music sense, which reflects
the fact that this sense is most frequent in corpora.

rock

rock-1

rock-2

kappa

oljerock

jacka

långrock

morgonrock

musik

hårdrock punkrock

jazz

funk

Figure 1: Vector-space representation of the
Swedish word rock and its two senses, and some
related words.

2.2 Embedding the semantic network

We now summarize the method by Johansson and
Nieto Piña (2015) that implements what we de-
scribed intuitively above,3 and we start by intro-
ducing some notation. For each lemma li, there
is a set of possible underlying concepts (senses)
si1, . . . ,simi for which li is a surface realization.
Furthermore, for each sense si j, there is a neigh-
borhood set consisting of concepts semantically
related to si j. Each neighbor ni jk of si j is asso-
ciated with a weight wi jk representing the degree
of semantic relatedness between si j and ni jk. How
we define the neighborhood, i.e. what we mean
by the notion of “semantically related,” will obvi-
ously have an impact on the result of the embed-
ding process. In this work, we simply assume that
it can be computed from any semantic network,
e.g. by picking a number of hypernyms and hy-
ponyms in a lexicon such as WordNet for English,
or primary and secondary descriptors if we are us-
ing SALDO for Swedish.

We assume that for each lemma li, there ex-
ists a D-dimensional vector F(li) of real numbers;
these vectors can be computed using any method
described in Section 2. Finally, we assume that
there exists a distance function ∆(x,y) that returns
a non-negative real number for each pair of vec-
tors in RD; in this work, this is assumed to be the
squared Euclidean distance.

3http://demo.spraakdata.gu.se/richard/
scouse
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The goal of the algorithm is to associate each
sense si j with a sense embedding, a real-valued
vector E(si j) in the same vector space as the
lemma embeddings. The lemma embeddings and
the sense embeddings will be related through a
mix constraint: the lemma embedding F(li) is de-
composed as a convex combination ∑ j pi jE(si j),
where the {pi j} are picked from the probability
simplex. Intuitively, the mix variables correspond
to the occurrence probabilities of the senses, but
strictly speaking this is only the case when the vec-
tors are built using context counting.

We now have the machinery to state the opti-
mization problem that formalizes the intuition de-
scribed above: the weighted sum of distances be-
tween each sense and its neighbors is minimized,
and the solution to the optimization problem so
that the mix constraint is satisfied for the senses
for each lemma. To summarize, we have the fol-
lowing constrained optimization program:

minimize
E,p

∑
i, j,k

wi jk∆(E(si j),E(ni jk))

subject to ∑
j

pi jE(si j) = F(li) ∀i

∑
j

pi j = 1 ∀i

pi j ≥ 0 ∀i, j

(1)

This optimization problem is hard to solve with
off-the-shelf methods, but Johansson and Nieto
Piña (2015) presented an approximate algorithm
that works in an iterative fashion by considering
one lemma at a time, while keeping the embed-
dings of the senses of all other lemmas fixed.

It can be noted that the vast majority of words
are monosemous, so that the procedure will leave
the embeddings of these words unchanged. These
will then serve as as anchors when creating the
embeddings for the polysemous words; the re-
quirement that lemma embeddings are a mix of the
sense embeddings will also constrain the solution.

3 Using the skip-gram model to derive a
scoring function for word senses

When sense representations have been created us-
ing the method described in Section 2, they can be
used in applications including WSD. Exactly how
this is done in practice will depend on the prop-
erties of the original word-based vector space; in

this paper, we focus on the skip-gram model by
Mikolov et al. (2013a).

In its original formulation, the skip-gram model
is based on modeling the conditional probability
that a context feature c occurs given the lemma l:

P(c|l) = eF ′(c)·F(l)

Z(l)

The probability is expressed in terms of lemma
embeddings F(l) and context F ′(c): note that the
word and context vocabularies can be distinct, and
that the corresponding embedding spaces F and F ′

are separate. Z(l) is a normalizer so that the prob-
abilities sum to 1.

The skip-gram training algorithm then maxi-
mizes the following objective:

∑
i, j

logP(ci j|li)

Here, the li are the lemmas occurring in a corpus,
and ci j the contextual features occurring around li.
In practice, a number of approximations are typi-
cally applied to speed up the optimization; in this
work, we applied the negative sampling approach
(Mikolov et al., 2013b), which uses a few random
samples instead of computing the normalizer Z(l).

By embedding the senses in the same space as
the words using the algorithm in Section 2, our im-
plicit assumption is that contexts can be predicted
by senses in the same way they can be predicted
by words: that is, we can use the sense embed-
dings E(s) in place of F(l) to model the probabil-
ity P(c|s). Assuming the context features occur-
ring around a token are conditionally independent,
we can compute the joint probability of a sense
and the context, conditioned on the lemma:

P(s,c1, . . . ,cn|l) = P(s|l)P(c1, . . . ,cn|s)

= P(s|l)P(c1|s) · · ·P(cn|s).

Now we have what we need to compute the poste-
rior sense probabilities4:

P(s|c1, . . . ,cn, l) =
P(s|l)P(c1,...,cn|s)

∑si P(si|l)P(c1,...,cn|si)

= P(s|l)e(F ′(c1)+...+F ′(cn))·E(s)

∑si P(si|l)e(F
′(c1)+...+F ′(cn))·E(si)

4We are using unnormalized probabilities here. Includ-
ing Z(s) makes the computation much more complex, but
changes the result very little.
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Finally, we note that we can use a simpler formula
if we are only interested in ranking the senses, not
of their exact probabilities:

score(s) = logP(s|l)+∑
ci

F ′(ci) ·E(s) (2)

We weighted the context vector F ′(ci) by the dis-
tance of the context word from the target word,
corresponding to the random window sizes com-
monly used in the skip-gram model. We leave the
investigation of more informed weighting schemes
(Kågebäck et al., 2015) to future work. Further-
more, we did not make a thorough investigation
of the effect of the choice of the probability dis-
tribution P(s|l) of the senses, but just used a uni-
form distribution throughout; it would be inter-
esting to investigate whether the accuracy could
be improved by using the mix variables estimated
in Section 2, or a distribution that favors the first
sense.

4 Application to Swedish data

The algorithm described in Section 2 was applied
to Swedish data: we started with lemma embed-
dings computed from a corpus, and then created
sense embeddings by using the SALDO semantic
network (Borin et al., 2013).

4.1 Creating lemma embeddings

We created a corpus of 1 billion words down-
loaded from Språkbanken, the Swedish language
bank.5 The corpora are distributed in a format
where the text has been tokenized, part-of-speech-
tagged and lemmatized. Compounds have been
segmented automatically and when a lemma was
not listed in SALDO, we used the parts of the com-
pounds instead. The input to the software com-
puting the lemma embedding consisted of lemma
forms with concatenated part-of-speech tags, e.g.
dricka..vb for the verb ‘to drink’ and dricka..nn for
the noun ‘drink’. We used the word2vec tool6 to
build the lemma embeddings. All the default set-
tings were used, except the vector space dimen-
sionality which was set to 512. We made a small
modification to word2vec so that it outputs the
context vectors as well, which we need to compute
the scoring function defined in Section 3.

5http://spraakbanken.gu.se
6https://code.google.com/p/word2vec

4.2 SALDO, a Swedish semantic network

SALDO (Borin et al., 2013) is the most compre-
hensive open lexical resource for Swedish. As
of May 2014, it contains 125,781 entries orga-
nized into a single semantic network. Compared
to WordNet (Fellbaum, 1998), there are similari-
ties as well as considerable differences. Both re-
sources are large, manually constructed semantic
networks intended to describe the language in gen-
eral rather than any specific domain. However,
while both resources are hierarchical, the main
lexical-semantic relation of SALDO is the associ-
ation relation based on centrality, while in Word-
Net the hierarchy is taxonomic. In SALDO, when
we go up in the hierarchy we move from spe-
cialized vocabulary to the most central vocabulary
of the language (e.g. ‘move’, ‘want’, ‘who’); in
WordNet we move from specific to abstract (e.g.
‘entity’). Every entry in SALDO corresponds to
a specific sense of a word, and the lexicon con-
sists of word senses only. There is no correspon-
dence to the notion of synonym set as in WordNet.
The sense distinctions in SALDO are more coarse-
grained than in WordNet, which reflects a differ-
ence between the Swedish and the Anglo-Saxon
traditions of lexicographical methodologies.

Each entry except a special root is connected
to other entries, its semantic descriptors. One of
the semantic descriptors is called the primary de-
scriptor, and this is the entry which better than
any other entry fulfills two requirements: (1) it is
a semantic neighbor of the entry to be described
and (2) it is more central than it. That two words
are semantic neighbors means that there is a direct
semantic relationship between them, for instance
synonymy, hyponymy, antonymy, meronymy, or
argument–predicate relationship; in practice most
primary descriptors are either synonyms or hyper-
nyms. Centrality is determined by means of sev-
eral criteria. The most important criterion is fre-
quency: a frequent word is more central than an
infrequent word. Other criteria include stylistic
value (a stylistically unmarked word is more cen-
tral) and derivation (a derived form is less central
than its base form), semantic criteria (a hypernym
being more central than a hyponym).

To exemplify, here are a few instances of entries
in SALDO and their descriptors.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 73



Entry Primary Secondary
bröd ‘bread’ mat ‘food’ mjöl ‘flour’
äta ‘eat’ leva ‘to live’
kollision ‘collision’ kollidera ‘to collide’
cykel ‘bicycle’ åka ‘to go’ hjul ‘wheel’

When using SALDO in the algorithm described
in Section 2, we need to define a set of neigh-
bors ni jk for every sense si j, as well as weights
wi jk corresponding to the neighbors. We defined
the neighbors to be the primary descriptor and in-
verse primaries (the senses for which si j is the pri-
mary descriptor); we excluded neighbors that did
not have the same part-of-speech tag as si j. The
secondary descriptors were not used. For instance,
bröd has the primary descriptor mat, and a large
set of inverse primaries mostly describing kinds
(e.g. rågbröd ‘rye bread’) or shapes (e.g. limpa
‘loaf’) of bread. The neighborhood weights were
set so that the primary descriptor and the set of
inverse primaries were balanced: e.g. 1 for mat
and 1/N if there were N inverse primaries. After
computing all the weights, we normalized them so
that their sum was 1. We additionally considered a
number of further heuristics to build the neighbor-
hood sets, but they did not seem to have an effect
on the end result.

5 Inspection of predominant senses of
highly ambiguous words

Before evaluating the full WSD system in Sec-
tion 6, we carry out a qualitative study of the mix
variables computed by the algorithm described in
Section 2. Determining which sense of a word is
the most common one gives us a strong baseline
for word sense disambiguation which is often very
hard to beat in practice (Navigli, 2009). McCarthy
et al. (2007) presented a number of methods to find
the predominant word sense in a given corpus.

In Section 2, we showed how the embedding of
a lemma is decomposed into a mix of sense em-
beddings. Intuitively, if we assume that the mix
variables to some extent correspond to the occur-
rence probabilities of the senses, they should give
us a hint about which sense is the most frequent
one. For instance, in Figure 1 the embedding of
the lemma rock is closer to that of the second
sense (‘rock music’) than to that of the first sense
(‘coat’), because the music sense is more frequent.

For each lemma, we estimated the predominant
sense by selecting the sense for which the corre-
sponding mix variable was highest. To create a
dataset for evaluation, an annotator selected the

most polysemous verbs, nouns, adjectives, and ad-
verbs in SALDO (25 of each class) and determined
the most frequent sense by considering a random
sample of the occurrences of the lemma. Table
1 shows the accuracies of the predominant sense
selection for all four word classes, as well as the
average polysemy for each of the classes.

Part of speech Accuracy Avg. polysemy
Verb 0.48 6.28
Noun 0.76 6.12

Adjective 0.76 4.24
Adverb 0.84 2.20
Overall 0.71 4.71

Table 1: Predominant sense selection accuracy.

For nouns, adjectives, and adverbs, this heuris-
tic works quite well. However, similar to what was
seen by McCarthy et al. (2007), verbs are the most
difficult to handle correctly. In our case, this has
a number of reasons, not primarily that this is the
most polysemous class. First of all, the most fre-
quent verbs, which we evaluate here, often partici-
pate in multi-word units such as particle verbs and
in light verb constructions. While SALDO con-
tains information about many multi-word units,
we have not considered them in this study since
our preprocessing step could not deterministically
extract them (as described in Section 4). Secondly,
we have noticed that the sense embedding process
has a problem with verbs where the sense distinc-
tion is a distinction between transitive and intran-
sitive use, e.g. koka ‘to boil’. This is because
the transitive and intransitive senses typically are
neighbors in the SALDO network, so their context
sets will be almost identical and the algorithm will
try to minimize the distance between them.

6 WSD evaluation

To evaluate our new WSD system, we applied it
to two test sets and first compared it to a num-
ber of baselines, and finally to UKB, a well-known
graph-based WSD system.

Our two test sets were the SALDO examples
(SALDO-ex)7 and the Swedish FrameNet exam-
ples (SweFN-ex)8. Both resources consist of sen-
tences selected by lexicographers for illustration
of word senses. At the time of our experiments,
SALDO-ex contained 4,489 sentences. In each

7http://spraakbanken.gu.se/resurs/saldoe
8http://spraakbanken.gu.se/resurs/swefn
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sentence, one of the tokens (the target word) has
been marked up by a lexicographer and assigned
a SALDO sense. SweFN-ex contained 7,991 sen-
tences, and as in SALDO-ex the annotation con-
sists of disambiguated target words: the differ-
ence is that instead of a SALDO sense, the tar-
get word is assigned a FrameNet frame (Fill-
more and Baker, 2009). However, using the
Swedish FrameNet lexicon (Friberg Heppin and
Toporowska Gronostaj, 2012), frames can in most
cases be deterministically mapped to SALDO
senses: for instance, the first SALDO sense of the
noun stam (‘trunk’ or ‘stem’) belongs to the frame
PLANT SUBPART, while the second sense (‘tribe’)
is in the frame AGGREGATE.

We preprocessed these two test sets using
Språkbanken’s annotation services9 to tokenize,
compound-split, and lemmatize the texts and to
determine the set of possible senses in a given con-
text. All unambiguous instances were removed
from the sets, and we also excluded sentences
where the target consisted of more than one word.
We then ended up with 1,177 and 1,429 instances
in SALDO-ex and SweFN-ex, respectively. Figure
2 shows the distribution of the number of senses
for target word in the combination of the two sets.
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Figure 2: Histogram of the number of senses for
target words in the test sets.

6.1 Comparison to baselines
We applied the contextual WSD method defined
by Eq. 2 to the two test sets. As the simplest base-
line, we used a random selection. A much more

9http://spraakbanken.gu.se/korp/
annoteringslabb/

difficult baseline is to select the first sense10 in the
inventory; this baseline is often very hard to beat
for WSD systems (Navigli, 2009). Furthermore,
we evaluated a simple approach that selects the
sense whose value of the mix variable in Section 2
is highest. Table 2 shows the result.

System SALDO-ex SweFN-ex
Random 39.3 40.3
Sense 1 52.5 53.5
By mix variables 47.6 53.9
Contextual WSD 62.7 63.3

Table 2: Comparison to baselines.

We see that our WSD system clearly outperforms
not only the trivial but also the first-sense baseline.
Selecting the sense by the value of the mix vari-
able (which can be regarded as a prior probability)
gives a result very similar to the first-sense base-
line: this can be useful in sense inventories where
senses are not ranked by frequency or importance.
(This result is lower in SALDO-ex, which is heav-
ily dominated by verbs; as we saw in Section 5,
the mix variables seem less reliable for verbs.)

6.2 Analysis by part of speech
The combined set of examples from SALDO-ex
and SweFN-ex contains 1,723 verbs, 575 nouns,
287 adjectives, and 15 adverbs. We made a break-
down of the result by the part of speech of the tar-
get word, and we show the result in Table 3.

PoS tag Accuracy Avg. polysemy
Adjective 62.3 2.7
Adverb 80.0 2.4
Noun 71.1 2.6
Verb 60.5 3.3

Table 3: Results for different parts of speech.

Again, we see that verbs pose the greatest dif-
ficult for our methods, while disambiguation ac-
curacy is higher for nouns. Adjectives are also
difficult to handle, with an accuracy just slightly
higher than what we had for the verbs. (There are
too few adverbs to allow any reliable conclusion
to be drawn about them.) To some extent, the dif-
ferences in accuracy might be expected to be cor-
related with the degree of polysemy, but there are

10Unlike in WordNet, SALDO’s senses are not explicitly
sorted by frequency. The first sense is the one that the lexi-
cographers regarded as the most important, which will often
but not always be the same as the most frequent one.
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also other factors involved, such as the structure of
the SALDO network. We leave an investigation of
the causes of these differences to future work.

6.3 Comparison to graph-based WSD

To find a more challenging comparison than the
baselines, we applied the UKB system, a WSD
system based on personalized PageRank in the
sense graph, which has achieved a very compet-
itive result for a system without any annotated
training data (Agirre and Soroa, 2009). Because
of limitations in the UKB software, the test sets
are slightly smaller (1,055 and 1,309 instances, re-
spectively), since we only included test instances
where the lemmas could be determined unambigu-
ously. The result is presented in Table 4. This ta-
ble also includes the result of a combined system
where we simply added Eq. 2 to the log of the
probability output by UKB.

System SALDO-ex SweFN-ex
Contextual WSD 64.0 64.2
UKB 61.2 61.2
Combined 66.4 66.0

Table 4: Comparison to the UKB system.

Our system outperforms the UKB system by a
slight margin; while the difference is not statisti-
cally significant, the consistent figures in the two
evaluations suggest that the results reflect a true
difference. However, in both evaluations, the com-
bination comes out on top, suggesting that the two
systems have complementary strengths.

Finally, we note that our system is much faster:
UKB processes the SweFN-ex set in 190 seconds,
while our system processes the same set in 450
milliseconds, excluding startup time.

7 Conclusion

We have presented a new method for word
sense disambiguation derived from the skip-gram
model. The crucial step is to embed a semantic
network consisting of linked word senses into a
continuous-vector word space. Unlike previous
approaches for creating vector-space representa-
tions of senses, and due to the fact that we rely
on the network structure, we can create represen-
tations for senses that occur very rarely in corpora.
Once the senses have been embedded in the vector
space, deriving a WSD model is straightforward.
The word sense embedding algorithm (Johansson

and Nieto Piña, 2015) takes a set of embeddings
of lemmas, and uses them and the structure of the
semantic network to induce the sense representa-
tions. It hinges on two ideas: 1) that sense embed-
dings should preserve the structure of the semantic
network as much as possible, i.e. that two senses
should be close geometrically if they are neighbors
in the graph, and 2) that lemma embeddings can be
decomposed into separate sense embeddings.

We applied the sense embedding algorithm to
the senses of SALDO, a Swedish semantic net-
work, and a vector space trained on a large
Swedish corpus. These vectors were then used to
implement a WSD system, which we evaluated on
two new test sets annotated with SALDO senses.
The results showed that our new WSD system
not only outperforms the baselines, but also UKB,
a high-quality graph-based WSD implementation.
While the accuracies were comparable, our system
is several hundred times faster than UKB.

Furthermore, we carried out a qualitative in-
spection of the mix variables estimated by the em-
bedding algorithms and found that they are rela-
tively good for predicting the predominant word
senses: more so for nouns, adjectives and adverbs,
less so for verbs. This result is consistent with
what we saw in the quantitative evaluations, where
selecting a sense based on the mix variable gave an
accuracy similar to the first-sense baseline.

In future work, we will carry out a more sys-
tematic evaluation of the word sense disambigua-
tion system in several languages. For Swedish, a
more large-scale evaluation requires an annotated
corpus, which will give more reliable quality esti-
mates than the lexicographical examples we have
used in this work. Fortunately, a 100,000-word
multi-domain corpus of contemporary Swedish is
currently being annotated on several linguistic lev-
els in the KOALA project (Adesam et al., 2015),
including word senses as defined by SALDO.
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