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Abstract

We present a study in which we seek to
interpret spatial references that are part
of in-situ route descriptions. Our aim
is to resolve these references to actual
entities and places in the city using a
crowdsourced geographic database (Open-
StreetMap). We discuss the problems re-
lated to this task, and present a possi-
ble automatic reference resolution method
that can find the correct referent in 68%
of the cases using features that are easily
computable from the map.

1 Introduction

When humans give route instructions to each
other, such instructions typically involve a wide
range of references, such as references to land-
marks (“Turn at the church.”), to the spatial config-
uration (“The road is bending to the left.”), to the
current path of movement (“Keep walking along
this road.”), or to the direction of movement (‘““You
should turn to the right.”). Determining which
places and objects are referred to is a significant
part of designing geographical information sys-
tems that aim at interacting with the user in natural
language. A long-term goal for our automatic nav-
igation system (Boye et al., 2014) is to be able to
ground that a route instruction was understood or
to enable the user to ask questions about a partic-
ular landmark. This requires resolving the user’s
geographic references.

Resolving referring expressions (REs) to enti-
ties in the world is an ongoing area of research.!
In written text, including web pages and search
queries, references are often to geographic entities

INote that this is different from coreference resolution,
where the objective is to identify those expressions in a text
that refer to the same entity, but not to identify what that en-
tity is (Mitkov, 2010).

such as cities or countries (Amitay et al., 2004;
Martins et al., 2006; Pouliquen et al., 2006). In
spoken language, the domain is typically restricted
to a task that one or more speakers are solving by
referring to the objects that are involved, e.g. the
pieces of a puzzle (Funakoshi et al., 2012; Ma-
tuszek et al., 2014).

This paper addresses the problem of mapping
from linguistic REs that refer to aspects of space
to objects in a map representation of that space.
We collected a number of path descriptions from
pedestrians, similar to the corpus of (Blaylock,
2011). The REs we are interested in refer to en-
tities in a real urban environment and the map rep-
resentation is general rather than tailored to this
particular problem. We give an overview of the
kinds of knowledge needed to resolve different
kinds of references that speakers use to describe
their environment while navigating in it. We dis-
cuss the challenges that occur when real language
data meets real spatial data and suggest ways to
address them.

2 Representing Space: OpenStreetMap

OpenStreetMap (OSM) is a crowdsourcing project
that creates a geographical knowledge base (Hak-
lay and Weber, 2008). Similar to Wikipedia,
the data is open? and has been used for research
projects in different areas, as well as for education
and to create maps for special needs, such as bicy-
cle or hiking maps.’

The geographic data can be downloaded in an
xml format, Figure 1 shows a short extract. There
are two basic data types that are used to rep-
resent objects in the OSM database: nodes and
ways. Ways are sequences of nodes, used for rep-
resenting a wide variety of objects, such as roads,

Zhttp://www.openstreetmap.org/copyright

3For an overview of OSM-based applications for re-
search, education, and other purposes, cf. http://wiki.
openstreetmap.org
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<node 1d="485981500"
<tag k="amenity" v="bench"/>

</node>

<node 1d="674212016"

1lat="59.3360310" lon="18.0510617">

lat="59.3380430" lon="18.0529256">

<tag k="addr:housenumber" v="15"/> <tag k="addr:street" v="Upplandsgatan"/>

</node>
<way 1d="39228957">

<nd ref="469951578"/> <nd ref="469955649"/> <nd ref="469952066"/>
<tag k="highway" v="footway"/> <tag k="surface" v="paved"/>

</way>

Figure 1: An extract of OpenStreetMap data. Each entity has an ID and can be annotated with several
tags. This extract shows two nodes (a bench and a street address), and a way, consisting of several nodes.

squares, areas and buildings (in the three latter
cases, the first node in the sequence is the same as
the last node, and hence the way forms the perime-
ter of a polygon). An intersection between two
streets is represented by the node where the ways
corresponding to the streets meet. Both nodes and
ways can be annotated with a set of tags to specify
names and types, and additional information such
as opening times or links to homepages.

The OSM wiki explains the available set of
tags* and how they should be used. However, the
geographical situation is often not as clear as the
given examples and the same kind of object can
be represented in different ways, as we will de-
scribe further in Section 5. Furthermore, the data
is also incomplete: Not all things that speakers
mention are mapped, not all details about entities
are mapped, and there are errors, e.g. spelling mis-
takes or wrong tags.

On the other hand, OSM often provides a fine
level of detail in urban areas for objects that can
be useful for pedestrian navigation. This includes
information about many kinds of landmarks and
smaller objects such as artworks or benches. The
crowdsourced nature of the data also makes it pos-
sible for the crowd to correct mistakes in spellings
or positions, as well as to keep the map updated.

3 Spatial Descriptions

In order to obtain REs that are used while the
speaker is moving in the environment on foot, we
carried out the following study.

‘http://wiki.openstreetmap.org/wiki/Map_
Features

3.1 Data Collection

For this study, we used data from a previous data
collection (Go6tze and Boye, 2013) in which sub-
jects were asked to walk a specific route and de-
scribe their path in a way that would make it pos-
sible for someone to follow them. We thereby put
participants into the same environment in which
we would later like to guide them. Instead of read-
ing from a 2-dimensional map, our participants
can now see the environment in the same way as
users of a route-giving system experience it.

The experiment was set up as a Wizard-of-Oz
situation in which the participants were asked to
describe to a spoken dialog system with the task
of making it understand. They were told that the
system, like them, had a 3-dimensional and 1st-
person view of the environment. The participants
were not instructed to interact with the system in
any special language but were advised to try out
what they thought was suitable and that the sys-
tem would ask them if it needed clarification, in
which case they should stop until the situation was
clarified. In this way, the experimenter was able to
interfere in situations where an instruction was ev-
idently ambiguous. Otherwise, the experimenter
took as little initiative as possible in order to avoid
influencing them in their choice of REs.

The data was collected in English,’ in which all
participants reported to be fluent. All were slightly
familiar or familiar with the area and all were able
to complete the task.

The route that the participants were asked to
walk was a round tour that started and ended out-
side the doors of our laboratory. The route was
approximately two kilometers long and was given

3The data collection was carried out as part of the Euro-
pean Spacebook project: www. spacebook-project.eu
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Figure 2: An example segment for the utterance:
“I continue in a this direction down the steps [L1]
towards the arch [L2]” A and B indicate the start
and the goal position respectively. The lines indi-
cate the speaker’s direction and field of view.

to the participants on an unlabelled map. The map
had street and other names removed, as well as
common symbols, e.g. for churches or bus stops.

The recorded speech was transcribed and seg-
mented into utterances, and aligned with the GPS
signal. Figure 2 shows an example utterance, the
GPS coordinates (the points A and B) indicate
where the instruction was given and where the next
instruction followed. In this example, the partici-
pant referred to two objects, “the steps” and “the
arch”. Both of these objects are OSM ways and
indicated by the lines L1 and L2 in the figure.

Here, we consider the route descriptions of
three of the study participants. Note that none of
the descriptions contain any names of streets be-
cause we asked participants to avoid them. The
original purpose of collecting this data was to
investigate what landmarks are used for guiding
someone and street names are known to be hard
to recognize in a route finding scenario (Tom and
Denis, 2004). We are extracting all REs they used,
but restrict ourselves here to noun phrases that re-
fer to entities that could in principle be represented
on a map (explicitly or implicitly), such as “a junc-
tion” or “the church”. Noun phrases that refer to
directions (“to the left’) or that are referring to the
task (“I made a mistake”) are excluded. This re-
sults in a total of 398 REs, 150 by participant A,
122 by participant B, and 126 by participant C.

3.2 Common Referring Expressions

Many REs (ca. 97%) contain the type of the en-
tity as interpreted by the describer, e.g. “a small
tunnel”, “the parking lot”, “the street ahead”.

Names, e.g. “Baldersgatan”, “Engelbrekts-
skolan”, “the Algerian embassy”, can occur in
REs, usually for streets or for objects whose names
are clearly visible. In our data, the describers use
names in 2-15% of the REs.

In around 3-9% of the REs in our data the de-
scription is more detailed and specifies a certain
part of an entity, e.g. “the middle of the park”,
“an entrance to the station”, “the end of the road”.

A RE includes the object’s location relative to
the speaker in around 27% of the cases, e.g. “a
fountain to my left”, “ahead of me is the bus sta-
tion”, “on the right hand side of the building”, “a
building to my right”.

Plurals and sets, e.g. “some steps”, “a collec-
tion of trees”, can occur in the REs. Several ob-
jects can be referred to as one or one object can be
perceived as many.

Some references (ca. 3%) describe topographi-
cal features of the terrain, e.g. “the hill”, “a slight
incline”, “the arch at the bottom™.

4 What we Need to Resolve Spatial
References

We can now look at the different kinds of informa-
tion that we need to resolve the example references
and check whether this information is in principle
inferrable from the OSM geographical representa-
tion.

4.1 Types of Knowledge Needed

Position, distance, and angles

We need to know the placement of objects on the
map as well as the speaker’s current and previous
position to determine distances and relative direc-
tions. For example, in expressions like “I’m walk-
ing toward the street.” where we want to exclude
entities that are behind the speaker.

Visibility

In our dataset, speakers are describing the way
they are walking and we can therefore assume that
they are referring to objects they can see. This as-
sumes knowledge about the height and extension
of objects as well as topographical knowledge to

know whether the speaker or an object is located
on e.g. a hill.
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Type information

Most often, objects are referred to by their type.
Describers can use different expressions to refer to
the same type: “I am crossing the street/road”, and
describers can use the same expression to refer to
different types: A street could also be a bike lane
or a footway. Information about how types are re-
lated to one another as well as which expressions
can designate which types in the map is needed to
resolve such ambiguities.

Names

Although not many of the REs in our corpus con-
tain names, they can be useful to reduce the num-
ber of possible referents. A method is needed to
map colloquial or shortened names to those in the
database, as well as to resolve ambiguities where
several entities have the same name, e.g. a bus stop
may be named after the hospital where it is lo-
cated.

Topography

In order to resolve REs that refer to topographical
features, knowledge about elevation is needed.

Discourse history

We are dealing with continuous descriptions and
speakers who are moving through the environ-
ment as they are speaking. Speakers are refer-
ring to some objects several times, e.g. to de-
scribe them in more detail. This results in the
use of pronouns and short descriptions that we
can only resolve by taking into account previous
utterances (as well as already found referents):

Position  Utterance
P, “So I’m right in front of the arcs.”
Py “and I'm walking through them.”

4.2 When to Reject a Solution

No map of a real urban environment can be as-
sumed to be complete. We therefore need a mech-
anism to decide that we cannot resolve the refer-
ence to anything in the map representation. This
can be decided on the basis of e.g. distance, vis-
ibility, and type. If the describer is talking about
a pedestrian crossing, and there is none within a
small radius, we can reject the expression as unre-
solvable. If the describer is talking about a build-
ing, it might be visible from further away and we
can extend the radius to look for possible referents.

4.3 Using OpenStreetMap

Let us now consider how we can obtain this kind
of knowledge from OpenStreetMap (OSM). Re-
call that we are assuming knowledge about the
speaker’s position.

Knowledge that can be obtained directly

Recall from Section 2, that OSM entities (nodes
and ways) are tagged with their position in terms
of latitude and longitude, as well as information
about their type and their name (cf. Figure 1).

Information about topography is in principle
possible to obtain from OSM. The tag incline can
be used to specify the steepness of a way. The tags
natural and ele can be used to specify a peak and
a point’s elevation above sealevel. To specify the
height of buildings, OSM provides the tag height.
However, these topographical tags are rarely used
in the urban environment that corresponds to the
REs from our data.

Knowledge that can be inferred

Both distance and angles can easily be inferred
using the speaker’s and the entities’ positions. As
mentioned above, the concept of an intersection
can be inferred by checking how many streets (or
OSM ways) are meeting in a node. If more than
two streets meet, we can assume that the node is
a junction. This knowledge is needed for descrip-
tions that specify a certain part of a street, such as
“the end of the street” or “the corner of street X
and street Y.

Information about visibility can be computed
from knowledge about topography and distance
if it is available. In order to approximate knowl-
edge on visibility where it is not available, we can
check whether there is a free line of sight from the
speaker to an entity, i.e. whether there is a building
in between the speaker and the entity.

Some types do not have to be explicitly repre-
sented in the form of tags, but can be inferred. For
example, in order to determine which buildings
make up a university campus or a hospital com-
plex, it may be possible to group them on the basis
of their name.

4.4 Other Sources of Knowledge

When speakers describe something by its type (“I
can see a fountain.”), then this type does not nec-
essarily correspond to the type as used in OSM.
For example, what describers call a “street” cor-
responds to many different types in OSM, as tags
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a) A building that is named directly

<way 1d="21572801">
<tag k="building" v="church"/>
<tag k="name"
v="Engelbrektskyrkan"/> </way>

b) A building with an additional node placed in-
side that has its name associated to it

<way i1d="163966736">

<tag k="building" v="yes"/> </way>
<node 1id="1340902455"

lat="59.345" lon="18.067">

<tag k="name" v="Tyskaskolan"/>
</node>

Figure 3: Ambiguity in representation: How enti-
ties are name-tagged.

specify the size and function of the street, e.g. res-
idential or cycleway. Likewise, describers can use
a variety of expressions to refer to the same type,
e.g. they could also refer to a street as “a road”.
Therefore, we need an appropriate mapping to in-
fer the possible matches.

Besides geographic knowledge, more general
knowledge about certain objects can be useful to
infer their properties even when they are not ex-
plicitly mapped. Consider a user that interacts
with a navigation system saying “I am follow-
ing the footpath” but the matching OSM entity is
tagged as a bicycle path. In this kind of applica-
tion, it is useful to assume that bicycle paths can
usually be accessed by pedestrians and the RE can
be resolved to it.

5 Mismatches Between Map
Representation and Speakers’
Conceptualization

As mentioned before, OpenStreetMap contains
a number of inconsistencies in how entities are
tagged. This implies that several strategies can
be needed to resolve the same kind of reference.
Figure 3 shows the case of names for buildings.
A building of any kind (an OSM way), can be
tagged with a name directly (3a), or there can be
an additional node placed inside the building, that
is tagged with the name (3b). In the map repre-
sentation, there is no direct link between the way
and the named node. This connection has to be in-
ferred by computing whether the node’s position
is inside the building.

Figure 4: Granularity in OpenStreetMap: an in-
tersection consisting of many street segments and
nodes where they meet. The highlighted nodes
inside the circle are all part of “an intersection”.
The highlighted street segments (1-4) belong to
the same named street, that is also mapped with
a footway and a cycleway running next to it (indi-
cated by the discontinuous lines)

Another problematic case is the granularity with
which objects are mapped. Figure 4 shows a ma-
jor intersection, containing many street segments
and nodes where they meet. In the description “I
am approaching a junction” it is not at once clear
which entities an algorithm should pick.

Grouping larger objects together, such as street
segments or buildings that form a unit such as a
university campus, is challenging as well. At first
sight, this problem could be solved on the basis of
the entities’ names. Consider however the map-
ping of large roads, where sometimes the pedes-
trian walkway is mapped separately, parallely to
the road. These pedestrian ways frequently do not
contain a name tag and can thus not be associ-
ated to the road easily. Additionally, ways can
(and often do) consist of several segments, each
an own entity in OSM. In Figure 4, each thick
black line corresponds to the segment of a street
that stretches further in both directions, and has a
pedestrian way mapped next to it. Speakers will
often refer to the whole structure as “the street”
and we need to decide which entities this should
correspond to.

6 Resolving References

Keeping the above difficulties in mind, the task
is now to map from a referring expression to the
user’s intended referent, which may be one or
more OSM entities.
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Referring Expression

OSM tag/value

“road”, “street”

“path”, “footpath”
“cycle path”, “bike lane”
“trees”

“traffic lights”

“bus station”

highway={tertiary, secondary, primary, residential, pedestrian}

highway={footway, cycleway}
highway=cycleway

natural=tree_row, leisure=park
highway=traffic_signals, crossing=traffic_signals
highway=bus_stop

EE T3

“stairs”, “staircase”
“parking lot”, “parking space”

LR N3

“arches”, “archway” tunnel=yes

highway=steps
amenity=parking

Table 1: A set of mappings from referring expressions to features of the OSM entities that the expressions

refer to

We can distinguish the following cases:

1. There are zero referents in the database (i.e.
the intended referent is not in the database).

2. The intended referent is a unique OSM entity
with a single OSM identifier.

3. The intended referent is a unique set of refer-
ents in the database (“the two bus stops”™).

4. A referent can be chosen from a set of in-
terchangeable (equally good) entities in the
database.

In the latter case, we either need to devise a
mechanism to group the entities together, or we
can pick one of them, as the following two exam-
ples show:

e “the intersection” can refer to a group of
several nodes where street segments meet to
form what the speaker perceives as a unit. In
this case, we do not want to pick out one of
the nodes, but treat them as a unit so that they
reflect the extension of the intersection as in
expressions like “Cross the intersection”.

e “an entrance to the tunnelbana station” can
be the building that is the actual entrance,
or the node inside it, that is tagged as sub-
way_entrance.

6.1 OSM Features for Resolving References

We have matched all 398 REs in our data with the
OSM entity or entities that we judge correspond to
the user’s intended referent. In 354 cases (89%)
the intended referent is present in the database.
For all of these 354 REs and correponding refer-
ents, we computed the following binary features:

osmName True if the name used in the RE
matches the OSM name. We count only exact
matches, i.e. the OSM tag name has to exactly
match the string in the RE. This serves to give a
first overview of how many expressions can be re-
solved purely by checking the name.

osmName+ True if the name used in the RE
matches the OSM name, with some simple nor-
malization using a robust parser. Here, we are
applying simple rewriting rules (the RE “the Ser-
bian embassy” is mapped to name="Embassy of
the Republic of Serbia”) as well as translations
of type specifications, such as mapping “Engel-
brekt’s church” to name="Engelbrektskyrkan™).
Note that we are only considering a small part of
OSM and additional rules may be needed for cases
that we did not come across in this dataset.

osmType True if the type used in the RE
(e.g. “restaurant”) exactly matches the OSM type.
In OSM, types are represented as tags, either
as the tag name (building=yes), or as its value
(tourism=artwork).

osmType+ True if the type used in the RE
matches the OSM type modulo the taxonomy
in Table 1 (i.e. the RE “street” matches all
the OSM types tertiary, secondary, etc., and
“car park” matches entities that are tagged as
amenity=parking etc.)

closest True if the entity is the closest of its type
to the speaker.

direction True if the entity is located in the
speaker’s walking direction. For this feature, we
are using the previous location of the speaker to
define her current bearing. An entity is in her
walking direction if it is located within an angle
from -90 to 90 degrees (cf. Figure 2).
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Describer

A B C
# ref. expr. 150 122 126
#in OSM* 134 109 111
name references 14 3 17
osmName 3 2 8
osmName+ 13 3 16
type references | 128 106 111
osmType 29 45 49
osmType+ 117 100 102
closest 101 75 84
direction 130 106 109
visibility 125 106 105

Table 2: Counts of referring expressions that can
be linked to OSM features as described in Section
6.1 *the OSM data was downloaded in June 2013

visibility True if the entity is visible from where
the speaker is. This feature reflects actual visi-
bility, i.e. as judged by the annotators from their
knowledge of the environment. An entity can also
be visible if it is behind the speaker.

6.2 Results

Table 2 shows the result of the annotation. We can
see that the majority of REs contain a type, but
that they exactly match the type names and tags
in OSM in less than half of the cases. For de-
scriber C, all REs contain a type identifier (111),
but only 49 of them can be related to their refer-
ent without further processing. Applying the map-
pings shown in Table 1 can improve the matching
to more than twice the amount. This is the case for
the describers A and B as well.

Very few names were used. However, recall that
the describers were asked not to use street names.
Consequently, the amount of names might have
been higher if they had been allowed to do so.

Furthermore, the table shows that most of the
objects are in front of and visible for the speaker
(e.g. 97% and 93% for describer A, respectively).
In fewer cases (ca. 69-75%), the object was the
closest of its type. Note that these three features
depend on the position of the speaker and that the
GPS signal on which we base these features, varies
in accuracy.

The counts in Table 2 show that we can map the
type and name of an entity as they are used in the
RE with the annotation used in OSM, for a large
number of cases. This will limit the number of

Referents
Feature combination found
osmType, osmName, closest 27
osmType, closest .30
osmType+, osmName+, closest .67
osmType+, closest .68
osmType+, closest, visibility .65
osmType+, closest, .65
visibility, osmName+
osmType—+, closest, .63
visibility, osmName+, direction

Table 3: Applying different combinations of fea-
tures to resolve references.

possible referents, but not suffice to find the actual
referent.

In Table 3, we are considering different subsets
of the features. We are considering the 354 REs
of all three speakers, for which we know that the
referent is in the database. The combination of
features that covers most mappings uses only the
type feature along with the taxonomy in Table 1
(osmType+), combined with the distance infor-
mation (closest).

Based on these counts, a baseline method can
proceed in the following way to find a referent:

1. Compute the set of geographic entities in the
vicinity of the speaker’s position.

2. From this set, compute the set of possible ref-
erents by determining how the entitites are re-
lated to one another. At this step, potential
referents can be added for entities that make
up a unit, e.g. nodes of an intersection as de-
picted in Figure 4.

3. Filter away entities that do not match the RE
in name or type.

4. Pick the closest of the remaining entities.

Note that visibility can be handled in different
ways: When computing the initial set of available
referents, or at a later point. The counts in Table 3
reflect a lower number of matches when includ-
ing information about visibility. This may be be-
cause of inaccuracies in the GPS signal, or simply
an artefact of the small dataset.

7 Discussion and Future Work

The ultimate aim of this work is to develop a
robust reference resolution method that can be
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incorporated into our pedestrian navigation sys-
tem (Boye et al., 2014). Therefore, it is impor-
tant to point out that the above results were all ob-
tained using data where users described the way as
they were walking, and consequently it was natu-
ral to resolve a spatial reference to a matching en-
tity closest to the user’s position. However, there
are situations where users would refer to entities
and places that are possibly far away (e.g. “How
do I get to X street?””). Therefore any realistic spa-
tial reference algorithm must take the user’s dia-
logue act into account: For instance, if the user
is making a request (“Give me directions to X”),
proximity to X should not be given much weight.

Furthermore, in this paper we have only consid-
ered how many of the intended referents we can
find, but it is also important to identify the refer-
ences that have no referent in the database, as to
avoid false positives. Such a procedure needs to
make an assumption about the coverage of OSM
in a particular area as well.®

As discussed before, it is often far from obvious
what the intended referent is. In particular this is
true in situations where the user conceptualizes her
surroundings differently from how the database is
organized (as in Figure 4). A possibility would be
to add an extra layer on top of OpenStreetMap,
in which nodes are grouped into super-concepts
like “intersection”, “roundabout”, etc. Such super-
concepts could be formed on the basis of actual
data, like the verbal route descriptions we are us-
ing in this study. This would have the advantage of
resolving references to entities that more closely
correspond to the user’s mental map, but the dis-
advantage of requiring extra computation.

Additional processing is also required when
the reference resolution is to be carried out in
other languages than English. In our features,
we exploited the fact that OSM tags and values
are in English and therefore match natural lan-
guage expressions in some cases. Further linguis-
tic processing and algorithms that map OSM con-
cepts to language resources such as WordNet, like
Voc2WordNet (Ballatore et al., 2014), may be a
useful resource to bridge the gap between com-
monly used terms and map concepts.

A visualization of the OSM coverage can be found at
https://www.mapbox.com/osm-data-report/
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