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Abstract

In this paper we describe a question in-
terpretation module designed as a part of
a Question Answering Dialogue System
(QADS) which is used for an interactive
quiz application. Question interpretation
is achieved in applying a sequence of clas-
sification, information extraction, query
formalization and query expansion tasks.
The process of a question classification
is performed based on a domain-specific
taxonomy of semantic roles and relations.
Our taxonomy was designed in accordance
with the real spoken dialogue data. The
SVM-based classifier is trained to predict
the Expected Answer Type (EAT) with the
precision of 82%. In order to retrieve
a correct answer, focus word(-s) are ex-
tracted to augment the EAT identified by
the system. Our hybrid algorithm for the
extraction of focus words demonstrates the
accuracy of 94.6%. EAT together with fo-
cus words are formalized in a query, which
is further expanded with the synonyms
from WordNet. The expanded query fa-
cilitates the search and retrieval of the in-
formation that is necessary to generate the
system’s responses.

1 Introduction

Any question answering (QA) system has to be
able to give as precise as possible answers to nat-
ural language questions. In order to perform this
task with a reasonably high accuracy, an adequate
question interpretation is required. In the NLP
field, this problem is often defined as the question
classification. Due to the ambiguity of natural lan-
guage utterances the task may become very com-
plicated. For this reason the question classification
phase has proven to be one of the most important

parts of many QA system. If a question type is not
correctly identified, the system will not be able to
find the correct and/or complete answer. Accord-
ing to Razmara et al. (2007), correctly classified
questions are answered correctly twice as often as
misclassified ones.

The study conducted by Moldovan et al. (2000)
set a new modern foundation in the QA task. An
end-to-end open-domain QA system has been de-
veloped. In TREC-8', it achieved the highest
result by demonstrating the accuracy of 77.7%.
The designed system performs question process-
ing, including question classification, focus and
key words extraction, as well as the specification
of an expected answer type.

In 2011, IBM Watson QA system (Ferrucci et
al., 2010) won Jeopardy! quiz game, where it
was able to beat two highest ranked players. The
system includes a component responsible for the
question analysis: the system needs to know what
was asked in a question. Having this knowledge,
the system generates candidate answers. In 2013
IBM made an attempt to adapt Watson QA to the
healthcare domain (Ferrucci et al., 2013).

The scenario targeted in our application is com-
parable to the Jeopardy! quiz game. Our system,
however, provides an interactive quiz game mean-
ing that the returned answers are not just extracted
information chunks or slot fillers, or database en-
tries, but rather full-fledged dialogue utterances.
The domain, on the other hand, is restricted to bib-
liographical facts about a famous person, and the
player’s task is to guess his/her identity by ask-
ing ten questions of various types. For such a
close-domain, for the system to understand a ques-
tion it is possible to narrow down the knowledge
available to it. For example, structured knowl-
edge bases can be used, e.g. Freebase”. They are
however not complete to achieve sufficient cover-

Uhttp://trec.nist.gov/pubs/trec8
Zhttp://www.freebase.com/
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age of factual information required for our game.
Therefore, the content that the system operates on
is a bigger collection of unstructured free texts,
namely, Wikipedia articles®. This impacts search
and retrieval tasks. As a consequence, the output
of a question interpretation module should be a
rather comprehensive query capturing various se-
mantic information concerning events in question,
entities involved in this event and their properties,
and type of relations between entities and possi-
bly between events. Thus, question interpretation
is defined as a sequence of classification, informa-
tion extraction, query formalization and query ex-
pansion tasks. Given the closeness of the domain,
the system can operate on the basis of pre-defined
domain-specific taxonomy of various semantic re-
lations between different types of entities in or-
der to compute an Expected Answer Type (EAT).
The EAT is classified using statistical classifiers
like Support Vector Machines (SVM) operating on
multiple features, such as n-grams, part-of-speech
and other syntactic information. The EAT is fur-
ther augmented with question focus word(-s) in-
formation to determine the main event in question.
Both, the EAT and focus word(-s), are formalized
in a query which, on its turn, is expanded to cover
as many as possible natural language variations.

The paper is structured as follows. Section 2
presents related work that has been reported in the
area of general question answering and in question
classification in particular. In Section 3 we out-
line performed experiments describing the data,
tagset, features, algorithms and evaluation metrics
that have been used. Section 4 reports on the ex-
perimental results, applying SVM on various fea-
ture combinations, to assess the automatic EAT
classification. We also assess the semantic rela-
tions learnability by partitioning the training set
and increasing a number of training instances in
each next run. In Section 5 we describe an al-
gorithm for automatic extraction of focus words.
Section 6 explains how the query is generated and
expanded. Section 7 summarizes our findings and
outlines plans for the future work.

2 Related Work

Depending on the domain and task, QA systems
may require different kinds of question type tax-
onomies. The main difference lies in the principle
on which the question categorisation is performed.

3http://www.wikipedia.org

Lehnert (1986) developed a conceptual taxon-
omy with 13 conceptual classes (e.g. causal an-
tecedent, goal orientation, enablement, etc.). This
kind of categorization allows considering pro-
cesses which occur within human memory dur-
ing interpretation. Lehnert (1977) also pointed out
that for the correct categorisation of ambiguous
questions the context is very helpful.

Singhal et al. (1999) designed a very simple
taxonomy based on the correspondence between
question words and expected answer types. For in-
stance, according to this taxonomy, questions con-
taining Who or Whom belonged to the type Person.
For more ambiguous words like What or Which the
type of a question was identified by the head noun.

Li and Roth (2002) implemented a more ad-
vanced system. They created a hierarchical classi-
fier relying on the answer type semantics, the tax-
onomy had 2 layers: 6 coarse classes (abbrevia-
tion, entity, description, human, location, numeric
value) and 50 fine classes (subclasses of different
coarse classes do not overlap). Using a hierarchi-
cal classifier they tried to get an increase in perfor-
mance, but experimental results showed that the
gained difference with a flat classifier turned out
to be insignificant.

The system called Quarc performed a question
categorisation relying exclusively on the presence
of certain question words (e.g. who, what, when,
where, why). For each question word the system
had a set of heuristic rules which were applied
to find out what kind of information an answer
should contain. For example, What-questions may
refer to objects (What is on the picture?), humans
(What was the name of the main character?), or
to time (What year was America discovered in?)
(Riloff and Thelen, 2000).

Nowadays statistical machine learning is ac-
tively used for NLP tasks, also for the question
classification. Many studies on machine learn-
ing indicate that there are no significant differ-
ences in performance of existing classification al-
gorithms (Sebastiani, 2002). For example, Huang
et al. (2008) applied classifiers based on linear
SVM and Maximum Entropy models to the ques-
tion classification problem. Almost identical accu-
racy has been achieved: 89.2% and 89.0% respec-
tively. Panicker et al. (2012) used Naive Bayes
and SVM classifiers for a comparable problem.
Under different conditions the classifiers demon-
strated similar results. However, the authors de-
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cided in favour of SVM because it was proved to
be more effective for complex data.

Further, the question focus may be used to find
an answer. Moldovan et al. (2000) defines the
question focus as a word or a sequence of words
which helps to identify what is asked in a question.
Mikhailian et al. (2009) introduced two different
types of the question focus:

1. Asking Point (AP) - the explicit question fo-

cus, e.g. in the question Which books have
you read? the word books denotes AP;

2. Expected Answer Type (EAT) was used when
the answer type was implicit but could be in-
ferred from the information provided by the
question, e.g. person is the EAT for the ques-
tion Who wrote “Pride and Prejudice”?.

Focus words were applied as features to predict
question types. Mikhailian et al. (2009) reported
about accuracy of above 82%.

Ferret et al. (2001) defined the question focus
as “a noun phrase that is likely to be present in
the answer”. The focus of a question consists of a
head noun and a list of its modifiers. Their QALC
system was able to correctly identify the focus for
85% of the questions from TREC10 dataset.

3 Experimental Set Up
3.1 Data and Tagset

It is generally known that spoken language differs
from its written form in terms of grammaticality,
syntax, vocabulary, etc. Our system is primarily
focused on the spoken natural language process-
ing. Unfortunately, publicly available corpora did
not meet the requirements of our application.

In order to better understand the nature of spo-
ken dialogue data and to obtain training data,
the series of Wizard-of-Oz experiments were con-
ducted. 338 dialogues were recorded, their total
duration constitutes about 16 hours (Petukhova et
al., 2014). 1342 unique questions were extracted
and annotated with semantic relations. Two sepa-
rate annotators were working on the labelling. To
measure the agreement between them, we calcu-
lated Cohen’s kappa score (Cohen, 1960) for all
obtained labels. The kappa score equal to 0.85
was acquired, which indicated a very high degree
of agreement between the annotators. Disputable
questions were re-annotated together after a thor-
ough discussion.

A preceding study on the question classification
problem (see Faiz (2014) for more details) focused

eatEntities 29.21

creatorOf 9.74 partIn 2.46
activityOf 6.95 episodeOf 0.79
famousFor 3.16 interestOf 0.29
fieldOf 2.95 otherEntities 0.21
award 2.66

eatHumanDescription 28.76

title 11.9 nationality 1.46
name 7.49 religion 1.21
ageOf 2.08 gender 1.21
educationOf 1.66 otherHumanDescription 0.12
body 1.62

eatHumanGroups 10.61

memberOf 225 supporterOf 0.58
chargedFor 221 victimOf 0.25
employeeOf 1.79 causeOf 0.17
ownerOf 1.37 subordinateOf 0.12
founderOf 1.17 otherHumanGroups 0.04
superiorOf 0.62 chargeeOf 0.04
eatTime 9.45

time 4.24 period 0.75
timeDeath 2.16 duration 0.67
timeBirth 1.62

eatLocation 9.4

loc 241 locActivityOf 0.92
locBirth 1.96 locDeath 0.83
locResidence 1.66 locFamousFor 0.29
locOrigin 1.33

eatHumanRelations 7.41

spouseOf 1.87 siblingOf 0.67
parentOf 0.96 friendOf 0.58
familyOf 0.92 enemyOf 0.54
childOf 0.83 otherHumanRelations 0.25
colleagueOf 0.79

eatDescription 4.12

typeOf 2.16 otherDescription 0.29
manner 0.75 definitionOf 0.21
reason 0.67 purpose 0.04
Multilabel 1.04

fieldOf+spouseOf 0.12 activityOf+-childOf 0.04
spouseOf-+famousFor 0.12 spouseOf+gender 0.04
siblingOf+-activityOf 0.12 spouseOf+founderOf 0.04
title-+famousFor 0.08 spouseOf+award 0.04
title+-childOf 0.08 otherHumanRelations+famousFor 0.04
title-+spouseOf 0.08 title-+loc 0.04
nationality-+spouseOf 0.08 famousFor+otherHumanRelations 0.04
founderOf+-activityOf 0.04

Table 1: Distribution of semantic relation classes
(in terms of relative frequencies in the corpus).

on automatically generated data. 1067 questions
were obtained from the corresponding Wikipedia
article using tool developed by Heilman (2011)
and used for the training of an SVM-based classi-
fier. The best precision of 80.18% was achieved on
the combination of unigrams and bigrams of lem-
mas. We combined these two corpora, the result-
ing dataset contained 2403 (some questions were
excluded due to the differences between the tax-
onomies).

We developed a hierarchical taxonomy of ques-
tion types, which consists of two layers: coarse
classes and fine classes. The full set of the de-
fined relations is presented in Table 1 (see also
Petukhova et al. (2014) for more details) with their
relative frequency in the data (coarse classes are in
bold).

3.2 C(lassifier

We used scikit-learn* (see Pedregosa et al. (2011)
for more details), a machine learning library for

“http://scikit-learn.org
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python, to build a question classifier based on the
SVM algorithm and linear kernel function (lin-
earSVC). Since we work in a quite specific do-
main, we could not obtain a separate dataset for
testing. For this reason it was decided to apply a
stratified 5-fold cross-validation. The number of
folds was chosen based on the analysis of the data.
According to Table 1, some classes in our dataset
are under-represented. Dividing questions into 5
folds, we were able to equally distribute questions
of each class (except for the ones represented by
less than five instances).

Our classifier performs multi-class and multi-
label classification. Thus, the classifier can han-
dle questions containing several semantic relations
which is often the case in real life situations.

We can use the hierarchical structure of our
taxonomy to better discriminate between differ-
ent question types. There are at least two possible
ways of how it can be implemented:

1. Sequence of classifiers, where classifier#1
predicts coarse class labels and classifier#2
applies these labels as additional features.

2. Hierarchy of classifiers, where classifier#1
decides to which coarse class a question be-
longs and transfers it to the corresponding
classifier trained specifically for these types
of questions.

In our experiments we followed the first ap-
proach. According to (Li and Roth, 2002) who
worked on a very similar problem there is no
significant difference in performance between flat
and hierarchical classifiers.

3.3 Features

No matter what learning algorithm or approach is
applied, text-based features remain important for
the classification task. The bag-of-words (BoW)
approach, for example, is by far most widely used
in text classification. This approach does not
take into account the order of words and their co-
occurrences. Therefore, apart from bow-models
we constructed models based on bigrams, tri-
grams, and their combinations to assess their im-
pact on the overall classifier performance. It is also
of great interest to understand whether additional
linguistic information helps to better discriminate
between different classes.

The corpus of annotated questions was pro-
cessed using the Stanford CoreNLP tools® to ob-

Shttp://nlp.stanford.edu/downloads/corenlp.shtml

tain part-of-speech and lemma information. In our
experiments surface word forms, POS-tags, lem-
mas, as well as surface forms + POS-tags, lem-
mas + POS-tags, focus words and lemmas of fo-
cus words were used as features. Apart from that,
we applied combinations of all the above men-
tioned features with coarse class labels to predict
fine classes.

In order to extract focus words, we implemented
an algorithm that preserves the main nominal
phrase with the predicate, corresponding prepo-
sitions and conjunctions while removing every-
thing else. The algorithm excludes stop words
and stop phrases (from predefined lists), as well
as some parts of speech (based on the Penn Tree
Bank tagset® we remove existential there, interjec-
tions, interrogative pronouns and possessive end-
ings), auxiliary verbs, and interrogative pronouns.
Questions from the real dialogue data were man-
ually annotated with focus words, which allowed
to test this algorithm. It was able to extract focus
words with the accuracy of 94.6%.

3.4 Evaluation Metrics

It is desirable, that in a quiz game the system pro-
vides the player with a correct answer, and rather
acknowledge the fact if no answer is not found by
generating utterances like “Sorry, I do not have
this information”.” In other words, to return the
correct answer or acknowledge the fact that no an-
swer is found is more important for the overall
system performance than to return a wrong an-
swer. That is why the precision for both ques-
tion classification and answer detection tasks was
more important than the recall. The precision met-
rics indicates how relevant the returned answers is
to the question asked. Recall, by contrast, indi-
cates how many relevant answers are returned by
the classifier, which is not important information
for the system to know, therefore disregarded in
further evaluations. We calculated a weighted pre-
cision score taking into account the proportion of
instances in each class. The weighted precision is
computed by the following formula:

LERW,

P2

c

P, =

Shttp://www.cis.upenn.edu/~treebank/

"To make the game more entertaining, the system can al-
ways play with strategies to turn a negative situation in a sys-
tem’s favour. For example, if no answer is found, the system
may ask the player to put another question claiming that the
previous one was not eligible for whatever reasons or the an-
swer to it would lead to quick game end, or alike.
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where P, - precision for a certain class of ques-
tions, W, - weight associated with that class (num-
ber of instances in a individual class).

3.5 Experimental Design

As a baseline it is common practice to use the ma-
jority class tag, but for our data sets such a baseline
is not very useful because of the relatively low fre-
quencies of the tags for many classes (see Table
1). Instead, we computed a baseline that is based
on a single feature, namely, bag-of-words when
training the Naive Bayes classifier. The baseline
classifier achieved the precision of 56%. It was
implemented using Multinomial Naive Bayes al-
gorithm from scikit-learn (Pedregosa et al., 2011).
Naive Bayes has been chosen for several reasons.
Firstly, it is considered to be one of the basic clas-
sification algorithms. Secondly, it can be easily
implemented. Thirdly, Naive Bayes is relatively
simple and works quite fast.

In the first experiment we intended to establish
how the classifier performs on the following fea-
tures: surface word forms, POS-tags, lemmas, sur-
face forms + POS-tags, lemmas + POS-tags, fo-
cus words and lemmas of focus words.

Second experiment is based on the assump-
tion that the classifier should be able to predict
coarse classes with a higher precision, since coarse
classes are better represented in our data. We
added coarse class labels as complementary fea-
tures to the existing ones to predict fine classes.
Labels were taken from the annotated data. Un-
fortunately, this is not a realistic setting, since
the classifier can hardly predict coarse class labels
with the precision of 100%.

In the third experiment, the classifier was
trained on the actual predicted coarse-class labels
instead of the annotated ones.

4 Experimental results

We have conducted three experiments, each time
using different feature sets. Our classifier out-
performed the baseline (X> (1, n = 2403) =
293.181, p<.05). The highest precision of 82%
was achieved by the model which had been
trained on unigrams-bigrams of lemmas. In most
cases models based on unigrams-bigrams demon-
strated significantly better results than unigram,
bigram, or trigram models. It means that the word
order is important for the classifier, but not very
crucial. In Table 2 we summarize results from all

of the experiments.

n-grams range
LT T 127227123733
Experiment 1

Features

Words 0.81 081 [ 0.72 ] 0.72 T 0.68
POS-tags 0.27 0.4 0.4 046 | 0.44
Lemmas 0.8 082 | 0.74 | 0.73 | 0.71
Words+POS-tags 0.8 0.81 0.71 0.71 0.68
Lemmas-+POS-tags 0.8 0.82 | 073 | 0.73 0.71
Focus 0.75 | 0.74 | 0.63 | 0.59 | 031
FocusLem 0.76 0.76 | 0.65 0.61 0.39
Experiment 2
Words+CA 0.86 | 0.86 0.8 0.79 | 0.71
POS-tags+CA 0.55 | 0.66 | 0.65 | 0.64 | 0.61
Lemmas+CA 0.86 | 0.87 | 0.81 | 0.81 | 0.76

Words+POS-tags+CA 0.85 | 0.85 0.8 0.79 0.7
Lemmas+POS-tags+CA | 0.87 | 0.86 | 0.81 0.81 0.76

Focus+CA 082 | 0.82 | 0.72 | 0.68 0.5
FocusLem+CA 083 | 0.83 | 0.75 | 0.71 0.52
Experiment 3
Words+CP 0.82 | 0.81 0.77 | 0.76 0.7
POS-tags+CP 0.41 0.6 0.59 0.6 0.56
Lemmas-+CP 0.81 082 | 078 | 0.78 | 0.75
Words+POS-tags+CP 0.81 | 0.81 | 0.77 | 0.76 0.7
Lemmas—+POS-tags+CP 0.81 082 | 0.78 | 0.78 | 0.75
Focus+CP 0.79 | 0.77 | 0.68 | 0.65 | 0.44
FocusLem+CP 0.79 | 0.79 | 0.71 | 0.68 | 0.48

Table 2: Precision of the classifier for fine classes
(CA - coarse class labels from the annotated data,
CP - coarse class labels predicted by the classifier).

In Experiment 1 models based on unigrams
and unigrams-bigrams of surface word forms
achieved the precision 81%, while models based
on unigrams--bigrams of lemmas - 82%. These
are the two best results in the Experiment 1. How-
ever, it is necessary to say that there is no sig-
nificant difference in performance between these
models (X? (1, n = 2403) = 0.5745, p>.05).

Deviations in performance between the uni-
grams and unigrams-+bigrams of lemmas turned
out to be statistically insignificant (X* (1, n =
2403) = 2.2640, p>.05). However, the model
based on unigrams+-bigrams is more precise than
the one based on bigrams (X2 (1, n = 2403) =
33.3749, p<.05).

Unfortunately, by adding POS-tags we did not
get any improvements. Words+POS-tags and
Lemmas+POS-tags feature sets accounted for the
same maximal values: 81% and 82% respectively.

Using exclusively POS-tags as features, the
classifier was able to achieve the precision of
46%. It is a very poor result in comparison to the
unigrams—+bigrams of lemmas (X2 (1,n=2403) =
522.6607, p<.05).

Surface word forms and lemmas of focus words
demonstrate similar results (X> (1, n = 2403) =
0.4674, p>.05), achieving maximal precision of
75% and 76% respectively. These values are sig-
nificantly lower than the results achieved by ques-

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 55



tion surface word forms (X2 (1, n = 2403) =
12.4608, p<.05) or by question lemmas (X? (1,
n =2403) = 18.1542, p<.05).

We can see that in Experiment 2 uni-
grams, unigrams+bigrams of Words+CA and
unigrams—+bigrams of Lemmas+CA perform al-
most equally well (X*> (1, n = 2403) =
0.7440, p>.05), demonstrating the highest pre-
cision of 86% and 87% respectively. There is
no significant difference between unigrams and
unigrams-bigrams of lemmas (X% (1, n = 2403)
= (0.7440, p>.05). The difference is significant
for unigrams+bigrams and bigrams of lemmas
(X? (1, n = 2403) = 24.1152, p>.05), and for
unigrams+-bigrams and bigrams of surface words
forms.

Combinations with POS-tags again were not
beneficial for the classification process. They did
not show any improvements.

Comparing the results of Experiment 2 with the
results of Experiment 1, we may conclude that by
adding coarse class labels as additional features a
significantly higher precision was achieved.

In Experiment 3 we used coarse class labels
predicted by the classifier (on unigrams+bigrams
of lemmas) and did not observe any signif-
icant difference in comparison to the results
from Experiment 1.  Unigrams+bigrams of
lemmas, unigrams—+bigrams of Words+POS-tags
and Lemmas+POS-tags demonstrated absolutely
identical results.

As for separate classes, questions of the most
prevailing classes were identified with a very high
precision: title - 85%, creatorOf - 81%, name -
89%.

The most frequent questions in our corpus are
related to the professional activity of a person.
Most of the time this kind of questions belong to
the class acitivityOf or to the class title. They
turned out to be very similar: for example, by
asking What do you do for a living?, the player
expects to get as a potential answer either the de-
scription of a particular professional activity or the
name of a title (position) the person holds. More-
over, very often the player does not care which of
them will be chosen, both answers will be cor-
rect. As consequence, the classifier can confuse
the classes acitivityOf and title with each other.

As we expected, the classifier achieved the best
results by using lexical clues, i.e. the presence of
absence of certain words is a strong feature to de-

termine to which class or classes a question will be
assigned. Unfortunately when a question contains
words shared by questions belonging to different
classes, it may cause prediction errors. For exam-
ple, the classifier may assign several labels instead
of one and vice versa. Based on the analysis of
misclassified instances, we can tell that a question
will receive more than one label, if wording repre-
sentative for two (or more) classes is observed and
extracted as features.

The analysis of false predictions indicates that
most of them were caused by the imbalanced train-
ing set. There are also no strict borders between
some classes. Questions with multiple labels are
under-represented. According to Table 1 they
comprise only 1.04%.

By applying coarse class labels as additional
features we tried to get a higher precision. Un-
fortunately, it worked only when these labels were
taken from the annotated corpus. The classifier
was able to predict coarse class labels with the av-
erage precision of 90% (see Table 3). However, it
was not enough to make the actual predicted labels
useful for the next classifier.

Classes Precision
eatEntities 0.86
eatTime 0.97
eatHumanRelations 0.92
eatHumanDescription 0.9
eatLocation 091
eatDescription 0.86
eatHumanGroups 0.88
avg/total 0.9

Table 3: Precision of the classifier for coarse
classes (unigrams-+bigrams of lemmas).

The precision for all coarse classes is already
relatively high. Questions of the class eatTime,
for example, were correctly identified in 97% of
cases. It may be very problematic to make further
improvements.

To explore learnability of the best performing
classification model and to evaluate how the size
of the training set affects the classifier’s results,
we divided the corpus of annotated questions into
20 parts. All partitions, except for the first one,
contained the equal number of questions. Differ-
ent question types were equally distributed among
the partitions. We started with the training set con-
sisting of 636 questions and gradually increased its
size. Based the obtained results, the learning curve
has been plotted presented in Figure 1.

As we can observe, the precision rose almost
steadily until the size of the training set became
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Figure 1: Learning curve.

bigger than 2000 questions. The growth stopped
at the precision of around 81%. It was followed by
a decrease of 2%. After that the precision grew by
3%, and then again dropped about 1%. These fluc-
tuations, as we believe, were caused by the quality
of the data.

The growth slows down gradually, i.e. in the
range from about 700 till 1200 questions the pre-
cision increased from 65% till 75%, while to get
another 5%, the classifier required 800 additional
questions. Taking these calculations into account,
we were able to obtain the formula, which allowed
to extrapolate the learning curve:

y = 1.164396665 + 10~ In(x) — 8.691998379 x 102

We came to the conclusion that the classifier
will need the training set including approximately
3100-3200 questions to achieve the precision of
85%. Thus, getting more data may potentially im-
prove the performance of the classifier. However,
given the obtained learnability results and since
data collection and its annotation is a very time
consuming task, the efforts may be better spent
to explore other approaches additional to machine
learning, e.g. pattern matching and bootstrapping
from collected examples.

5 Question Focus Extraction

In line with Moldovan et al. (2000), the question
focus describing the main event is typically ex-
pressed by a verb or eventive noun. Despite the
fact that the focus is semantically defined, we use
the knowledge of syntactic structures, since syn-
tactic parsers are mature enough comparing to se-
mantic ones to be used reliably. The following

procedures have been applied to automatically ex-
tract focus words:

1. Auxiliary verbs elimination. OpenNLP
chunker® detects VP-chunks. There is a pre-
defined set of rules helping to identify which
of them contains an auxiliary:

e Combinations of adjacent chunks like
VP+NP+VP are glued together. The
first verb in such combinations is usu-
ally an auxiliary, checked in the list of
auxiliaries.

e [f there is only one verb in a sentence
than it is not an auxiliary verb.

o [f a long chunk contains several verbs,
at least one of them should be an auxil-
iary, checked in the list of auxiliaries.

2. Removal of opening and closing phrases
using regular expressions. For exam-
ple, “Could you tell me what are you do-
ing for living?”, “You are an American,
aren’t you?”.

3. Stop words and stop phrases removal.

4. Postprocessing. Removal of extra spaces,
conjunctions left at the beginning or at the
end of the focus.

This algorithm demonstrated the accuracy of
94.6% when evaluating on the manually annotated
reference data.

6 Query Generation and Expansion

Question
Focus words
Expanded focus

‘What do you do as a job?

do as job

do [make, perform, cause, practice, act], as,
job [activity, occupation, career,
employment, position]

EAT Title_do(do as job)

Query (Z, E, ?X) :: Title_do(Z, doAs, ?job) ::
QUALITY(String) :: QUANTITY (List) ::
FOCUS(do as job)

Expanded query (Z, E, ?X) :: Title_do(Z, doAs, ?job) ::

QUALITY(String) :: QUANTITY (List) ::
FOCUS(do [make, perform,

practice, act], as, job [activity,

occupation, career, employment, position])

Table 4: Example of an expanded query.

Query generation is the last data processing opera-
tion that is performed in the question interpretation
module. The query is generated according to the
pre-defined set of rules. It captures the results of
the question classification (labels) process as well
as the extracted focus words and transfers this in-
formation to the next module.

8https://opennlp.apache.org
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The query generation processes, the semantic
representation of its components in particularly,
partially based on the Discourse Representation
Theory (DRT) (Kamp and Reyle, 1993). It incor-
porates semantic information that is necessary to
find the correct answer. Table 4 demonstrates an
example of such a query.

In natural languages the same message has a
number of realizations. So far, our QA system
misses many answers when the answer is ex-
pressed by different lexical units. To solve this
problem, we used WordNet® synonyms to elabo-
rate the extracted question focus words.

7 Conclusions and Future Work

To implement a question classifier for our system,
we used SVM algorithm. This algorithm performs
quite accurate classification, has a mechanism to
avoid overfitting, can be customized by changing
its kernel function, and is able to handle high di-
mensional spaces.

We have annotated a corpus of questions, which
will become publicly available in the nearest fu-
ture. Although our corpus has been designed for
a quite specific gaming application, it may be of
interest for researchers working on various topics.
Regardless of the domain, annotated spoken dia-
logue data may help in studying of different lin-
guistic phenomena such as, for example, ellipsis
or co-reference resolution.

The corpus has been used as a training set for a
question classifier. The classifier was able to pre-
dict EAT with the precision of 82%. This result
was achieved by the model based on the unigrams
and bigrams of lemmas.

Having analysed misclassified questions, we
drew several conclusions. First, the classifier con-
fuses semantically similar classes. Second, it has
difficulty to identify EATs for under-represented
classes. Third, questions simultaneously belong-
ing to several classes were often misclassified.

Additional to the EAT, focus words are im-
portant to find correct answers. Moldovan et
al. (2000) defines the question focus as a word or
a sequence of words which helps to identify what
is asked in a question. In order to automatically
extract focus words, we have implemented an al-
gorithm that performs with the accuracy of 94.6%.

Once EAT and focus words are specified, this
information needs to be formalized in a form of a

9http://wordnet.princeton.edu

query, in order to be processed by next modules,
in particular for answer retrieval and generation,
and for dialogue manager to update the latest in-
formation state and decide on further dialogue ac-
tions. To address this problem, the question clas-
sification module generates a query which incor-
porates various linguistic information such as one
or multiple semantic relations, events, named en-
tities mentioned in a question, the entity or event
for which information (slot filler) has to be found.

Our findings confirmed that by increasing the
training set we can slightly improve the precision
of the classifier. However, due to the specificity of
our data, this task becomes quite difficult. Wizard-
of-Oz experiments involve human participants and
are conducted in a controlled setting. All partici-
pants have to be instructed in advance. After ex-
periments dialogue data should be analysed, tran-
scribed, and manually annotated by at least several
trained annotators. The listed actions require con-
siderable amount of efforts and time.

The easiest way to achieve a higher precision
is probably to increase the number of instances
for the under-represented classes. Of course, it
is impossible to force the users to ask only cer-
tain types of questions. However, new instances
can be generated based on the existing ones using
bootstrapping. The training set, which has been
used to learn the classifier, is unbalanced. Ideally,
all question types should be equally represented.

It is also possible to apply bootstrapping to gen-
erate synonymous questions for the whole corpus.
In this case we will not discover any new phenom-
ena, but we will get a better lexical coverage.

By querying search engines we can extract
questions that match regular expressions. How-
ever, it should be noted that not all questions types
can be encoded using regular expression. Data ob-
tained in such a way may require some manual
post-processing.

While testing/evaluating with the system, play-
ers produce a lot of questions. Saving each gaming
session could help to enrich the training set.

The analysis of false predictions suggests that
the taxonomy requires some refinements. Many
classes were never used during the annotation.
Certain classes appeared to be very similar to other
classes or simply too general. They should be ei-
ther merged together of divided into several more
specific subclasses respectively.
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