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Abstract

Understanding the structure of scientific dis-
course is of paramount importance for the de-
velopment of appropriate Natural Language
Processing tools able to extract and summa-
rize information from research articles. In
this paper we present an annotated corpus of
scientific discourse in the domain of Com-
puter Graphics. We describe the way we built
our corpus by designing an annotation schema
and relying on three annotators for manually
classifying all sentences into the defined cate-
gories. Our corpus constitutes a semantically
rich resource for scientific text mining. In this
respect, we also present the results of our ini-
tial experiments of automatic classification of
sentences into the 5 main categories in our cor-
pus.

1 Introduction

Understanding the internal organization of text doc-
uments is important for many content assessment
tasks such as summarization or information extrac-
tion. Several studies have investigated the struc-
ture and peculiarities of scientific discourse across
distinct domains, such as biology (Mizuta and Col-
lier, 2004), chemistry and computational linguistics
(Teufel et al., 2009), or astrophysics (Grover et al.,
2004). The coherence of the argumentative flow that
authors adopt to expose scientific contents is essen-
tial to properly contextualize these contents, to char-
acterize their connections with related pieces of re-
search as well as to discover relevant aspects, novel-
ties and future directions.

Because of both the huge, growing amount of
scientific literature that is accessible online and the
complexity that often characterizes scientific dis-
course, currently researchers and professionals are
experimenting more and more difficulties when try-
ing to keep themselves up to date.

The analysis of the internal organization of the
scientific discourse and the identification of which
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role each piece of text plays in the scientific argu-
ment contribute to structure and thus ease the in-
terpretation of scientific information flow. In addi-
tion, the explicit characterization of scientific dis-
course provides useful meta-information to support
tasks like targeted information extraction, content
retrieval and summarization.

Although several studies have characterized sci-
entific domains, the area of Computer Graphics, a
sub-field of Computer Science, has not been studied
in previous work. We have developed an annotation
scheme and produced an annotated corpus of scien-
tific discourse in this domain.

The rest of the paper is structured as follows: Af-
ter a review of previous work in the next section,
we present and motivate the annotation scheme in
section 3, describing the corpus dataset in section
4. We provide details of annotation process in sec-
tion 5, followed by the values of the attained inter-
annotator agreement and an analysis of the structure
of the resulting corpus in section 6. Finally, before
closing the paper with conclusions and future work,
we explain our first experiments in automatic sen-
tence classification in section 7.

2 Scientific discourse characterization:
related work

The analysis and annotation of scientific discourse
has been approached from different points of view
in previous works.

Although the focus of the analysis is manifold and
spans along different linguistic concepts, the scien-
tific discourse annotation schema we propose in this
paper builds upon the proposals of Teufel (1999;
2009; 2010) and Liakata (2010) hence the follow-
ing subsections describe in more detail their contri-
butions.

Simone Teufel’s model (Teufel, 1999; Teufel
and Moens, 2002; Teufel et al., 2009), which was
named Argumentative Zoning, focuses on knowl-
edge claims and is based on previous schemes for
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classifying the citation functions (Garfield, 1965;
Melvin Weinstock, 1971; Spiegel-Rosing, 1977).

Liakata (2010) analyses the content and concep-
tual structure of scientific articles with an ontology-
based annotation scheme, the Core Scientific Con-
cepts scheme (CoreSc). Closely related to this ap-
proach is the multidimensional scheme of Nawaz
(2010), tailored to bioevents, and the works of De
Waard (2009) in classifying sentences in 5 epistemic
types and White (2011), who concentrates on iden-
tifying hypothesis, explanations and evidence in the
biomedical domain.

In terms of scope, abstracts, considered to be a
brief summary of the whole article, have been the
object of research in the works of Guo (2010), Lin
(2006), Ruch (2007), Hirohata (2008) and Thomp-
son (2009).

Among researchers who explore full articles, Lin
(2006) and Hirohata (2008) have based their analysis
on section names, offering a coarse-grained annota-
tion, while Liakata (2010; 2012), Teufel (2009) and
Shatkay (2008) adopt a finer-grained approach.

The annotation unit is also a controversial matter.
While most researchers agree to classify sentences
into categories (Liakata and Soldatova, 2008; Li-
akata et al., 2010; Teufel and Moens, 2002; Teufel et
al., 2009; Lin et al., 2006; Hirohata et al., 2008), oth-
ers segment sentences into smaller discourse units
(Shatkay et al., 2008; DeWaard, 2009).

Bioscience is by far the most studied domain and
acts as a motor for research in information extrac-
tion from scientific publications (Mizuta et al., 2006;
Wilbur et al., 2006; Liakata et al., 2010). Neverthe-
less, some work has also been done in the Compu-
tational Linguistics and Chemistry domains, where
Teufel (2009) has implemented her AZ-II extended
annotation scheme.

2.1 Argumentative Zoning - AZ

Teufel’s main assumptions are that scientific dis-
course contains descriptions of positive and nega-
tive states, refers to other’s contributions, and is the
result of a rhetorical game intended to promote the
authors contribution to the scientific field. In fact,
Teufel argues that scientific texts should make clear
what the new contribution is, as opposed to previous
work and background material.

From a theoretical point of view she develops the
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Knowledge Claim Discourse Model (KCDM) which
she adapts into three annotation schemes: Knowl-
edge Claim Attribution (KCA), Citation Function
Classification (CFC) and Argumentative Zoning
(AZ).

Teufel annotates a corpus of Computational Lin-
guistics papers with the first version of Argumenta-
tive Zoning (AZ) (Teufel and Moens, 2002). She
later extends the AZ scheme for annotating chem-
istry papers, thus creating a new version, the AZ-II,
with 15 categories (Teufel et al., 2009) instead of the
first 7 in AZ.

The AZ-II annotated corpus consists of 61 articles
from the Royal Society of Chemistry.

2.2 Core Scientific Concepts - CoreSc

Liakata (2010) believes that a scientific paper is a
human-readable representation of a scientific inves-
tigation and she therefore seeks to identify how and
where the components of a scientific research are ex-
pressed in the text.

As Teufel, Liakata also proposes a sentence-
based annotation for scientific papers, but unlike
Teufel, who proposes a domain independent annota-
tion scheme based on argumentative steps, Liakata’s
scheme supports ontology motivated categories rep-
resenting the core information about a scientific pa-
per.

It was constructed with 11 general scientific con-
cepts based on the EXPO ontology (Soldatova and
King, 2006), which constitute the first layer of the
annotation. The second layer allows the annotation
of properties (New/Old, Advantage/Disadvantage)
of certain sentences labeled in the first layer. Finally,
in the third layer, several instances of a concept can
be identified.

With the CoreSC annotation scheme and guide-
lines, Liakata’s team produced the CoreSC corpus,
constituted by 265 annotated papers from the do-
mains of physical chemistry and biochemistry.

Liakata (2010) compares her approach to Teufel’s
and concludes that they are complementary and that
combining the two schemes would be beneficial.
They are both computational-oriented as the anno-
tated corpora are intended to serve as a basis for
linguistic innovative technologies such as summari-
sation, information extraction and sentiment analy-
sis. CoreSC is more fine-grained in content-related



categories while AZ-II covers aspects of knowledge
claims that permeate across several CoreSC con-
cepts.

Corpora annotated with Argumentative Zoning-II
(Teufel et al., 2009) and Core Scientific Concepts
(Liakata et al., 2010) have been exploited to build
automatic rhetorical sentence classifiers.

3 Scientific Discourse Annotation Scheme

3.1 The domain: Computer Graphics

Computer Graphics is a vast field which includes al-
most anything related to the generation, manipula-
tion and use of visual content in the computer. It
is a relatively young discipline which has not been
yet described in terms of its discourse, which differs
mainly from the Bioscience’s discourse in its much
more mathematical content.

Research in Computer Graphics is based on mul-
tiple technical backgrounds, (mainly Physics, Me-
chanics, Fluid Dynamics, Geometry, Mathematics)
and its results are the development of practical ap-
plications for their exploitation in several industries.

Scientific publications in Computer Graphics re-
flect the characteristics of this domain. It is expected
that they include a section where a theoretical model
is presented in detail - with algorithms, equations,
algebra and mathematical reasoning - and a section
where a computational experiment demonstrates an
application that contributes to the knowledge in the
area or to enhance techniques already in use in the
mentioned industries. Experiments in computational
sciences are basically algorithmical and do not in-
clude materials nor physical processes in laborato-
ries.

3.2 The annotation scheme design

We defined our Scientific Discourse Annotation
Schema by relying on both Teufel’s and Liakata’s
annotation schemas and contributions. In particular,
we extended and enriched Liakata’s CoreSc scheme
at this first stage, leaving the knowledge claim ap-
proach for a second stage.

A thorough review of the previous work in anno-
tation of scientific publications as well as the analy-
sis of the contents of papers in our domain, lead us to
select 9 categories from Liakata’s annotation scheme
and the Discourse Elements Ontology (DEO), which
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Figure 1: Simplified Annotation Scheme: 5 categories
and 3 subcategories

were later increased to a total of 16, in order to cover
the scientific concepts that might appear in an arti-
cle.

However, this first scheme proved to be too com-
plex, and we agreed to follow an annotation work-
flow characterized by subsequent steps with differ-
ent levels of granularity. Thus, the corpus annota-
tion process should go through a first coarse-grained
phase and later increase the level of details with a
finer-grained annotation scheme.

The 16 categories of the extended scheme were
grouped into 5 main categories (Fig. 2).

Nevertheless and in order to provide the anno-
tated corpus with more detailed information, we de-
cided to leave annotators the possibility to specify
three especially significant sub-categories: Hypoth-
esis, Goal and Contribution.

Fig.1 shows the final version of our scientific dis-
course simplified annotation scheme.

4 Corpus Dataset for annotation: Data
collection and Annotation unit

To populate our corpus we randomly selected a set
of 40 documents, available in PDF format, among
a bigger collection provided by experts in the do-
main, who pre-selected a representative sample of
articles in Computer Graphics. Articles were classi-
fied into four important subjects in this area: Skin-
ning, Motion Capture, Fluid Simulation and Cloth
Simulation. We included in the corpus 10 highly
representative articles for each subject.

The annotation is sentence based as we have con-
sidered sentences to be the most meaningful mini-
mal unit for the analysis of scientific discourse, in
agreement with earlier work.



CHALLENGE: The current situation faced by the researcher: it will normally include a Problem Statement, the
Motivation, a Hypothesis and/or a Goal.

BACKGROUND:This section presents all the information which is helpful for understanding the situation or prob-
lem that is the subject of the publication. It will include sentences that state widely accepted knowledge in the
domain (Common Ground) as well as previous related work (Related Work).

APPROACH: In this section the author explains HOW he intends to carry out the investigation. He may refer to
a theoretical model or framework (Model), give some or many details of the experimental setup (Experiment),
point to some data/phenomena observed during the experimentation (Observations) or comment on his decisions
for choosing this methodology (Method).

OUTCOME: Here the author offers the study findings: measurable data without discussion (Results), an interpre-
tation or analysis of the results in support of the conclusion (Discussion), how the research will contribute to the
current knowledge in the field (Contribution) and an overall conclusion that should reject or support the research
hypothesis (Conclusion). Any comments on the limitations of the authors work will also be included in the OUT-
COME section.

FUTURE WORK: In most articles, the author will suggest or recommend further research to improve or extend his
own work.

Figure 2: Description of the 5 categories of our Simplified Discourse Annotation Scheme

5 The Annotation Process

5.1 Annotators

The annotators are not domain experts. Two of them
are computationally oriented linguists and the third
is both a linguist and the developer of the annotation
scheme. Each of them has annotated the whole set
of documents. Therefore, the annotation outcome is
a collection of 40 papers whose sentences have been
annotated by the three annotators. The categories
associated to each sentence by each annotator are
then merged to create the Gold Standard version of
the corpus.

5.2 Annotation Task

The 40 documents selected for our corpus were pro-
vided to each annotator so as to start the sentence an-
notation process. All the annotators use GATE v.7.1
as annotation tool, with a customized view where
they have a window with the ready-to-annotate doc-
uments, segmented into sentences. Their task is to
select a sentence and choose the appropriate cate-
gory from a pop-up list.

Each sentence of each document of the Corpus
is classified as belonging to a category among: Ap-
proach, Background, Challenge, Challenge _Goal,
Challenge_Hypothesis, FutureWork, Outcome or
Outcome_Contribution. Sentences were classified as
Unspecified when the identification of the category
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was not possible (for example, metadiscourse or ac-
knowledgements) or as Sentence when the selected
text was characterized by segmentation or character
encoding problems (for example, when a footnote
appears incorrectly in the text flow).

5.3 Annotation Support

In order to ensure the quality of the annotation,
the annotators were provided with the following
support: an introductory training session, a visual
schema of the proposed discourse structure, guide-
lines for the annotation, a series of conflict resolu-
tion criteria and recommendations. Moreover, two
follow-up conflict-resolution meetings were sched-
uled to perform inter-annotator agreement checks
along the first stages of the annotation process.

5.4 Annotation Workflow

After the training session, the annotators were en-
couraged to test the tool, and try the schema with a
couple of documents before the annotation task re-
ally started. Once the process was triggered, two
conflict resolution meetings were scheduled after the
annotation of the first 5 papers, and after the subse-
quent 10 papers. Agreement was measured in these
two milestones in order to detect deviations in an
early stage. The articles were sorted by subject, to
facilitate the better comprehension of the text for the
annotators, as articles concerning the same subject



Category Annotated Sent. %
Approach 5,038 46.70
Background 1,760 16.32
Challenge 351 3.25
Challenge_Goal 91 0.84
Challenge_Hypotesis 7 0.06
FutureWork 136 1.26
Outcome 1,175 10.89
Outcome_Contribution 219 2.03
Unspecified 759 7.04
Sentence 1253 11.61
Total 10,789 100

Table 1: Number/Percentage of sentences per category

deal with similar concepts and terminology.

6 Annotation Results

6.1 Annotated corpus description

The Corpus includes 10,789 sentences, with an av-
erage of 269.7 sentences per document.

We are currently defining the best approach to
make Corpus annotations available to the research
community, since most of its 40 documents are pro-
tected by copyright.

The Gold Standard was built with the following
criteria for each sentence: If all annotators or two of
them assigned the same category to the sentence, it
was included in the Gold Standard version with such
category; otherwise, the category selected by the an-
notator who designed the scheme was preferred and
used in the Gold Standard. Table 1 details the num-
ber of sentences of each category in the Gold Stan-
dard version of the annotated corpus and its percent-
age in reference to the total number of annotated
sentences in the whole corpus.

6.2 Inter-annotator Agreement Values

We used Cohen x (Cohen et al., 1960) to mea-
sure the inter-annotator agreement. Cohen « is an
extensively adopted measure to quantify the inter-
annotator agreement, previously exploited in several
other annotation efforts, including the corpora cre-
ated by Liakata and Teufel, previously introduced.
Depending on how documents are combined,
there are several options for calculating the agree-
ment measures over a corpus. Micro averaging es-
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K N n k domain
Liakata 0.57 255 11 9  Biochem.
Liakata 0.50 5022 11 9  Biochem.
Teufel 0.71 3745 15 3  Chemistry
Teufel 0.65 1629 15 3 Comp.Ling.
Teufel 0.71 3420 7 3 Comp.Ling.

Table 2: Summary of s values in previous works:
N=#sentences, n=#categories, k=#annotators

sentially treats the corpus as one large document,
whereas macro averaging calculates on a per doc-
ument basis, and then averages the results. Macro
averaging tends to increase the importance of shorter
documents.

In our corpus, the x value of inter-annotator
agreement (Cohen’s k), averaged among all anno-
tators’ pairs, considering the 5 categories and the 3
subcategories of our Simplified Annotation Schema
(see Figure 1) is equal to 0.6567 for the macro aver-
age and 0.6667 if the micro average is computed. If
we consider only the 5 top categories of our Simpli-
fied Annotation Schema the inter-annotator agree-
ment grows: the macro average becomes 0.674 and
the micro average 0.6823. In both cases, the mi-
cro average is slightly greater than the macro aver-
age since there are documents with a number of sen-
tences below the mean (269.7 sentences per docu-
ment) that are characterized by low x values, thus
negatively affecting the macro-averaged computa-
tion of k.

These « values are comparable to those achieved
by Teufel for 1,629 sentences in the domain of Com-
putational Linguistics, with an annotation scheme of
15 categories and 3 annotators (see Table 2). The
micro average ~ achieves the cut-off point of 0.67,
over which agreement is considered difficult to reach
in linguistic annotation tasks (Teufel, 2010).

The agreement measures in the 2 milestones,
showed evolution of the inter-annotator agreement
throughout the annotation process: Cohen’s s is
substantially stable between two of the annota-
tors, while the third annotator sensibly improves his
agreement with the other two very quickly in the
first 5 documents and remains stable after the sec-
ond milestone. In particular, the annotator with the
lowest agreement in the initial stage increased his



agreement with the other two annotators respecively
from 0.59 for the first 5 documents to 0.68 for the
last 25 documents and from 0.56 for the first 5 doc-
uments to 0.66 for the last 25 documents.

An analysis of the sentence distribution accord-
ing to their agreement degree results in the fol-
lowing values: totally agreed sentences (65.09%),
partially agreed sentences (31.24%) and totally dis-
agreed sentences (3.66%).

Not all the categories are equally distributed, as
each one of them has its own characteristics in terms
of number of sentences, ambiguity or conflicts with
other categories.

Background and Approach, the most highly repre-
sented categories, are highly reliable. In fact, more
than 45% of the sentences of the corpus were tagged
with agreement by the three annotators pairs as Ap-
proach or Background. If we also take into account
the sentences with partial agreement (2 annotators
agreed), then sentences classified as Approach and
Background are more than 60% in the Gold Stan-
dard version of our annotated corpus.

FutureWork and Outcome are quite reliable, al-
though the difference between them is that the ra-
tio of totally agreed/partially agreed is considerably
higher in FutureWork compared to the same ratio in
Outcome (3.3 vs 0.9). This is due to the fact that
although FutureWork sentences (1.3%) are much
fewer than Outcome sentences (10.9%), those are
much more easily recognized, as they include spe-
cific lexical clues (for further research, in future in-
vestigation, more research is needed in, it could be
interesting to, a better understanding,etc.).

Clearly, Challenge is the category where the pro-
portion of total disagreement is higher. This cate-
gory which tends to appear at the beginning of a sci-
entific paper shows more than any other the author’s
skills in writing, synthesis and ability to communi-
cate the scope of the challenge they are presenting.
Authors must be able to provide a context and out-
line the situation in order to attract the attention of
the reader, who must understand the goal and com-
plexity of the research.

When studying the relation between the number
of sentences of a category and the annotation match
between annotators, data reveal that the observed
agreement among annotator pairs varies consider-
ably according to the relative frequency of the an-
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Figure 3: Box plots that show the distribution of the sen-
tences of the 5 main categories of the Scientific Discourse
Annotated Corpus

notation classes in the Corpus.

Agreement improves as the number of sentences
of the category increases, getting close to 0.80 for
the most frequent categories.

6.3 Discoursive Structure Analysis

The box plots of the 5 main categories (Fig. 3) give a
clear picture of the discoursive structure of an aver-
age scientific paper in the Computer Graphics do-
main. In fact, the 5 main categories show a neat
layout of the main zones (inside the box) in the ar-
gumentative structure distributed along the article.
Even if one can find all types of sentences along the
whole document, the central 50% of each category
seems clearly limited to a zone with little overlap-
ping of one another. When searching for information
about one of these categories, a reader or researcher
will find the central 50% of the sentences of each
category in the following article length ranges: Chal-
lenge in between the 3% and 23%, Background in
between the 11% and 29%, Approach in between
the 35% and 70%, Outcome in between the 70% and
92%, FutureWork in between the 88% and 97%.

The identification of these ranges will allow read-
ers, scientists, search engines, etc. to focus the ex-
ploring effort in a specific area of the article.



7 Automatic sentence classification: initial
experiments

Recently several approaches to the automatic classi-
fication of the discursive function of textual excerpts
from research papers have been proposed (Merity et
al., 2009; Liakata et al., 2012; Guo et al., 2013).
We present our initial experiments of automatic sen-
tence classification with our Corpus. We describe
the set of features we use to model and thus to char-
acterize the contents of each sentence in order to
enable the execution of proper classification algo-
rithms. In particular, by relying on these features,
we compare the performances of two classifiers: Lo-
gistic Regression (Wright, 1995) and Support Vector
Machine (Suykens and Joos, 1999).

7.1 Description of sentence features

In order to support the extraction of the features that
should characterize each sentence, we mine its con-
tents by means of a pipeline of natural language pro-
cessing tools, properly customized so as to deal with
several peculiarities of scientific texts. As a con-
sequence we are able to automatically extract from
each sentence:

e inline citation markers - like (AuthorA et al.,
2010)or [11];

e inline citation spans that are text spans made
of one or more contiguous inline citation mark-
ers. Examples of inline citation spans including
one incline citation marker are: (ALL2011) or
[11]. Examples of text spans including more
than one inline citation marker are: [10, 12] or
(AuthorA. and AuthorB, 2010; AuthorC, 2014),

e for each inline citation span, if it has or not a
syntactic role. For instance, in the sentence
[11, 12] demonstrate the theorem, the inline ci-
tation span [/, 12] has a syntactic role since it
is the subject of the sentence. In the sentence
We exploited the ABA method [14], the inline
citation span [ /4] has no syntactic role.

We process each sentence by a MATE depen-
dency parser (Bohnet, 2010) to determine its syn-
tactic structure. A customized version of the parser
is exploited to properly deal with the presence of in-
line citations. In particular, inline citations spans are
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excluded from the dependency tree if they have no
syntactic functions in the sentence where they are
present. After dependency parsing is performed, it
is possible to identify the token of each sentence to-
gether with their Part-Of-Speech and syntactic rela-
tions.

e unigrams, bigrams and trigrams built from
the lemmas of each sentence, lowercased and
without considering stop-words. We included
only unigram, bigrams and trigrams with
corpus-frequency equal or greater than 4;

o depth and number of edges by edge type of
the dependency tree;

o dependency tree tokens with corpus-
frequency equal or greater than 4. Each
dependency tree token is the result of the
concatenation of three parts: kind of de-
pendency relation, lowercased lemma of the
source and lowercased lemma of the target
of the dependency relation. For instance,
one of the dependency tree tokens of the
sentence We demonstrate the theorem is:
SBJ_we_demonstrate, because “we” is the
subject (SBJ) of the verb “demonstrate”;

e number of inline citation markers;

e number of inline citation spans that include
two or more contiguous inline citation mark-
ers;

e number of citations with a syntactic role;

e position of the sentence in the document, by
dividing the document in 10 unequal segments
(referred to as Loc. feature in (Teufel, 1999));

e position of the sentence in the section, by
dividing the section into 7 unequal slices (re-
ferred to as Struct-1 feature in (Teufel, 1999));

e category of the previous sentence. We use
gold standard previous sentence categories in
our experiments.

7.2 Classification experiments

By relying on the features just described, we com-
pare the sentence classification performances of two



Category Logistic SVM
Regression
Approach 0.876 0.851
Background 0.778 0.735
Challenge 0.466 0.430
Future Work 0.675 0.496
Outcome 0.679 0.623
Avg. F1: 0.801 0.764

Table 3: F1 score of 10-fold cross validation of Logistic
Regression and SVM - 10 fold cross validation over 8,777
manually classified sentences.

classifiers: Logistic Regression and Support Vec-
tor Machine with linear kernel. From our corpus
we consider the set of 8,777 sentences that have
been manually associated to one of the 5 high level
classes of our scientific discourse annotation schema
(see Figure 1): Background, Challenge, Approach,
Outcome, and Future Work. We collapse the sub-
categories Hypothesis and Goal into the parent cat-
egory Challenge and the sub-category Contribution
into the parent category Outcome. We perform a 10-
fold cross validation of the two classification algo-
rithms, over the collection of 8,777 sentences. The
results are shown in the Table 3.

The Logistic Regression classifier outperforms
the SVM one both globally and by considering each
single category. We can note that in general the
F1 score obtained in each category decreases as the
number of training instances does. This trend is not
confirmed by the category Future Work. The corpus
includes 136 sentences that belong to the category
Future Work. This number is considerably lower
than the 449 examples of Challenge sentences and
the 1,175 examples of Outcome sentences. Anyway,
the Logistic Regression F1 score of the category Fu-
ture Work (0.675) is almost equal to the one of the
category Outcome (0.679) and considerably higher
than the F1 score of the category Challenge (0.446).
This happens because some linguistic features that
characterize Future Work sentences are strongly dis-
tinctive with respect to the elements of this class.
For instance, the use of the future as verb tense as
well words like plan, future, venue, etc. consistently
contribute to automatically distinguish Future Work
sentences, even if we have few training examples in
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our corpus.

8 Conclusions and Future Work

We have developed an annotation scheme for scien-
tific discourse, adapted to a non-explored domain,
Computer Graphics. We relied on the 5 categories
and 3 subcategories of our annotation schema to
manually annotate the sentences of a scientific dis-
course corpus made of 40 papers.

We have observed that the larger categories (in
terms of number of sentences) - Approach, Back-
ground and Outcome - are highly predictable, while
Challenge, which corresponds mainly with the in-
troductory part of the scientific discourse is more
heterogeneous and highly dependable of the author’s
style. Sentences classified as FutureWork have spe-
cial lexical characteristics as confirmed by the re-
sults of our automatic classification experiments.
We have also characterized specific zones for each
of the 5 categories, thus contributing to a deeper
knowledge of the internal structure of the scientific
discourse in Computer Graphics.

In future we plan to focus on the characteriza-
tion of other peculiarities of scientific text, includ-
ing citations, thus properly extending our annota-
tion schema. We are also confident that our Simpli-
fied Annotation Scheme will be suitable in other do-
mains, and are therefore planning to verify it. A two-
layered annotation scheme could then be applicable
to most domains, the first layer being coarse-grained
and general, and a second layer being finer-grained
and domain-dependent for certain categories.

As future venues of research concerning auto-
matic sentence classification, we are planning to
carry out more extensive experiments and evalua-
tions by increasing the set of features that describe
each sentence, evaluating the contributions of sin-
gle features and considering new classification algo-
rithms.
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