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Abstract

Recent work in learning bilingual repre-
sentations tend to tailor towards achiev-
ing good performance on bilingual tasks,
most often the crosslingual document clas-
sification (CLDC) evaluation, but to the
detriment of preserving clustering struc-
tures of word representations monolin-
gually. In this work, we propose a
joint model to learn word representations
from scratch that utilizes both the con-
text coocurrence information through the
monolingual component and the meaning
equivalent signals from the bilingual con-
straint.  Specifically, we extend the re-
cently popular skipgram model to learn
high quality bilingual representations effi-
ciently. Our learned embeddings achieve
a new state-of-the-art accuracy of 80.3 for
the German to English CLDC task and
a highly competitive performance of 90.7
for the other classification direction. At
the same time, our models outperform best
embeddings from past bilingual represen-
tation work by a large margin in the mono-
lingual word similarity evaluation.!

1 Introduction

Distributed word representations have been key to
the recent success of many neural network mod-
els in tackling various NLP tasks such as tagging,
chunking (Collobert et al., 2011), sentiment anal-
ysis (Maas et al., 2011; Socher et al., 2013b), and
parsing (Socher et al., 2013a; Chen and Manning,
2014). So far, most of the focus has been spent
on monolingual problems despite the existence of
a wide variety of multilingual NLP tasks, which
include not only machine translation (Brown et

"All our code, data, and embeddings are publicly avail-
able at http://stanford.edu/~1lmthang/bivec.
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al., 1993), but also noun bracketing (Yarowsky
and Ngai, 2001), entity clustering (Green et al.,
2012), and bilingual NER (Wang et al., 2013).
These multilingual applications have motivated
recent work in training bilingual representations
where similar-meaning words in two languages
are embedded close together in the same high-
dimensional space. However, most bilingual rep-
resentation work tend to focus on learning em-
beddings that are tailored towards achieving good
performance on a bilingual task, often the cross-
lingual document classification (CLDC) task, but
to the detriment of preserving clustering structures
of word representations monolingually.

In this work, we demonstrate that such a goal of
learning representations of high quality both bilin-
gually and monolingually is achievable through
a joint learning approach. Specifically, our joint
model utilizes both the context concurrence infor-
mation present in the monolingual data and the
meaning equivalent signals exhibited in the par-
allel data. The key for our approach to work is
in designing a bilingual constraint consistent with
monolingual components in our joint objective.
To that end, we propose a novel bilingual skip-
gram model that extends the recently proposed
skipgram approach (Mikolov et al., 2013a) to the
bilingual context. Our model is efficient to train
and achieves state-of-the-art performance in the
CLDC task for the direction from German to En-
glish. At the same time, we demonstrate that
our model well preserves the monolingual cluster-
ing structures in each language both quantitatively
through the word similarity task and qualitatively
through our detailed analysis.

2 Background

2.1 Monolingual Models

Existing approaches to distributed word represen-
tation learning divide into two categories: (a) neu-
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ral probabilistic language models and (b) margin-
based ranking models. The former specify ei-
ther exactly or approximately distributions over all
words w in the vocabulary given a context h, and
representatives of that approach include (Bengio
et al., 2003; Morin, 2005; Mnih and Hinton, 2009;
Mikolov et al., 2010; Mikolov et al., 2011). The
later eschew the goal of training a language model
and try to assign high scores for probable words w
given contexts h and low scores for unlikely words
w for the same contexts. Work in the later trend in-
cludes (Collobert and Weston, 2008; Huang et al.,
2012; Luong et al., 2013).

Recently, Mikolov et al. (2013a) introduced the
skipgram (SG) approach for learning solely word
embeddings by reversing the prediction process,
that is, to use the current word to infer its sur-
rounding context, as opposed to using preceding
contexts to predict subsequent words in traditional
language model approaches. SG models greatly
simplify the standard neural network-based archi-
tecture to only contain a linear projection input
layer and an output softmax layer, i.e., there is
no non-linear hidden layer. Despite its simplicity,
SG models can achieve very good performances
on various semantic tasks while having an advan-
tage of fast training time.

We adapt SG models in our bilingual approach.
Specifically, we follow Mikolov et al. (2013c)
to use the negative sampling (NS) technique so
as to avoid estimating the computationally ex-
pensive normalization terms in the standard soft-
max. Negative sampling is a simplified version
of the noise contrastive estimation method (Gut-
mann and Hyvérinen, 2012), which attempts to
differentiate data from noise by means of logis-
tic regression. Specifically, in the SG-NS model,
every word w has two distributed representations:
the input vector mg) and the output one :cq(ﬁ ). For
NS to work, one needs to define a scoring func-
tion to judge how likely a word w,, is likely to be
a neighbor word of the current word w. We use a
simple scoring function (Mikolov et al., 2013c) as
follows, score(w,wy,) = wg)Twﬂ. In our evalu-
ation, we consider the embedding of a word as the
sum of its input and output vectors.

2.2 Bilingual Models

Before delving further into comparing our models
with those of others, let us first categorize different
approaches to training bilingual word representa-
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tions to three schemes: bilingual mapping, mono-
lingual adaptation, and bilingual training.

In Bilingual Mapping, word representations are
first trained on each language independently and
a mapping is then learned to transform represen-
tations from one language into another. The ad-
vantage of this method lies in its speed as no fur-
ther training of word representations is required
given available monolingual representations. Rep-
resentatives for this approach includes the recent
work by Mikolov et al. (2013b) which utilizes a set
of meaning-equivalent pairs (translation pairs) ob-
tained from Google Translate to learn the needed
linear mapping.

Monolingual Adaptation, on the other hand,
assumes access to learned representations of a
source language. The idea is to bootstrap learn-
ing of target representations from well trained em-
beddings of a source language, usually a resource-
rich one like English, with a bilingual constraint
to make sure embeddings of semantically similar
words across languages are close together. In this
scheme, the recent work by Zou et al. (2013) con-
siders the unsupervised alignment information de-
rived over a parallel corpus to enforce such a bilin-
gual constraint.

Bilingual Training, unlike the previous schemes
which fix pretrained representations on either one
or both sides, attempts to jointly learn represen-
tations from scratch. To us, this is an interesting
problem to attest if we can simultaneously learn
good vectors for both languages. Despite there has
been an active body of work in this scheme such
as (Klementiev et al., 2012; Hermann and Blun-
som, 2014; Kocisky et al., 2014; Chandar A P
et al., 2014; Gouws et al., 2014), none of these
work has carefully examined the quality of their
learned bilingual embeddings using monolingual
metrics. In fact, we show later in our experiments
that while the existing bilingual representations
are great for their cross-lingual tasks, they perform
poorly monolingually.

3 Our Approach

We hypothesize that by allowing the joint model to
utilize both the cooccurrence context information
within a language and the meaning-equivalent sig-
nals across languages, we can obtain better word
vectors both monolingually and bilingually. As
such, we examine the following general joint ob-
jective similar to (Klementiev et al., 2012; Gouws



et al., 2014):
a(Monoy + Monos) + 8Bi (1)

In this formulation, each monolingual model,
Monoy and M onos, aims to capture the clustering
structure of each language, whereas the bilingual
component, B1, is used to tie the two monolingual
spaces together. The a and 5 hyperparameters bal-
ance out the influence of the mono components
over the bilingual one. When o« = 0, we arrive
at the model proposed in (Hermann and Blunsom,
2014), whereas v =1 results in (Klementiev et al.,
2012; Gouws et al., 2014) as well as our approach.
Their models and ours, however, differ in terms of
the choices of monolingual and bilingual compo-
nents detailed next.

3.1 Model Choices

In terms of the monolingual component, any
model listed in Section 2.1 can be a good candi-
date. Specifically, Klementiev et al. (2012) uses a
neural probabilistic language model architecture,
whereas Gouws et al. (2014) adapts the skipgram
model trained with negative sampling.

When it turns to capturing bilingual constraints,
these work generally use a different type of ob-
jectives for their bilingual models compared to the
monolingual ones. For example, Klementiev et al.
(2012) transforms the bilingual constraints into a
multitask learning objective, whereas Gouws et al.
(2014) minimizes the Ly-loss between the bag-of-
word vectors of parallel sentences.”

In contrast to the existing approaches, we use
the same type of models for both of our mono-
lingual and bilingual constraints. Specifically, we
adapt the skipgram model with negative sampling
(SG-NS) to the bilingual context. Such a consis-
tent choice of architectures results in a natural and
effective way of building bilingual models from
existing monolingual models (see §2.1).

In our case, we extend the word2vec software?,
an efficient implementation of the SG-NS, to build
our fast code for bilingual representation learn-
ing. More importantly, we emperically show that
our method is effective in learning representations
both monolingually and bilingually as compared

*Hermann and Blunsom (2014) also uses a similar Lo-
loss. Chandar A P et al. (2014) optimizes for the autoencoder
reconstruction loss between sentence pairs, while Kocisky et
al. (2014) defines an energy function for the translation prob-
abilities between words across languages.

*https://code.google.com/p/word2vec/
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Figure 1: Bilingual Skipgram Model — besides
predicting within languages, the model also pre-
dicts cross-lingually based on the alignment in-
formation. Glosses for German text are: modern
economy trading [finance center].

to existing approaches which use different archi-
tectures for monolingual and bilingual constraints.

3.2 Bilingual Skipgram Model (BiSkip)

The motivation behind our proposed bilingual
skipgram (BiSkip) model is to be able to pre-
dict words crosslingually rather than just monolin-
gually as in the standard skipgram model. Imag-
ine if we know that the word trade is aligned to
and has the same meaning as the German word
Handels- as in Figure 1, we can simply substitute
trade and use Handels- to predict the surrounding
words such as financial and economic.

Concretely, given an alignment link between a
word w; in a language [y and a word wy in an-
other language [, the BiSkip model uses the word
wy to predict neighbors of the word w2 and vice
versa. That has the effect of training a single skip-
gram model with a joint vocabulary on parallel
corpora in which we enrich the training examples
with pairs of words coming from both sides in-
stead of just from one language. Alternatively, one
can also think of this BiSkip model as training four
skipgram models jointly which predict words be-
tween the following pairs of languages: I; — [y,
lQ — ZQ, ll — lz, and l2 — ll.

In our work, we experiment with two variants of
our models: (a) BiSkip-UnsupAlign where we uti-
lize unsupervised alignment information learned
by the Berkeley aligner (Liang et al., 2006) and
(b) BiSkip-MonoAlign where we simply assume
monotonic alignments between words across lan-
guages. For the former, if a word is unaligned but
at least one of its immediate neighbors is aligned,
we will use either the only neighbor alignment or
an average of the two neighbor alignments. For
the latter, each source word at position ¢ is aligned
to the target word at position [¢ * T'/S] where S



and T are the source and target sentence lengths.
These two variants are meant to attest how im-
portant unsupervised alignment information is in
learning bilingual embeddings.

4 Experiments

4.1 Data

We train our joint models on the parallel Europarl
v7 corpus between German (de) and English (en)
(Koehn, 2005), which consists of 1.9M parallel
sentences (49.7M English tokens and 52.0M Ger-
man tokens). After lowercasing and tokenizing we
map each digit into 0, i.e. 2013 becomes 0000.
Other rare words occurring less than 5 times are
mapped to <unk>. The resulting vocabularies are
of size 40K for English and 95K for German.

4.2 Training

We use the following settings as described in
(Mikolov et al., 2013c): stochastic gradient de-
scent with a default learning rate of 0.025, nega-
tive sampling with 30 samples, skipgram with con-
text window of size 5, and a subsampling rate* of
value le-4. All models are trained for 10 epochs
and the learning rate is decayed to O once training
is done. We set the hyperparameters in Eq. (1) to
1 for a and 4 for /3 in our experiments.

4.3 Evaluation Tasks

We evaluate our models on two aspects: (a) mono-
lingually with a word similarity task and (b) bilin-
gually through a cross-lingual document classifi-
cation setup.

4.3.1

This task measures the semantic quality of the
learned word vectors monolingually over various
word similarity datasets which have been used in
papers on word embedding learning lately. For
each dataset, we report a Spearman’s rank corre-
lation coefficient between similarity scores given
by the learned word vectors and those rated by hu-
mans. For English, we utilize the following pub-
licly available datasets: WordSim353 (353 pairs),
MC (30 pairs), RG (65 pairs), SCWS (1762 pairs),
and RW (2034 pairs). See (Luong et al., 2013) for
more information about these datasets.

Word Similarity

“Smaller values mean frequent words are discarded more
often, see (Mikolov et al., 2013c) and the word2vec code for
more details.
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To evaluate the semantic quality of German em-
beddings, we devise our own version of the Word-
Sim353 German counterpart. Our procedure is as
follows: we first used Google Translate to get Ger-
man translations for the 437 distinct tokens in the
English WordSim353. We then asked two German
speakers to help us verify these translations, out of
which, we fixed 23 translation pairs.

4.3.2 Cross-lingual Document Classification

To judge the bilingual aspect of our models, we
follow (Klementiev et al., 2012) in using a cross-
lingual document classification task: train with
1000 and test on 5000 RCV-labeled documents.’
In this setup, a multi-class classifier is trained us-
ing the averaged perceptron algorithm. The fea-
ture vector for each document is the averaged vec-
tor of words in the document weighted by their
idf values. A classification model trained on one
language is then applied directly to classify new
documents in another language without retraining.
This is an example of transfer learning of models
from a resource-rich language into a resource-poor
one. The premise for such a setup to work is be-
cause word vectors in these languages are embed-
ded in the same space, so document feature vec-
tors are constructed consistently across these two
languages and trained weights can be reused.

5 Results

In this section, we present results of our joint mod-
els trained on the Europarl corpus. Our first focus
is on the CLDC evaluation where we compare per-
formances achieved by our BiSkip models over the
best CLDC results from past work. Specifically,
we utilize the best set of embeddings from each of
the following bilingual work: (a) multitask learn-
ing model (Klementiev et al., 2012), (b) bilingual
without alignment model (Gouws et al., 2014), (c)
distributed word alignment model (Kocisky et al.,
2014), (d) autoencoder model (Chandar A P et al.,
2014), and (e) compositional model (Hermann and
Blunsom, 2014).

The above models are compared against our
two BiSkip models, one utilizing the unsuper-
vised alignments (UnsupAlign) and one assuming
monotonic alignments (MonoAlign); we trained
both 40- and 128-dimensional vectors to be com-
parable with existing embeddings. Simultane-

3Our experiments are based on the same code and data
split provided by the authors.



Word Similarity CLDC
Models Dim Data de en
WS353 | WS353 MC RG SCws Rw | 0 de | demen

Existing best models
I-Matrix 40 | Europarl+RCV | 23.8 13.2 186 164 19.0 073 | 776 71.1
BilBOWA 40 | Europarl+RCV - - - - - 86.5 75.0
DWA 40 Europarl - - - - - - 83.1 754
BAE-cr 40 | Europarl+RCV | 34.6 39.8 32,1 248 293 205 | 918 74.2
CVM-Add | 128 Europarl 28.3 19.8 215 240 289 13.6| 864 74.7

Our BiSkip models
MonoAlign 40 Europarl 43.8 41.0 339 322 395 244 864 75.6
128 Europarl 45.9 46.0 304 27.1 434 253 | 895 78.4
40 Europarl 43.0 40.2 317 321 376 23.1| 876 77.8
UnsupAlign 128 Europarl 45.5 458 36.6 323 423 24.6| 889 77.4
256 Europarl 46.7 473 379 351 432 245 | 884 80.3
512 Europarl 47.4 493 457 351 434 240 90.7 80.0

Table 1: German (de) - English (en) bilingual embeddings — results of various models in terms of both
the monolingual (word similarity) and bilingual (cross-lingual document classification) tasks. Spear-
man’s rank correlation coefficients are reported for word similarity tasks, whereas accuracies on 1000
RCV-labeled documents are used for CLDC. We compare our BiSkip embeddings to the best ones from
past work: multitask /-Matrix (Klementiev et al., 2012), bilingual without alignment Bil[BOWA (Gouws
et al., 2014), distributed word alignment DWA (Kocisky et al., 2014), autoencoder BAE-cr (Chandar A P
et al., 2014), and compositional CVM-Add (Hermann and Blunsom, 2014). Numbers in boldface high-
light the best scores per metric. We italicize the second best results and mark _ for models where we do

not have access to the trained embeddings.

ously, we test if these learned bilingual embed-
dings still preserve the clustering properties mono-
lingually in terms of their performance on the
word similarity datasets.

At 40 dimensions, both our BiSkip embed-
dings outperform those produced by the model in
(Klementiev et al., 2012) over all aspects. Our
MonoAlign model also surpasses the CLDC per-
formances of the BiIBOWA model (Gouws et al.,
2014). These two models we are comparing to are
most similar to ours in terms of the joint objective,
i.e. with two monolingual language models and a
bilingual component.

The fact that the embeddings in (Klementiev
et al., 2012) perform poorly on the monolingual
aspects, i.e. the word similarity tasks, supports
one of our early observations that it is important
to design a bilingual component that is consistent
with the monolingual models (§3.1). Otherwise,
the model will make a tradeoff between obtaining
good performance for bilingual tasks over mono-
lingual tasks as seems to be the case for the embed-
dings produced by the multitask learning model.

Our 40-dimensional embeddings also rival
those trained by much more complex models
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than ours such as the autoencoder model BAE-cr
(Chandar A P et al., 2014). It is worthwhile to
mention that beside the Europarl corpus, the au-
toencoder model was also trained with the RCV
documents on which the CLDC classifiers were
built, which is an advantage over our model. De-
spite this, our MonoAlign representations outper-
form the embeddings in (Chandar A P et al., 2014)
over all word similarity datasets and CLDCg,_.¢p,-

Larger dimensions — When learning higher di-
mensional embeddings, which is an advantage of
our joint models as it is very fast to train com-
pared to other methods, the results across all met-
rics well correlate with the embedding sizes as we
increase from 40, 128, 256, to 512. Our 256- and
512-dimensional embeddings trained with unsu-
pervised alignments produce strong results, signif-
icantly better than all other models in terms of the
word similarity datasets and achieve state-of-the-
art performance in terms of the CLDC .., with
an accuracy of 80.3. For CLDC,,,_, 4e, our model
reaches a very high score of 90.7, close to the best
published result of 91.8 produced by the autoen-
coder model.®

The 256- and 512-dimensional MonoAlign models do



january microsoft distinctive
en de en de en de gloss
january januar microsoft microsoft distinctive unverwechselbare distinctive
july februar ibm ibm character darbietet presents
december juli linux walt features eigenheit peculiarity
october dezember ipad mci individualist unschtzbarer invaluable
cans march november | blockbuster linux patrimony charakteristische characteristic
BiSkip . . . X . . S . .
february jahres doubleclick kurier diplomacies identittsstiftende identity
april oktober yahoo setanta splendour christlich-jdischen christian-jewish
november april rupert yahoo vocations identittsfindung identity-making
september august alcatel warner multi-faith zivilisationsprojekt ~ civilization project
august juni siemens rhne-poulenc | characteristics  ost-west-konflikt east-west conflict
january januar microsoft microsoft distinctive rang rank
march mrz cds cds asset wiederentdeckung rediscovery
october oktober insider warner characteristic echtes real
july juli ibm tageszeitungen distinct bestimmend determining
Autoencoder december de-zember acquisitiqns ibm predomin-ant typischen ty;?ical
1999 jahres shareholding  telekommun* characterise bereichert enriched
june juni warner handelskammer derive sichtbaren visible
month 1999 online exchange par band band
year jahr shareholder veranstalter unique ausgeprgte pronounced
september  jahresende otc geschftsthrer embraces vorherrschende predominant

Table 2: Nearest neighbor words — shown are the top 10 nearest English (en) and German (de) words
for each of the following words in the list {january, microsoft, distinctive} as measured by the Euclidean
distances given a set of embeddings. We compare our learned vectors (BiSkip-UnsupAlign, d = 128)
with those produced by the autoencoder model (Chandar A P et al., 2014). For the word distinctive,
we provide Google Translate glosses for German words. The word telekommunikationsunternehmen is

truncated into telekommun®*.

Alignment effects — It is interesting to observe
that the 40- and 80-dimensional MonoAlign mod-
els with a simple monotonic alignment assumption
can rival the UnsupAlign models, which uses un-
supervised alignments, in many metrics. Overall,
all our models are superior to the DWA approach
(Kocisky et al., 2014) which learns distributed
alignments and embeddings simultaneously.

Word similarity results — It is worthwhile to
point out that this work does not aim to be best
in terms of the word similarity metrics. Past work
such as (Pennington et al., 2014; Faruqui and
Dyer, 2014) among many others, have demon-
strated that higher word similarity scores can be
achieved by simply increasing the vocabulary cov-
erage, training corpus size, and the embedding di-
mension. Rather, we show that our model can
learn bilingual embeddings that are naturally bet-
ter than those of existing approaches monolin-
gually.

6 Analysis

Beside the previous quantitative evaluation, we ex-
amine our learned embeddings qualitatively in this
section through the following methods: (a) nearest

not yield consistent improvements across metrics, so we ex-
clude them for clarity.
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neighbor words and (b) embedding visualization.

6.1 Nearest Neighbor Words

For the former method, we follow (Chandar A P
et al., 2014) to find, for each English word, a list
of top 10 English and German words closest to it
based on Euclidean distance in a learned bilingual
space. Our list of words include {january, mi-
crosoft, distinctive}, in which the first two choices
are made by the previous work. We compare our
learned embeddings using the BiSkip-UnsupAlign
model (d = 128) with those produced by the au-
toencoder model in (Chandar A P et al., 2014).
Examples in Table 2 demonstrate that our
learned representations are superior in two as-
pects. Bilingually, our embeddings succeed in se-
lecting the 1-best translations for all words in the
list, whereas the other model fails to do so for the
word distinctive. Monolingually, our embeddings
possess a clearly better clustering structure. For
example, all months are clustered together, around
the word january, whereas that is not the case
for the other embeddings with the occurrences of
{1999, month, year} in the top 10 list. Our em-
beddings also find very relevant neighbor words
for the word microsoft such as {ibm, yahoo, efc.}.
We also examine the BiSkip-MonoAlign model



gaming underfunding
hinwegsehen
9 tenders maghreb formeller
aussichtslosen . . shuffle )
dividend leitgedanke profited
mawgng e entlassener
duty—free roaming 9 ) p
schaftlicher providers . I_n_tereSt_ ree i
investitionsbank tobin
medizinrichtungen
tradeable ernennungsverfahren
welthandelsorganisation_
bgeleitet ingehen zentralbank
. al
<eramik ]
generate fiscal
debt-ridden ] interpretationen
_ verfassten Kubaner investments  AMMEE 4 atically
3ction diskreditieren i SEhlag
nierend amassed macrofinancial 1€9 oni
replacé

Figure 2: Bilingual Embeddings of German and English words about banking and financial

in this aspect. Overall, the BiSkip-MonoAlign
model exhibits very similar monolingual proper-
ties as in the BiSkip-UnsupAlign one, i.e., it clus-
ters all months together and even places {google,
patents, merger, software, copyright} as closest
words to microsoft. On the other hand, the BiSkip-
MonoAlign fails to find correct translations for the
word distinctive, emphasizing the fact that knowl-
edge about word alignment does offer the BiSkip-
UnsupAlign model an advantage.

6.2 Embedding Visualization

In this section, we visualize embeddings of the
German and English words in banking and finan-
cial context. The two-dimensional visualizations
of word vectors are produced using the t-SNE al-
gorithm (van der Maaten and Hinton, 2008). Fig-
ure 2 shows that English-German words with sim-
ilar meanings are close to each other, e.g., “man-
agers” and “managern”. Monolingually, German
compound words, such as “welthandelsorganisa-
tion” and “investitionsbank”, also appears next to
each other. These observations further demon-
strate the ability of our models to learn representa-
tions well both bilingually and monolingually.

7 Related Work

We have previously discussed in Section 2 models
directly related to our work. In this section, we
survey other approaches in learning monolingual
and bilingual representations.

Current work in dimensionality reduction of
word representations can be broadly grouped into
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three categories (Turian et al., 2010): (a) dis-
tributional representations learned from a co-
occurrence matrix of words and contexts (docu-
ments, neighbor words, etc.) using techniques
such as LSA (Dumais et al., 1988) or LDA (Blei
et al., 2003), (b) clustering-based representations,
e.g., Brown et al. (1992)’s hierarchical clustering
algorithm which represents each word as a binary
path through the cluster hierarchy, and (c) dis-
tributed representations, where each word is ex-
plicitly modeled by a dense real-valued vector and
directly induced by predicting words from con-
texts or vice versa as detailed in Section 2.1.

Moving beyond monolingual representations,
work in constructing bilingual vector-space mod-
els divides into two main streams: (a) those that
make use of comparable corpora and (b) those that
only require unaligned or monolingual text. The
former includes various extensions to standard
techniques such as bilingual latent semantic mod-
els (LSA) (Tam and Schultz, 2007; Ruiz and Fed-
erico, 2011) or bilingual/multilingual topic mod-
els (LDA) (Zhao and Xing, 2007; Ni et al., 2009;
Mimno et al., 2009; Vulic et al., 2011). In this
work, the general assumption is that aligned doc-
uments share identical topic distributions. The lat-
ter stream, which eschews the use of compara-
ble data, generally requires a small initial lexicon
which is extracted either manually or automati-
cally (e.g., cognates, string edit distances, etc.).
Representatives of this strand include work that
extends CCA (Haghighi et al., 2008; Boyd-Graber
and Blei, 2009), mapping representations of words



in different languages into the same space, as well
as work that follows a bootstrapping style to it-
eratively enlarge the initial lexicon (Peirsman and
Pado, 2010; Vuli¢ and Moens, 2013).

8 Conclusion

This work proposes a novel approach that jointly
learns bilingual representations from scratch by
utilizing both the context concurrence informa-
tion in the monolingual data and the meaning-
equivalent signals in the parallel data. We advo-
cate a new standard in training bilingual embed-
dings, that is, to be good in not only gluing repre-
sentations bilingually but also preserving the clus-
tering structures of words in each language.

We provide a key insight to train embeddings
that meet the above two criteria, that is, to design
a bilingual constraint that is consistent with the
monolingual models in our joint objective. Our
learned representations are superior to the best em-
beddings from past bilingual work in two tasks:
(a) the crosslingual document classification one in
which we achieve a new state-of-the-art perfor-
mance for the direction from German to English,
and (b) the word similarity evaluation where we
outperform other embeddings by a large margin
over all datasets. We also evaluate the learned vec-
tors qualitatively by examining nearest neighbors
of words and visualizing the representations.

Lastly, it would be interesting to extend our
method to multiple languages as in (Hermann and
Blunsom, 2014) and to be able to train on a large
amount of monolingual data similar to (Gouws et
al., 2014).
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