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Abstract

We propose a novel approach to learning dis-
tributed representations of variable-length text
sequences in multiple languages simultane-
ously. Unlike previous work which often de-
rive representations of multi-word sequences
as weighted sums of individual word vec-
tors, our model learns distributed representa-
tions for phrases and sentences as a whole.
Our work is similar in spirit to the recent
paragraph vector approach but extends to the
bilingual context so as to efficiently encode
meaning-equivalent text sequences of multi-
ple languages in the same semantic space.
Our learned embeddings achieve state-of-the-
art performance in the often used crosslingual
document classification task (CLDC) with an
accuracy of 92.7 for English to German and
91.5 for German to English. By learning
text sequence representations as a whole, our
model performs equally well in both classifi-
cation directions in the CLDC task in which
past work did not achieve.

1 Introduction

Distributed representations of words, also known as
word embeddings, are critical components of many
neural network based NLP systems. Such represen-
tations overcome the sparsity of natural languages
by representing words with high-dimensional vec-
tors in a continuous space. These vectors encode
semantic information of words, leading to success
in a wide range of tasks, such as sequence tag-
ging, sentiment analysis, and parsing (Collobert et
al., 2011; Maas et al., 2011; Socher et al., 2013a;

Chen and Manning, 2014). As a natural extension,
being able to learn representations for larger lan-
guage structures such as phrases or sentences, has
also been of interest to the community lately, for in-
stance (Socher et al., 2013b; Le and Mikolov, 2014).

In the multilingual context, most of the recent
work in bilingual representation learning such as
(Klementiev et al., 2012; Mikolov et al., 2013b; Zou
et al., 2013; Hermann and Blunsom, 2014; Kočiský
et al., 2014; Gouws et al., 2014) only focus on learn-
ing embeddings for words and use simple functions,
e.g., idf-weighted sum, to synthesize representations
for larger text sequences from their word members.
In contrast, our work aims to learn representations
for phrases and sentences as a whole so as to repre-
sent non-compositional meanings.

In essence, we extend the paragraph vector ap-
proach proposed by Le and Mikolov (2014) to
the bilingual context to efficiently encode meaning-
equivalent multi-word sequences in the same seman-
tic space. Our method only utilizes parallel data and
eschews the use of word alignments. When tested on
the often used crosslingual document classification
(CLDC) tasks, our learned embeddings yield state-
of-the-art performance with an accuracy of 92.7 for
English to German and 91.5 for German to English.
One notable feature of our model is that it performs
equally well in both classification directions in the
CLDC task in which past work did not achieve as
we detail later in the experiment section.

2 Related work

Word representations – Work in learning dis-
tributed representations for words can largely be
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grouped into two categories: (a) pseudo-supervised
methods which make use of properties in the unan-
notated training data as supervised signals and (b)
task-specific approaches that utilizes annotated data
to learn a prediction task. For the former, word
embeddings are often part of neural language mod-
els that learn to predict next words given contexts
by either minimizing the cross-entropy (Bengio et
al., 2003; Morin, 2005; Mnih and Hinton, 2009;
Mikolov et al., 2010; Mikolov et al., 2011) or max-
imizing the ranking margins (Collobert and Weston,
2008; Huang et al., 2012; Luong et al., 2013). Rep-
resentatives for the latter include (Collobert and We-
ston, 2008; Maas et al., 2011; Socher et al., 2013a)
which finetune embeddings for various tasks such
as sequence labelling, sentiment analysis, and con-
stituent parsing.
Larger structure representations – Learning dis-
tributed representation for phrases and sentences is
harder because one needs to learn both the com-
positional and non-compositional meanings beyond
words. A method that learns distributed represen-
tations of sentences, which is closely related to our
approach, is the paragraph vector by Le and Mikolov
(2014). The method attempts to predict words in
N -grams of a sentence, given the same shared sen-
tence vector. Errors are backpropagated to train not
only the word vectors but also the sentence vector.
This method has an advantage that it only requires
training data to be sequences of words unlike other
work that require annotated data such as parse trees
(Socher et al., 2013b; Socher et al., 2013a).
Multilingual embedding – Previous work to learn-
ing multilingual distributed representations, often
optimize for a joint objective consisting of several
monolingual components, such as neural language
models, and a bilingual component to tie representa-
tions across languages together. The bilingual objec-
tive varies through different approaches and can be
formulated as either a multi-task learning objective
(Klementiev et al., 2012), a translation probability
(Kočiský et al., 2014), or an L2 distance of various
forms between corresponding words (Mikolov et al.,
2013b; Zou et al., 2013; Gouws et al., 2014).

The work of Hermann and Blunsom (2014) and
Chandar A P et al. (2014) are similar to our work
in eliminating the monolingual components and just
training a model with bilingual objective to pull

distributed representations of parallel sentences to-
gether. These approaches, however, only use sim-
ple bag-of-word models to compute sentence repre-
sentations and has a potential disadvantage that it is
hard to capture the non-compositional meanings of
sentences. Instead, we learn representations for text
sequences as a whole, similar to Le and Mikolov
(2014), but in the bilingual context.

3 Joint-space bilingual embedding

In this section, we describe our method to learn the
distributed representations of sentences from two
languages given a parallel corpus. Our learned
representations have the property that sequences of
words with equivalent meanings across different lan-
guages will have their representations clustered to-
gether in the shared semantic space. We call this
property the clustering constraint.

Our method is based on the following assump-
tions observed by (Le and Mikolov, 2014): the dis-
tributed representation vector of a sequence of words
can contribute its knowledge to predict the N -grams
in the sequence, and conversely, if a vector can con-
tribute well to the task, then one can think of it as the
representation of the sequence. Since the assump-
tion is not made specific to any language, we gener-
alize it to learn the distributed representation of word
sequences in multiple languages. However, instead
of duplicating the representations to have one vector
per sentence per language, we simply force parallel
sentences in the languages of consideration to share
only one vector. This allows us to avoid a bilingual
term in our learning objective function to cluster the
corresponding vectors together.

Figure 1 illustrates the architecture of our model.
Each word in each language is associated with a
D-dimensional vector, whereas each parallel sen-
tence is tied to the same sentence vector of di-
mension P . These word and sentence vectors
are used to predict N -grams in both of the sen-
tences. More precisely, suppose that s1, s2, ..., sS

and t1, t2, ..., tT are our two parallel sentences that
share the same sentence representation v. For every
N -gram [wi−N+1, wi−N+2, ..., wi], where w can be
either s or t, our model computes the N -gram prob-
ability as follows

p(wi|wi−N+1, ..., wi−1) = p(wi|f) (1)
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Figure 1: Our architecture to learn bilingual distributed representations of sentences. sent is the shared
context that contributes to predicting N -grams in both sentences.

where f is a feature vector computed based on the
N -gram and the shared sentence vector v.

There are several ways to compute f . As pro-
posed in (Le and Mikolov, 2014), one can either
take the average of v and the word embeddings of
wi−N+1, wi−N+2, ..., wi−1 or concatenate them to
form f . In the former “average” approach, one al-
ways needs D=P , which implies that the contribu-
tion of v is less impactful as it needs to compete with
the other (N − 1) word representations in the aver-
age term. In the latter “concatenate” approach, the
dimension of f is P +(N −1)×D, which suggests
that the model cannot afford to have large word em-
bedding size or longer N -grams. To overcome both
problems, we propose to concatenate v with the sum
of the word vectors in each of the N -grams. More
precisely

f =

v; i−1∑
j=i−N+1

wj

 (2)

This hybrid approach allows us the freedom to tune
D and P for our purpose.

There are also numerous approaches for the clas-
sifier that predicts the next word. However, to op-
timize for efficiency, we narrow our choices to the
factorized multiclass classifier, also known as the hi-
erarchical softmax (Morin, 2005). The words in the
vocabulary of each language are represented as leaf-
nodes of a binary tree. Each node n of the tree has
a vector vp whose dimension is equal to that of the
feature vector f . These vectors encode the model’s
belief whether a f belongs to the left or the right
child of n

p(go left|node n, f) = σ
(
fT · vn

)
(3)

where σ(·) is the logistic sigmoid function and vn is
a vector associated to the node n. The probability
of seeing a word is then factored into the product
of probabilities of the node along the path from the
tree’s root to the node corresponding to it.

At training time, pairs of parallel sentences are
shown to the model for several epochs. The model
maintains the shared sentence vectors and updates
them, along with the word vectors and hierarchical
softmax parameters of both languages, to minimize
the cross-entropy prediction error

J = −
∑
(s,t)

log p(s, t), (4)

where the probability of the pair of sentences (s, t) is
computed simply based on the Markov assumption

p(s, t) =
S∏

i=1

p(si|si−N+1, ..., si−1)

×
T∏

j=1

p(tj |tj−N+1, ..., tj−1) (5)

At test time, the model is given one sentence in
one of the languages it has been trained on. To
compute the representation of that sentence, we ran-
domly initialize a vector and train it in the same set-
ting as above, but to predict only N -grams from one
sentence. We update only the sentence vector; other
parameters are preserved. We want to emphasize
that due to the random initialization, the sentence
embeddings computed by our model are not deter-
ministic, in the sense that if the model sees a sen-
tence twice, it is possible that two different embed-
dings will be learned for the same sentence. This
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might potentially be a cause of nondeterminism if
other models attempt to learn or classify based on
these sentence vectors. However, our training objec-
tive for each N -gram has the form

JN -gram = −
∑

n

log
(
σ
(
fT · vn

))
, (6)

Since σ(·) is log-concave, our training objective is
convex. This guarantees a global minimum sen-
tence embedding vector to which our sentence vec-
tors would converge. Moreover, at train time, the
model has been trained to minimize the prediction
errors of pairs of sentences that share the same sen-
tence vector, its parameters have adapted to this
manner. Hence, at test time, although two sentence
vectors are learned independently, one can expect
that they converge to close points in the shared se-
mantic space.

4 Experiments

4.1 Training data and procedures

We attempt to learn the distributed representation for
arbitrary sequences of words in English and Ger-
man. We train our model using the Europarl
v7 multilingual corpora (Koehn, 2005), in particu-
lar the English-German corpus. The corpus consists
of multilingual parliament documents automatically
aligned into 1.8M equivalent pairs of sentences. We
preprocess the corpus by filtering out the tokens that
appear less than 5 times and desegment the German
compound words. This leads to the final set of 43K
English words and 95K German words.

Parameters of our model are updated using a
gradient-based method. While for each pair of sen-
tences, the prediction and N -grams and parameter
updates are performed in sequence, our training im-
plementation uses the multithreading approach to
train through pairs of sentences in our training cor-
pus in parallel and updates parameters with asyn-
chronous gradient descent. Since our model predicts
N -gram probabilities, we tune our hyperparame-
ters, including P , D and the learning rate, based on
the model’s perplexity on the newstests devel-
opment data provided by the Workshop in Machine
Translation1.

1http://www.statmt.org/wmt15/

At the beginning of our training procedure, we
use word2vec (Mikolov et al., 2013a) to guide
our hierarchical softmax trees. In particular, first
we precompute the distributed representations for
all the tokens in all the languages and run the K-
Means algorithm to classify our word vectors into
C classes based on L2 distance. Then, we sort each
language’s vocabulary into contiguous strides of the
same class. Finally, we construct our hierarchical
softmax tree as the weight-balanced binary tree on
each of the sorted vocab. The resulted hierarchi-
cal softmax trees thus have the semantic informa-
tion about the cluster of words held by each of its
nodes, similar to the WordNet taxanomy tree (Fell-
baum, 1998).

We performed experiments with different settings
for the model’s architecture, such as the dimension
P of sentence vectors, D of word vectors, and N -
gram length N , and the learning rate. Our finding is
that P ≈ 5D generally gives the best performance.
Also we used the start learning rate of 0.0001 which
decreases as the model is trained for more epochs.
We trained all models for 50 epochs. In Section 5,
we will discuss the effect of the parameters P and
D. Following, we report our best experiment results,
with P = 500, D = 100, N = 7 and C = 500.

4.2 Document classification on RCV1/RCV2

We test the learned bilingual distributed representa-
tions on the English-German Cross-Lingual Docu-
ment Classification (CLDC, henceforth), proposed
by (Klementiev et al., 2012). The corpus con-
sists of documents from Reuter, written in English
and German, annotated into 4 categories: Corpo-
rate/Industrial, Economics, Government/Social, and
Markets. The documents are separated into 1K
training documents and 5K test documents for each
language. Each document in the dataset consist
of only a few sentences, so the data is similar to
the training data that our model has been trained
on. The learned models are required to provide the
distributed representations of all these documents,
which are then passed to a perceptron algorithm to
learn from training data and classify test data. The
key challenge is that the perceptron algorithm has to
learn in English and classify in Germen (en→de) or
vice versa (de→en). To make the learning problem
feasible, the document compositional model must
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satisfy the clustering constraint mentioned in Sec-
tion 3.

As in (Klementiev et al., 2012), the CLDC dataset
was proposed to evaluate embeddings of words only,
so we follow the author in using the document com-
positional model where the document vector is com-
puted by taking the sum of all embeddings of the
words that appear in the document, weighted by
their inverse document frequencies (idf). We refer to
this method as para sum. It demonstrates that the
English and German word embeddings learned by
our model indeed satisfy the clustering constraint.
Our model achieves competitive classification result
with para sum.

However, our model has not only the word
embeddings but also the capability of computing
the distributed representation of arbitrary word se-
quences, so we propose computing the document
vectors in this manner. We call this method
para doc. We find that para doc gives signif-
icantly better results than para sum, especially on
the de→en direction. In Table 1, we present our
classification results on the CLDC task and compare
them against strong baselines. Specifically, we first
show the results of the original baselines in (Kle-
mentiev et al., 2012), then we show the stronger
baselines (Chandar A P et al., 2014; Hermann and
Blunsom, 2014), which perform considerably bet-
ter but the gains are uneven between en→de and
de→en. Finally, we show that our method works
better than all these baselines. While para sum
outperforms the all the baselines but still with a
significantly worse result in de→en, para doc
achieves better results and at once, avoids the asym-
metry of all the other approaches.

5 Discussion

5.1 Symmetry of multilingual model

The key to succeed on the CLDC task is that equiv-
alent documents in English and German should be
mapped into similar points in the joint semantic
space. This goal, however, is hard to achieve by us-
ing the idf weighted sum of word vectors in docu-
ments as proposed by (Klementiev et al., 2012). The
major reason for this is perhaps due to the linguis-
tic asymmetry between English and German. For
example, verbs in German have more conjugations

Model en→de de→en
Majority class 46.8 46.8
Glossed 65.1 68.6
Machine translation 68.1 67.4
I-Matrix 77.6 71.1
Autoencoder 91.8 72.8
Compositional Add+ 87.7 77.5
Compositional Bigram+ 86.1 79.0
para sum 90.6 78.8
para doc 92.7 91.5

Table 1: Performances on CLDC English-German.
Each model is trained on one language and tested
on the other one. The numbers reported are the per-
centage of correctly predicted test documents. The
first four baselines (Klementiev et al., 2012) are less
sensitive to languages, so we do not observe large
difference between the tasks en→de and de→en.
Other methods that involve weighted sum of word
vectors by (Chandar A P et al., 2014) and (Hermann
and Blunsom, 2014) perform better on en→de than
on de→en. Our work bridges the gap and simul-
taneously achieves state-of-the-art performance on
both tasks.

than their English counterparts and there is gener-
ally a large number of compound words in German.
These phenomena are evidenced by the fact that the
German vocab size is about twice of that of English
(95K versus 43K) according to our training data.
As a result, many German words appear less often,
giving the model less opportunity to optimize for
their representations. All these observations explain
that it is inferior to simply represent documents as
as weighted sum of the embeddings of their words.
As highlighted in Table 1, methods that adopt the
weighted average approach all suffer from the dis-
crepancy between en→de and de→en CLDC re-
sults. Note that such asymmetry also holds for our
learned word vectors when we simply sum them up
(the para sum row).

On the other hand, our second approach to com-
pute document vectors does not suffer from this
problem. At train time, we have already aimed at
learning the same distributed representation for sen-
tences (the clustering constraint on vectors of equiv-
alent words follows only as a consequence). At test
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time, the same clustering constraint leads the doc-
ument vectors computed by our model to be more
symmetric than the weighted sum of word vectors.
This symmetrization explains why our classification
results on en→de and de→en using para doc
are about equally strong, and both are better than
those of para sum.

5.2 Effects of embedding dimensions
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Figure 2: Test results for the de→en CLDC task
across training epochs. Larger P gives better result
while converging slower at test time.

We train four models on English-German data
with with D = 128 and P ∈ {128, 256, 512, 1024}
and compare their test performances as training pro-
gresses. As demonstrated in Figure 2, models with
larger P give better classification results (though
they require more test iterations to converge to good
sentence embeddings).

6 Conclusion

In summary, we have presented our novel approach
to computing distributed representations of arbitrary
word sequences in different languages from unan-
notated parallel data. Our method achieves state-
of-the-art performance on a bilingual benchmark be-
tween English and German. We also gave our intu-
itions to explain why the model works even though
it is nondeterministic while computing sentence vec-
tors at test time. Further intuitions also suggest that
it is possible to incorporate new languages into the
model without hurting the previously known one. In

the future, we plan to investigate the model’s capac-
ity to learn embeddings in other languages, such as
French.
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