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Abstract

Short text clustering has become an increas-
ing important task with the popularity of so-
cial media, and it is a challenging problem
due to its sparseness of text representation. In
this paper, we propose a Short Text Clustering
via Convolutional neural networks (abbr. to
STCC), which is more beneficial for cluster-
ing by considering one constraint on learned
features through a self-taught learning frame-
work without using any external tags/labels.
First, we embed the original keyword features
into compact binary codes with a locality-
preserving constraint. Then, word embed-
dings are explored and fed into convolution-
al neural networks to learn deep feature rep-
resentations, with the output units fitting the
pre-trained binary code in the training pro-
cess. After obtaining the learned representa-
tions, we use K-means to cluster them. Our
extensive experimental study on two public
short text datasets shows that the deep fea-
ture representation learned by our approach
can achieve a significantly better performance
than some other existing features, such as
term frequency-inverse document frequency,
Laplacian eigenvectors and average embed-
ding, for clustering.

1 Introduction

Different from the normal text clustering, short tex-
t clustering has the problem of sparsity (Aggarw-
al and Zhai, 2012). Most words only occur once
in each short text, as a result, the term frequency-
inverse document frequency (TF-IDF) measure can-
not work well in the short text setting. In order
to address this problem, some researchers work on
expanding and enriching the context of data from
Wikipedia (Banerjee et al., 2007) or an ontolo-
gy (Fodeh et al., 2011). However, these method-
s involve solid natural language processing (NLP)

knowledge and still use high-dimensional represen-
tation which may result in a waste of both mem-
ory and computation time. Another way to over-
come these issues is to explore some sophisticated
models to cluster short texts. For example, Yin and
Wang (2014) proposed a Dirichlet multinomial mix-
ture model-based approach for short text clustering
and Cai et al. (2005) clustered texts using Locali-
ty Preserving Indexing (LPI) algorithm. Yet how to
design an effective model is an open question, and
most of these methods directly trained based on bag-
of-words (BoW) are shallow structures which can-
not preserve the accurate semantic similarities.

With the recent revival of interest in Deep Neu-
ral Network (DNN), many researchers have con-
centrated on using Deep Learning to learn features.
Hinton and Salakhutdinov (2006) use deep auto en-
coder (DAE) to learn text representation from raw
text representation. Recently, with the help of word
embedding, neural networks demonstrate their great
performance in terms of constructing text represen-
tation, such as Recursive Neural Network (RecN-
N) (Socher et al., 2011; Socher et al., 2013) and
Recurrent Neural Network (RNN) (Mikolov et al.,
2011). However, RecNN exhibits high time com-
plexity to construct the textual tree, and RNN, using
the layer computed at the last word to represent the
text, is a biased model (Lai et al., 2015). More re-
cently, Convolution Neural Network (CNN), apply-
ing convolutional filters to capture local features, has
achieved a better performance in many NLP appli-
cations, such as sentence modeling (Blunsom et al.,
2014), relation classification (Zeng et al., 2014), and
other traditional NLP tasks (Collobert et al., 2011).
Most of the previous works focus CNN on solving
supervised NLP tasks, while in this paper we aim
to explore the power of CNN on one unsupervised
NLP task, short text clustering.

To address the above challenges, we systematical-
ly introduce a short text clustering method via con-
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Figure 1: Architecture of the proposed short text cluster-
ing via convolutional neural networks

volutional neural networks. An overall architecture
of the proposed method is illustrated in Figure 1.
Given a short text collection X, the goal of this
work is to cluster these texts into clusters C based
on the deep feature representation h learned from
CNN models. In order to train the CNN models, we,
inspired by (Zhang et al., 2010), utilize a self-taught
learning framework in our work. In particular, we
first embed the original features into compact binary
code B with a locality-preserving constraint. Then
word vectors S projected from word embeddings are
fed into a CNN model to learn the feature represen-
tation h and the output units are used to fit the pre-
trained binary code B. After obtaining the learned
features, traditional K-means algorithm is employed
to cluster texts into clusters C. The main contribu-
tions of this paper are summarized as follows:

1). To the best of our knowledge, this is the first
attempt to explore the feasibility and effectiveness of
combining CNN and traditional semantic constraint,
with the help of word embedding to solve one unsu-
pervised learning task, short text clustering.

2). We learn deep feature representations with
locality-preserving constraint through a self-taught
learning framework, and our approach do not use
any external tags/labels or complicated NLP pre-
processing.

3). We conduct experiments on two short tex-
t datasets. The experimental results demonstrate
that the proposed method achieves excellent perfor-
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Figure 2: Dynamic convolutional neural network used for
extracting deep feature representation

mance in terms of both accuracy and normalized
mutual information.

The remainder of this paper is organized as fol-
lows: In Section 2, we first describe the proposed
approach STCC and implementation details. Exper-
imental results and analyses are presented in Sec-
tion 3. In Section 4, we briefly survey several relat-
ed works. Finally, conclusions are given in the last
Section.

2 Methodology

2.1 Convolutional Neural Networks

In this section, we will briefly review one popular
deep convolutional neural network, Dynamic Con-
volutional Neural Network (DCNN) (Blunsom et
al., 2014), which is the foundation of our proposed
method.

Taking a neural network with two convolutional
layers in Figure 2 as an example, the network trans-
forms raw input text to a powerful representation.
Particularly, let X = {xi : xi ∈ Rd×1}i=1,2,...,n de-
note the set of input n texts, where d is the dimen-
sionality of the original keyword features. Each raw
text vector xi is projected into a matrix representa-
tion S ∈ Rdw×s by looking up a word embedding
E, where dw is the dimension of word embedding
features and s is the length of one text. We also let
W̃ = {Wi}i=1,2 and WO denote the weights of the
neural networks. The network defines a transforma-
tion f(·) : Rd×1 → Rr×1 (d ≫ r) which trans-
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forms an raw input text x to a r-dimensional deep
representation h. There are three basic operations
described as follows:
– Wide one-dimensional convolution This opera-
tion is applied to an individual row of the sentence
matrix S ∈ Rdw×s, and yields a set of sequences
Ci ∈ Rs+m−1 where m is the width of convolution-
al filter.
– Folding In this operation, every two rows in a fea-
ture map component-wise are simply summed. For
a map of dw rows, folding returns a map of dw/2
rows, thus halving the size of the representation.
– Dymantic k-max pooling Given a fixed pooling
parameter ktop for the topmost convolutional layer,
the parameter k of k-max pooling in the l-th convo-
lutional layer can be computed as follows:

kl = max(ktop,

⌈
L− l

L
s

⌉
), (1)

where L is the total number of convolutional layers
in the network.

2.2 Locality-preserving Constraint
Here, we first pre-train binary code B based on
the keyword features with a locality-preserving con-
straint, and choose Laplacian affinity loss, also used
in some previous works (Weiss et al., 2009; Zhang
et al., 2010). The optimization can be written as:

min
B

n∑
i,j=1

Sij ∥bi − bj∥2
F

s.t. B ∈ {−1, 1}n×q, BT1 = 0, BTB = I,
(2)

where Sij is the pairwise similarity between texts
xi and xj , and ∥·∥F is the Frobenius norm. The
problem is relaxed by discarding B ∈ {−1, 1}n×q,
and the q-dimensional real-valued vectors B̃ can be
learned from Laplacian Eigenmap. Then, we get the
binary code B via the media vector median(B̃). In
particular, we construct the n × n local similarity
matrix S by using heat kernel as follows:

Sij=

{
exp(−∥xi−xj∥2

2σ2 ), if xi∈Nk(xj) or vice versa
0, otherwise

(3)
where, σ is a tuning parameter (default is 1) and
Nk(x) represents the set of k-nearest-neighbors of
x.

The last layer of CNN is an output layer as fol-
lows:

O = WOh, (4)

where, h is the deep feature representation, O ∈ Rq

is the output vector and WO ∈ Rq×r is weight ma-
trix. In order to fit the pre-trained binary code B, we
apply q logistic operations to the output vector O as
follows:

pi =
exp(Oi)

1 + exp(Oi)
. (5)

2.3 Learning

All of the parameters to be trained are defined as θ.

θ = {E,W̃,WO}. (6)

Given the training text collection X, and the pre-
trained binary code B, the log likelihood of the pa-
rameters can be written down as follows:

J(θ) =
n∑

i=1

log p(bi|xi, θ). (7)

Following the previous work (Blunsom et al.,
2014), we train the network with mini-batches by
back-propagation and perform the gradient-based
optimization using the Adagrad update rule (Duchi
et al., 2011). For regularization, we employ dropout
with 50% rate to the penultimate layer (Blunsom et
al., 2014; Kim, 2014).

2.4 K-means for Clustering

With the given short texts, we first utilize the trained
deep neural network to obtain the semantic repre-
sentations h, and then employ traditional K-means
algorithm to perform clustering.

3 Experiments

3.1 Datasets

We test our algorithm on two public text datasets,
and the summary statistics of the datasets are de-
scribed in Table 1.

SearchSnippets1. This dataset was selected from
the results of web search transaction using prede-
fined phrases of 8 different domains (Phan et al.,
2008).

1http://jwebpro.sourceforge.net/data-web-snippets.tar.gz.
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StackOverflow2. We use the challenge data
published in Kaggle.com3. This dataset consists
3,370,528 samples through July 31st, 2012 to Au-
gust 14, 2012. In our experiments, we randomly se-
lect 20, 000 question titles from 20 different tags.

For these datasets, we do not remove any stop
words or symbols in the text.

Dataset C Number L(mean/max) |V |
Snippets 8 12340 17.88/38 30642

Stack 20 20000 8.31/34 22956

Table 1: Statistics for the text datasets. C: the number of
classes; Num: the dataset size; L(mean/max): the mean
and max length of texts and |V |: the vocabulary size.

3.2 Pre-trained Word Vectors
We use the publicly available word2vec tool to train
word embeddings, and the most parameters are set
as same as Mikolov et al. (2013) to train word vec-
tors on Google News setting4, excepts of vector di-
mensionality using 48 and minimize count using
5. For SearchSnippets, we train word vectors on
Wikipedia dumps5. For StackOverflow, we train
word vectors on the whole corpus of the Stack-
Overflow dataset described above which includes
the question titles and post contents. The coverage
of these learned vectors on two datasets are listed
in Table 2, and the words not present in the set of
pre-trained words are initialized randomly.

Dataset |V | |T |
SearchSnippets 23826 (77%) 211575 (95%)
StackOverflow 19639 (85%) 162998 (97%)

Table 2: Coverage of word embeddings on two datasets.
|V | is the vocabulary size and |T | is the number of tokens.

3.3 Comparisons
We compare the proposed method with some most
popular clustering algorithms:

2https://github.com/jacoxu/StackOverflow.
3https://www.kaggle.com/c/predict-closed-questions-on-

stack-overflow/download/train.zip.
4https://groups.google.com/forum/#!topic/word2vec-

toolkit/lxbl MB29Ic.
5http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-

pages-articles.xml.bz2.

• K-means K-means (Wagstaff et al., 2001) on
original keyword features which are respective-
ly weighted with term frequency (TF) and ter-
m frequency-inverse document frequency (TF-
IDF).

• Spectral Clustering This baseline (Belkin and
Niyogi, 2001) uses Laplacian Eigenmaps (LE)
and subsequently employ K-means algorithm.
The dimension of subspace is default set to the
number of clusters (Ng et al., 2002; Cai et al.,
2005), we also iterate the dimensions ranging
from 10:10:200 to get the best performance,
that is 20 on SearchSnippets and 70 on Stack-
Overflow in our expriments.

• Average Embedding K-means on the weight-
ed average of the word embeddings which are
respectively weighted with TF and TF-IDF.
Huang et al. (2012) also used this strategy
as the global context in their task and Lai et
al. (2015) used this in text classification.

3.4 Evaluation Metrics
The clustering performance is evaluated by compar-
ing the clustering results of texts with the tags/labels
provided by the text corpus. Two metrics, the accu-
racy (ACC) and the normalized mutual information
metric (NMI), are used to measure the clustering
performance (Cai et al., 2005; Huang et al., 2014).
Given a text xi, let ci and yi be the obtained cluster
label and the label provided by the corpus, respec-
tively. Accuracy is defined as:

ACC =
∑n

i=1 δ(yi, map(ci))
n

, (8)

where, n is the total number of texts, δ(x, y) is the
indicator function that equals one if x = y and e-
quals zero otherwise, and map(ci) is the permuta-
tion mapping function that maps each cluster label ci

to the equivalent label from the text data by Hungar-
ian algorithm (Papadimitriou and Steiglitz, 1998).

Normalized mutual information (Chen et al.,
2011) between tag/label set Y and cluster set C is a
popular metric used for evaluating clustering tasks.
It is defined as follows:

NMI(Y, C) =
MI(Y, C)√
H(Y)H(C)

, (9)
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where, MI(Y, C) is the mutual information be-
tween Y and C, H(·) is entropy and the denomina-
tor

√
H(Y)H(C) is used for normalizing the mutu-

al information to be in the range of [0, 1].

3.5 Hyperparameter Settings

In our experiments, the most of parameters are set
uniformly for these datasets. Following previous s-
tudy (Cai et al., 2005), the parameter k in Eq. 3 is
fixed to 15 when constructing the graph Laplacian-
s in our approach, as well as in spectral clustering.
For CNN model, we manually choose a same archi-
tecture for the two datasets. More specifically, in
our experiments, the networks has two convolutional
layers similar as the example in Figure 2. The width-
s of the convolutional filters are both 3. The value of
k for the top k-max pooling is 5. The number of
feature maps at the first convolutional layer is 12,
and 8 feature maps at the second convolutional lay-
er. Both those two convolutional layers are followed
by a folding layer. We further set the dimension of
word embeddings dw as 48. Finally, the dimension
of the deep feature representation r is fixed to 480.
Moreover, we set the learning rate λ as 0.01 and the
mini-batch training size as 200. The output size q in
Eq. 4 and Eq. 2 is set same as the best dimensions of
subspace in the baseline method, spectral clustering,
as described in Section 3.3.

For initial centroids have significant impact on
clustering results when utilizing the K-means algo-
rithms, we repeat K-means for multiple times with
random initial centroids (specifically, 100 times for
statistical significance). The final results reported
are the average of 5 trials with all clustering methods
on two text datasets.

3.6 Quantitative Results

Here, we firstly evaluate the influence of the iteration
number in our method. Figure 3 shows the change
of ACC and NMI as the iteration number increases
on two text datasets. It can be found that the perfor-
mance rises steadily in the first ten iterations, which
demonstrates that our method is effective. In the pe-
riod of 10∼20 iterations, ACC and NMI become rel-
atively stable on both two texts. In the following ex-
periments, we report the results after 10 iterations.

We report ACC and NMI performance of all the
clustering methods in Table 3. The experimen-

0 5 10 15 20
50

60

70

80
SearchSnippets

Iteration

 

 

ACC (%)
NMI (%)

0 5 10 15 20
30

40

50

60
StackOverflow

Iteration

 

 

ACC (%)
NMI (%)

Figure 3: Influence of the iteration number on two text
datasets.

tal results show that Spectral Clustering and Aver-
age Embedding significantly better than K-means
on two datasets. It is because K-means directly
construct the similarity structure from the original
keyword feature space while Average Embedding
and Spectral Clustering extract the semantic fea-
tures using shallow structure models. Compared
with the best baselines, the proposed STCC extract-
ing deep learned representation from convolution-
al neural network achieves large improvement on
these datasets by 2.33%/4.86% and 14.23%/10.01%
(ACC/NMI) on SearchSnippets and StackOverflow,
respectively. Note that TF-IDF weighting gives a
more remarkable improvement for K-means, while
TF weighting works better than TF-IDF weighting
for Average Embedding. Maybe the reason is that
pre-trained word embeddings encode some useful
information from external corpus and are able to get
even better results without TF-IDF weighting.

In Figure 4 and Figure 5, we further report 2-
dimensional embeddings using stochastic neighbor
embedding (Van der Maaten and Hinton, 2008)6

of the feature representations used in the clustering
methods. We can see that the 2-dimensional embed-
ding results of deep features representation learned
from our STCC show more clear-cut margins among
different semantic topics (that is, tags/labels) on two
short text datasets.

4 Related Work

In this section, we review the related work from the
following two perspectives: short text clustering and
deep neural networks.

4.1 Short Text Clustering
There have been several studies that attempted to
overcome the sparseness of short representation.

6http://lvdmaaten.github.io/tsne/.
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SearchSnippets StackOverflow
Method ACC (%) NMI (%) ACC (%) NMI (%)
K-means (TF) 24.75±2.22 9.03±2.30 13.51±2.18 7.81±2.56
K-means (TF-IDF) 33.77±3.92 21.40±4.35 20.31±3.95 15.64±4.68
Spectral Clustering 63.90±5.36 48.44±2.39 27.55±0.93 21.03±0.37
Spectral Clustering (best) 74.76±5.08 58.30±1.97 37.17±1.62 26.27±0.86
Average Embedding (TF-IDF) 62.05±5.27 46.64±1.87 37.02±1.29 35.58±0.84
Average Embedding (TF) 64.63±4.84 50.59±1.71 37.22±1.57 38.43±1.13
STCC 77.09±3.99 63.16±1.56 51.13±2.80 49.03±1.46

Table 3: Comparison of ACC and NMI of clustering methods on two short text datasets. For Spectral Clustering, the
dimension of subspace are set to the number of clusters, and Spectral Clustering (best) get the best performance by
iterating the dimensions ranging from 10:10:200. More details about the baseline setting are described in Section 3.3

One way is to expand and enrich the context of da-
ta. For example, Banerjee et al. (2007) proposed
a method of improving the accuracy of short tex-
t clustering by enriching their representation with
additional features from Wikipedia, and Fodeh et
al. (2011) incorporate semantic knowledge from an
ontology into text clustering. Another way is to
explore some sophisticated models to cluster short
text. For example, Yin and Wang (2014) proposed
a Dirichlet multinomial mixture model-based ap-
proach for short text clustering and Cai et al. (2005)
applied the LPI algorithm for text clustering. More-
over, some studies both focus the above two stream-
s. For example, Tang et al. (2012) proposed a novel
framework which performs multi-language knowl-
edge integration and feature reduction simultaneous-
ly through matrix factorization techniques. How-
ever, the former works need solid NLP knowledge
while the later works are shallow structures which
can not fully capture accurate semantic similarities.

4.2 Deep Neural Networks

With the recent revival of interest in DNN, many re-
searchers have concentrated on using Deep Learning
to learn features. Hinton and Salakhutdinov (2006)
use DAE to learn text representation. During the
fine-tuning procedure, they use backpropagation to
find codes that are good at reconstructing the word-
count vector.

Recently, researchers propose to use external cor-
pus to learn a distributed representation for each
word, called word embedding (Turian et al., 2010),
to improve DNN performance on NLP tasks. The

skip-gram and continuous bag-of-words models
of (Mikolov et al., 2013) propose a simple single-
layer architecture based on the inner product be-
tween two word vectors, and Jeffrey Pennington et
al. (2014) introduce a new model for word repre-
sentation, called GloVe, which captures the global
corpus statistics.

Based on word embedding, neural networks can
capture true meaningful syntactic and semantic reg-
ularities, such as RecNN (Socher et al., 2011;
Socher et al., 2013) and RNN (Mikolov et al., 2011).
However, RecNN exhibits high time complexity to
construct the textual tree, and RNN, using the lay-
er computed at the last word to represent the text,
is a biased model. Recently, CNN, applying con-
volving filters to local features, has been success-
fully exploited for many supervised NLP learning
tasks as described in Section 1. This paper, to our
best knowledge, is the first time to explore the power
of CNN and word embedding to solve one unsuper-
vised learning task, short text clustering.

5 Conclusions

In this paper, we proposed a short text clustering
based on deep feature representation learned from
CNN without using any external tags/labels and
complicated NLP pre-processing. As experimen-
tal study shows that STCC can achieve significantly
better performance than the baseline methods.
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Figure 4: A 2-dimensional embedding of original keyword features weighted with TF-IDF (a), Laplacian eigenvectors
(b), average embeddings weighted with TF (c) and deep learned features (d) which are respectively used in K-means
(TF-IDF), Spectral Clustering (best), Average Embeddings (TF) and the proposed STCC methods on SearchSnippets.
(Best viewed in color)
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