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Abstract

Up to now, relation extraction systems have
made extensive use of features generated by
linguistic analysis modules. Errors in these
features lead to errors of relation detection and
classification. In this work, we depart from
these traditional approaches with complicated
feature engineering by introducing a convolu-
tional neural network for relation extraction
that automatically learns features from sen-
tences and minimizes the dependence on ex-
ternal toolkits and resources. Our model takes
advantages of multiple window sizes for fil-
ters and pre-trained word embeddings as an
initializer on a non-static architecture to im-
prove the performance. We emphasize the re-
lation extraction problem with an unbalanced
corpus. The experimental results show that
our system significantly outperforms not only
the best baseline systems for relation extrac-
tion but also the state-of-the-art systems for
relation classification.

1 Introduction

Learning to extract semantic relations between en-
tity pairs from text plays a vital role in information
extraction, knowledge base population and question
answering, to name a few. The relation extraction
(RE) task can be divided into two steps: detecting
if a relation utterance corresponding to some entity
mention pair of interest in the same sentence rep-
resents some relation and classifying the detected
relation mentions into some predefined classes. If
we only need to categorize the given relation men-
tions that are known to express some expected rela-
tion (perfect detection), we are left with the relation
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classification (RC) task. One variation of relation
classification is that one might have non-relation ex-
amples in the dataset but the number of those is com-
parable to the number of the other examples. The
non-relation examples, therefore, can be treated as a
usual relation class. Relation extraction, on the other
hand, often comes with a tremendously unbalanced
dataset where the number of the non-relation exam-
ples far exceeds the others, making relation extrac-
tion more challenging but more practical than rela-
tion classification. Our present work focuses on the

relation extraction task with an unbalanced corpus.
In the last decade, the relation extraction litera-

ture has been dominated by two methods, distin-
guished by the nature of the relation representa-
tion: the feature-based method (Kambhatla, 2004,
Boschee et al., 2005; Zhou et al., 2005; Grishman
et al., 2005; Jiang and Zhai, 2007; Chan and Roth,
2010; Sun et al., 2011; Nguyen and Grishman, 2014)
and the kernel-based method (Zelenko et al., 2003;
Culotta and Sorensen, 2004; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006; Zhou et al., 2007; Qian et al., 2008; Nguyen
et al., 2009; Sun and Han, 2014). The common char-
acteristic of these methods is the leverage of a large
body of linguistic analysis and knowledge resources
to transform relation mentions into some rich rep-
resentation to be used by some statistical classifier
such as Support Vector Machines (SVM) or Max-
imum Entropy (MaxEnt). The linguistic analysis
pipeline which is hand-designed itself includes to-
kenization, part of speech tagging, chunking, name
tagging as well as parsing, often performed by ex-
isting natural language processing (NLP) modules.
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While these methods allow the RE systems to inherit
the knowledge discovered by the NLP community
for the pre-processing tasks, they might be subject
to the error propagation introduced by the imper-
fect quality of the supervised NLP toolkits. For in-
stance, all the tasks mentioned in the pipeline above
are known to suffer from a performance loss when
they are applied to out-of-domain data (Blitzer et
al., 2006; Daumé III, 2007; McClosky et al., 2010),
causing the collapse of the RE systems based on
them. In this paper, we target an independent RE
system that both avoids complicated feature engi-
neering and minimizes the reliance on the super-
vised NLP modules for features, potentially allevi-
ating the error propagation and advancing our per-

formance in this area.
To be concrete, our relation extraction system

is provided only with raw sentences marked with
the positions of the two entities of interest!. The
only elements we can derive from this structure
are the words, the n-grams and their positions in
the sentences, suggesting a paradigm in which re-
lation mentions are represented by features that de-
pend on these elements. Eventually, word embed-
dings that are capable of capturing latent seman-
tic and syntactic properties of words (Bengio et al.,
2001; Mnih and Hinton, 2007; Collobert and We-
ston, 2008; Mnih and Hinton, 2009; Turian et al.,
2010; Mikolov et al., 2013) and convolutional neural
networks (CNNs) that are able to recognize specific
classes of n-gram and induce more abstract repre-
sentations (Kalchbrenner et al., 2014) are a natural
combination one should apply to obtain more effec-

tive representations for RE in this setting.
Convolutional neural networks (dating back to the

1980s) are a type of feed-forward artificial neural
networks whose layers are formed by a convolution
operation followed by a pooling operation (LeCun et
al., 1988; Kalchbrenner et al., 2014). Recently, with
the emerging interests of the community in deep
learning, CNNs have been revived and effectively
applied in various NLP tasks, including semantic
parsing (Yih et al.,, 2014), search query retrieval
(Shen et al., 2014), sentence modeling and clas-

"For evaluation purpose, we assume the positions of the two
entities of interest in the sentence like most previous studies in
this area (listed above). These are the only external features we
need to achieve an end-to-end relation extractor.
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sification (Kalchbrenner et al., 2014; Kim, 2014),
name tagging and semantic role labeling (Collobert
et al., 2011). For relation classification and extrac-
tion, there are two very recent works on CNNs for
relation classification (Liu et al., 2013)? and (Zeng
et al., 2014); however, to the best of our knowledge,
there has been no work on employing CNNs for re-
lation extraction so far. This paper is the first attempt
to fill in that gap and serves as a baseline for future

research in this area.
Our convolutional neural network is built upon

that of Kalchbrenner et al. (2014) and Kim (2014)
which are originally proposed for sentence classifi-
cation and modeling. We adapt the network for re-
lation extraction by introducing the position embed-
dings to encode the relative distances of the words
in the sentence to the two entities of interest. Com-
pared to the models in Liu et al. (2013) and Zeng
et al. (2014) for relation classification that apply a
single window size, our model for relation extrac-
tion incorporates various window sizes for convolu-
tional filters, allowing the network to capture wider
ranges of n-grams to be helpful for relation extrac-
tion. In addition, rather than initializing the word
embeddings randomly as do Liu et al. (2013) and
fixing the randomly generated position embeddings
during training as do Zeng et al. (2014), we use pre-
trained word embeddings for initialization and op-
timize both word embeddings and position embed-
dings as model parameters. More importantly, rather
than using exterior features (either from human an-
notation or other pre-processing modules) to enrich
the representation as do Liu et al. (2013) and Zeng et
al. (2014), our model (adapted for RC where entity
heads are given) avoids usage of manual linguistic
resources and supervised NLP toolkits constructed
externally, utilizing word embeddings that can be
trained automatically in an unsupervised framework

as the only external resource for the whole system.
We explore different model architectures system-

atically and demonstrate that the best model perfor-
mance is achieved when multiple window sizes are
implemented and the word embeddings, once initial-
ized by some “universal” embeddings, are allowed
to vary during the optimization process to reach an

“The title of the paper (Liu et al., 2013) on relation extrac-
tion is misleading since the authors actually do relation classifi-
cation, according to the experimental description.



effective state for relation extraction. We evaluate
our models on both relation classification and re-
lation extraction tasks. For relation classification,
experiments show that our model (without any ex-
ternal features and resources) outperforms the state-
of-the-art models whether the external features are
included in these models or not. For relation extrac-
tion, our model is significantly better than the base-
line models that use the words and the embeddings
themselves as the features. In the following, we dis-
cuss related work in Section 2 and present our model
in Section 3. We detail an extensive evaluation in
Section 4 and finally conclude in Section 5.

2 Related Work

As our present work focuses on the supervised
framework for relation extraction, we concentrate on
the supervised systems in this section. Besides the
supervised systems (either feature-based or kernel-
based) mentioned above, some recent systems have
employed the distant supervision (DS) approach for
relation extraction. This approach is essentially sim-
ilar to the traditional systems in representing relation
mentions but attempts to generate training data au-
tomatically by leveraging large knowledge bases of
facts and corpus (Mintz et al., 2009; Riedel et al.,

2010; Hoffmann et al., 2011; Surdeanu et al., 2012).
Regarding neural networks, their first application

to NLP is language modeling which has been use-
ful to learn distributed representations (embeddings)
for words (Bengio et al., 2001; Mnih and Hinton,
2007; Collobert and Weston, 2008; Mnih and Hin-
ton, 2009; Turian et al., 2010; Mikolov et al., 2013).
These word embeddings have opened a new direc-
tion for many other NLP tasks grounded on neu-
ral networks. Some of them are mentioned above.
Other than that, a class of recursive neural networks
(RNNs) and neural tensor networks are proposed for
paraphrase detection (Socher et al., 2011), parsing
(Socher et al., 2013a), sentiment analysis (Socher et
al., 2013b), knowledge base completion (Socher et
al., 2013c), question answering (Mohit et al., 2014)
etc. Among these RNN systems, the study that is
most related to our relation extraction problem is
Socher et al. (2012) that learns compositional vector
representations for phrases and sentences through
syntactic parse trees and applies these represen-
tations for relation classification. However, this
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method inherently requires syntactic parse trees in
contrast to our target of avoiding use of any external
features and resources for RC.

3 Convolutional Neural Network for
Relation Extraction

Our convolutional neural network for relation ex-
traction consists of four main layers: (i) the look-up
tables to encode words in sentences by real-valued
vectors, (ii) the convolutional layer to recognize n-
grams, (iii) the pooling layer to determine the most
relevant features and (iv) a logistic regression layer
(a fully connected neural network with a softmax at
the end) to perform classification (Collobert et al.,
2011; Kim, 2014; Kalchbrenner et al., 2014). Fig-
ure 1 gives an overview of the network.

3.1 Word Representation

The input to the CNN for relation extraction consists
of sentences marked with the two entity mentions of
interest. As CNNs can only work with fixed length
inputs, we compute the maximal separation between
entity mentions linked by a relation and choose an
input width greater than this distance. We insure
that every input (relation mention) has this length
by trimming longer sentences and padding shorter

sentences with a special token.
Let n be the length of the relation mentions and

x = [z1,%9,...,%,] be some relation mention
where x; is the ¢-th word in the mention. Also, let
z;, and x;, be the two heads of the two entity men-
tions of interest . Before entering the network, each
word z; is first transformed into a vector e; by look-
ing up the word embedding table W that can be ini-
tialized either by a random process or by some pre-
trained word embeddings. Besides, in order to em-
bed the positions of the two entity heads as well as
the other words in the relation mention into the rep-
resentation, for each word x;, its relative distances to
the two entity heads 7 —¢; and ¢ — iy are also mapped
into real-value vectors d;, and d;, respectively using
a position embedding table D (initialized randomly)
(Collobert et al., 2011; Liu et al., 2013; Zeng et al.,
2014). Note that the relative distances only range
from —n + 1 to n — 1 so the position embedding
matrix D has size (2n — 1) x mg (mg is a hyperpa-
rameter indicating the dimensionality of the position
embedding vectors). Finally, the word embeddings



input sentence with marked entities

In the morning, the <e1>President</e1> traveled to <e2>Detroit</e2>
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Figure 1: Convolutional Neural Network for Relation Extraction.

e; and the position embeddings d; and dy are con-
catenated into a single vector x; = [e;, d;;, d;,] " to
represent the word x;. As a result, the original sen-
tence x can now be viewed as a matrix x of size
(me + 2mg) x n where m is the dimensionality of
the word embedding vectors.

X = [X1,X2,...,Xy)

3.2 Convolution

In the next step, the matrix x representing the in-
put relation mention is fed into the convolutional
layer to extract higher level features. Given a
widow size w, a filter is seen as a weight matrix
f = [f1,fo,...,f,] (f is a column vector of size
me + 2myg). The core of this layer is obtained from
the application of the convolutional operator on the
two matrices x and f to produce a score sequence

5= [817325 s 7Sn7w+1]:

w—1
T T
si=9(>_ flax/i+0)
=0

where b is a bias term and g is some non-linear
function. This process can then be replicated for var-
ious filters with different window sizes to increase
the n-gram coverage of the model.

For relation extraction, we call the n-grams ac-
companied with relative positions of its words the
augmented n-grams. It is instructive to think about
the filter f as representing some hidden class of the
augmented n-grams and the scores s; as measuring
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the possibility the augmented n-gram at position ¢
belongs to the corresponding hidden class (although
these scores are not probabilities at all). The trained
weights of the filter f would then amount to a feature
detector that learns to recognize the hidden class of
the augmented n-grams (Kalchbrenner et al., 2014).

3.3 Pooling

The rationale of the pooling layer is to further ab-
stract the features generated from the convolutional
layer by aggregating the scores for each filter to in-
troduce the invariance to the absolute positions but
preserve the relative positions of the n-grams be-
tween themselves and the entity heads at the same
time. The popular aggregating function is max as
it bears responsibility for identifying the most im-
portant or relevant features from the score sequence.
Concretely, for each filter f, its score sequence s is
passed through the max function to produce a single
number: pr = max{s} = max{si,s2,...Sp—w+1}
which can be interpreted as estimating the possibil-
ity some augmented n-gram of the hidden class of f
appears in the context.

3.4 Regularization and Classification

In the final step, the pooling scores for every filter
are concatenated into a single feature vector z =
[p1, P2, .. .,pm] to represent the relation mention.
Here, m is the number of filters in the model and
p; s the pooling score of the ¢-th filter. Before ac-
tually applying this feature vector, following (Kim,
2014; Hinton et al., 2012), we execute a dropout for



regularization by randomly setting to zero a propor-
tion p of the elements of the feature vector® z to pro-
duce the vector z4. The dropout vector z, is then
fed into a fully connected layer of standard neural
networks followed by a softmax layer in the end to
perform classification. The fully connected layer in-
duces a weight matrix C as model parameters. At
test time, the unseen relation mentions are scored
using the feature vectors that are not dropped out.
We also rescale the weights whose l>-norms exceed

a hyperparameter as Kim (2014).
Overall, the parameters for the presented CNN

are: the word embedding matrix W, the posi-
tion embedding matrix D, the m filter matrices,
the weight matrix C for the fully connected layer.
The gradients are computed using back-propagation
while training is done via stochastic gradient descent
with shuffled mini-batches and the AdaDelta update
rule (Zeiler, 2012; Kim, 2014).

4 Experiments

4.1 Hyperparameters and Resources

For all the experiments below, we use: tanh for
the non-linear function, 150 filters for each window
size in the model and position embedding vectors
with dimensionality of mg; = 50*. Regarding the
other parameters, we use the same values as do Kim
(2014), i.e, the dropout rate p = 0.5, the mini-batch

size of 50, the hyperparameter for the [ of 3.
Finally, we utilize the pre-trained word embed-

dings word2vec from Mikolov et al. (2013) which
have dimensionality of m. = 300 and are trained on
100 billion words of Google News using the contin-
uous bag-of-words architecture. These embeddings
are publicly available here®. Vectors for the words
not included in the pre-trained embeddings are ini-
tialized randomly. Besides the word embeddings
word2vec, the model does not use any other NLP
toolkits or resources.

4.2 Datasets

We evaluate our models on two datasets: the
SemEval-2010 Task 8 dataset (Hendrickx et al.,
2010) for relation classification and the ACE 2005

3Following the Bernoulli distribution

“These values produce the best performance during our ex-
perimental process.

Shttps://code.google.com/p/word2vec/
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dataset for relation extraction.

ACE 2005 (87,512) SemEval 2010 (10,717)
Relation % | Relation %
ORG-AFF 2.8 | Cause-Effect 124
PER-SOC 1.2 | Component-Whole | 11.7
ART 1.0 | Entity-Destination | 10.6
PART-WHOLE 1.4 | Entity-Origin 9.1
GEN-AFF 1.1 | Product-Producer 8.8
PHYS 2.1 | Member-Collection 8.6
Other 90.4 | Message-Topic 8.4

Content-Container 6.8
Instrument-Agency 6.2
Other 17.4

Table 1: ACE 2005 and SemEval 2010 Relation Class
Distributions

The SemEval dataset can be downloaded here®
and contains 10,717 annotated examples, including
8,000 examples for training and 2,717 examples for
testing. Each example is a sentence annotated for
a pair of entities of interest and the corresponding
relation class for this entity pair. There are 9
ordered relationships (with two directions) and
an undirected Other class, resulting in 19 classes.
A pair is counted as correct if the order of the
entities in the relationship is correct. For the ACE
2005 dataset, documents are annotated for 6 major
relation classes and 7 entity types. In order to
generate the non-relation examples or the examples
for the Other class, we collect every pair of entity
mentions within a single sentence and not included
in the annotated relation set. To reduce the noise,
we truncate the generated dataset by removing all
the examples whose distances between the two
entity heads are greater than 15. This results in a
considerably unbalanced dataset of 8,365 positive
examples of the 6 annotated relation classes and
79,147 negative examples of the class Other. The
distributions of the relation classes on the two
datasets are shown in Table 1. As we can see,
the ACE dataset is much more biased toward the
Other class than the SemEval dataset and thus more
appropriate for relation extraction experiments.

4.3 Evaluation of Model Architectures

We investigate the effectiveness of different win-
dow sizes of filters by running the proposed CNN

Shttp://docs.google.com/View?id=dfvxd49s 36c28v9pmw



nonstatic.rand static.word2vec nonstatic.word2vec
# | window sizes P R F P R F P R F
1|2 69.56 | 41.64 | 52.04 | 74.66 | 41.03 | 52.90 | 72.74 | 49.49 | 58.87
213 68.47 | 42.73 | 52.57 | 74.19 | 42.16 | 53.73 | 72.50 | 50.75 | 59.66
314 68.17 | 43.39 | 52.94 | 73.60 | 41.90 | 53.35 | 72.56 | 49.81 | 58.97
415 66.83 | 43.46 | 52.55 | 73.52 | 42.60 | 53.89 | 71.70 | 51.08 | 59.57
5145 66.18 | 46.12 | 54.25 | 72.69 | 45.23 | 55.71 | 71.88 | 52.36 | 60.50
6 | 3-4-5 67.54 | 4573 | 54.43 | 71.99 | 46.85 | 56.73 | 71.21 | 53.24 | 60.86
7| 2-3-4-5 66.42 | 47.20 | 55.12 | 72.60 | 46.77 | 56.85 | 71.25 | 53.91 | 61.32

Table 2: System Performance on various window size combinations and architectures

model on window sizes of 2, 3, 4 and 5. To un-
derstand the behavior of the model on multiple win-
dow sizes, we further test it on the following win-
dow size combinations: (4,5), (3,4,5) and (2,3,4,5).
In each of these window size configurations, we
evaluate the system on three different scenarios:
(i) the word embeddings and the position embed-
dings are randomly initialized and optimized dur-
ing the training process (denoted by nonstatic.rand),
(ii) the word embeddings are initialized by the pre-
trained word embeddings; the position embeddings
are initialized randomly and the two embeddings
are kept unchanged during the training (denoted by
static.word2vec), (iii) the two embeddings are ini-
tialized as in case (ii) but they are optimized as
model parameters when the model is trained (de-
noted by nonstatic.word2vec). These experiments
are carried out for relation extraction on the ACE
2005 dataset via 5-fold cross validation. Table 2
presents the system performance on Precision (P),
Recall (R) and F1 score (F).

The key observations from the table are’:

(i) From rows 1, 2, 3, 4, we see that evaluating

window sizes individually is quite intricate. It is un-
clear which window size is the best size for CNNs
on relation extraction. For instance, on the non-
static.rand mode, the window size 4 seems to out-
perform the others while on the other modes, the
window sizes 3 and 5 turn out to be better. Besides,
the performance gaps between the window sizes are
small, making it hard to draw a conclusive judge-
ment. In any case, the window size 2 seems to be
the worst, suggesting that the 2-grams might be less
informative than the others on representing relation
mentions for CNNs on this dataset.

"The statements at points (ii) and (iii) are significant at con-
fidence levels > 95%.
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(ii) While the results on evaluating single window
sizes are hard to analyze, the results for multiple
window sizes are quite clear and conclusive. Mov-
ing from single window sizes of 2, 3, 4 or 5 (rows 1,
2,3 and 4 respectively) to the configuration with two
window sizes 4 and 5 (row 5) gives us consistent im-
provements on all the model architectures. The per-
formance is then consistently enhanced when more
window sizes are included, resulting in the best per-
formance when all the window sizes 2, 3, 4 and 5 are
employed. This demonstrates the advantages of the
models with multiple window sizes over the single
window size models in Liu et al. (2013) and Zeng et
al. (2014).

(iii) Regarding different model architectures, the
picture is even clearer. No matter which window
size configuration is applied, we constantly see the
nonstatic.word2vec architecture performs most ef-
fectively, followed by the static.word2vect setting
which is in turn followed by the nonstatic.rand
model. This suggests the undeniable benefits of
initializing the word embeddings by some “univer-
sal” pre-trained values and updating the embeddings
to reflex RE specific embeddings when training the
models (Collobert et al., 2011; Kim, 2014). For
the next experiments, we always use all the window
sizes 2, 3, 4 and 5 with the nonstatic.word2vec ar-
chitecture.

4.4 Relation Extraction Experiment

We compare our system with the traditional feature-
based relation extraction systems when these system
are only allowed to use the same information and re-
sources as our systems, i.e, the words in the relation
mentions, the positions of the two entity heads and
the word embeddings. Given the sentences and the
positions of the two entity heads, the features that
the state-of-the-art feature-based systems extract in-



clude: the heads of the two entity mentions; the
words in the context before mention 1; after men-
tion 2 and between two mentions; the bigrams, the
word sequences between two entities, the order of
two mentions, the number of words between two
mentions (Zhou et al., 2005; Jiang and Zhai, 2007;
Sun et al., 2011). The feature-based system using
this feature set is called Words. Armed with the
word embeddings, one can further introduce these
embeddings into the head words or the words in the
context as additional features (Nguyen and Grish-
man, 2014). We call the system Words augmented
with the embeddings for the two heads Words-HM-
Wed and Words augmented with the embeddings for
words in the contexts Words-WC-Wed. We apply
the MaxEnt framework with L2 regularization in the
Mallet toolkit® to train these feature-based models
(as (Jiang and Zhai, 2007; Sun et al., 2011; Nguyen
and Grishman, 2014)). Table 3 shows the perfor-
mance of the three baseline systems and our pro-
posed CNN via 5-fold cross validation on the ACE
2005 dataset.

System P R F

Words 54.95 | 43.73 | 48.69
Words-WC-Wed | 50.10 | 44.47 | 47.11
Words-HM-Wed | 57.01 | 55.74 | 56.36
Our CNN 71.25 | 5391 | 61.32

Table 3: Performance of Relation Extraction Systems

The first observation is that adding the word em-
beddings to the words in the context hurt the per-
formance of the feature-based systems while aug-
menting the heads of the entities with word embed-
dings significantly improves the feature-based sys-
tems. This is consistent with the results reported
by Nguyen and Grishman (2014) and demonstrates
that the ability to wisely pick the words for embed-
dings and avoid embeddings on specific locations
is crucial to the feature-based systems. More im-
portantly, our proposed CNN significantly outper-
forms all the baseline models at the confidence lev-
els > 95%, an improvement of 4.96% over the best
feature-based system Words-HM-Wed (Nguyen and
Grishman, 2014). This result indicates that CNNs
are a better way to employ word embeddings for re-
lation extraction.

8http://mallet.cs.umass.edu/

45

Remember that although the traditional systems
can achieve a performance greater than 72% on the
ACE dataset (Qian et al., 2008; Sun et al., 2011),
they come at the expense of elaborate feature en-
gineering as well as much more expensive feature
extraction. In particular, the feature extractors of
these feature-based systems require: (i) the perfect
entity and mention type information hand-labeled
laboriously by human annotators; (ii) the extensive
usage of the existing supervised NLP toolkits and
resources (constituent and dependency parsers, dic-
tionaries, gazetteers etc) which might be unavail-
able for various domains in reality. The absence
of the perfect (hand-annotated) entity and mention
type information (i.e point (i) above) greatly impairs
these feature-based systems’ performance. For in-
stance, both Plank and Moschitti (2013) and Nguyen
and Grishman (2014) report a performance less than
60% on the ACE 2005 dataset when the perfect
entity type and mention type features are not em-
ployed although the other features with extensive
feature engineering (i.e point (ii) above) are still
included. As a result, in a more realistic setting
where hand-annotated features are prohibitive, the
proposed CNN requires much less feature engineer-
ing and resources but still performs better than the
traditional feature-based systems.

4.5 Relation Classification Experiment

In order to further verify the effectiveness of the sys-
tem, we test the system on the relation classifica-
tion task with the SemEval 2010 dataset and com-
pare the results with the state-of-the-art systems in
this area. Table 4 describes the performance of var-
ious traditional systems that are based on classifiers
such as MaxEnt and SVM with series of supervised
and manual features’ (Hendrickx et al., 2010) as well
as the more recent systems based on convolutional
neural networks (Zeng et al., 2014) (O-CNN), re-
cursive neural networks (RNN), matrix-vector re-
cursive neural networks (MVRNN) (Socher et al.,
2012) or log-quadratic factor-based compositional
embedding model (FCM) (Yu et al., 2014)!°,

As we can see, among the systems not using any

%i.e the features extracted from supervised pre-processing
NLP modules and manual resources

!9These are the macro-averaged F1-scores, computed by the
officially provided scorer.



Classifier Feature Sets F

SVM POS, WordNet, morphological 77.6
features, thesauri, Google n-
grams

MaxEnt POS, WordNet, morphological 77.6
features, noun compound sys-
tem, thesauri, Google n-grams

SVM POS, WordNet, prefixes and 82.2

other  morphological  fea-
tures, dependency  parse,
Levin  classes, PropBank,
FrameNet, NomLex-Plus,
Google n-grams, paraphrases,
TextRunner

RNN - 74.8

RNN POS, name tagging, WordNet 77.6

MVRNN - 79.1

MVRNN  POS, name tagging, WordNet 82.4

O-CNN - 78.9

O-CNN WordNet 82.7

FCM - 80.6

FCM dependency parse, name tag- 83.0
ging

Our CNN - 82.8

Table 4: Performance of Relation Classification Systems

supervised and manual features (i.e, POS, WordNet,
name tagging, dependency parse, patterns etc), our
system significantly outperforms the state-of-the-art
system FCM (80.6%) (Yu et al., 2014) with an im-
provement of 2.2%. More interestingly, even with-
out supervised and manual features, our system can
still work comparably to the other systems utilizing
these features as the vital components. For instance,
the supervised features (dependency parse and name
tagging) are crucial to FCM (Yu et al., 2014) to sig-
nificantly improve its performance. We attribute our
performance advantage over the closely-related sys-
tem O-CNN (Zeng et al., 2014) to the multiple win-
dow sizes, the optimization of the position embed-
dings during training and possibly the superiority of
the embeddings word2vec we use.

4.6 Impact of Unbalanced Dataset

Shifting from relation classification to relation ex-
traction with an unbalanced corpus, we witness a
large performance gap as described above. In this
section, we study the impact of the unbalanced cor-
pus on the performance of relation extractors for
both convolutional neural networks and traditional
feature-based approaches (Words and Words-HM-
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Figure 2: F measures vs positive/negative ratios
Wed). In particular, we vary the ratio of positive (true
relations) and negative (the class Other) examples in
the ACE 2005 dataset and see how the system per-
formance responds to this variation. Figure 2 shows
the curves. This is a 5-fold cross validation experi-
ment and all the comparisons are significant at con-

fidence levels > 95%.
From the figure, we see that all the models im-

prove constantly with the increase of the ratio of the
positive and negative examples. The performance
peaks with an improvement of about 20% for all
models when the number of examples of the class
Other is small relative to the others. In other words,
the systems attain their best performance when rela-
tion extraction is reduced to the relation classifica-
tion problem, suggesting that relation extraction is
much more challenging than relation classification.
Finally, for all the ratio values, we consistently see
that the convolutional neural network is superior to
the others, once again confirming its advantages.

5 Conclusion

We present a CNN for relation extraction that em-
phasizes an unbalanced corpus and minimizes us-
age of external supervised NLP toolkits for features.
The network uses multiple window sizes for filters,
position embeddings for encoding relative distances
and pre-trained word embeddings for initialization
in a non-static architecture. The experimental results
demonstrate the effectiveness of the proposed CNN
on both RC and RE. Our future work includes: (i)
to enrich the representation of CNNs with more fea-
tures for RE, (ii) to study the applications of CNNs
on other related tasks, and (iii) to examine other neu-
ral network models for RE.



References

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2001. A Neural Probabilistic Language Model. In
Advances in Neural Information Processing Systems
13 (NIPS’00), pages 932938, MIT Press, 2001.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain Adaptation with Structural Correspon-
dence Learning. In Proceedings of the 2006 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Sydney, Australia.

Elizabeth Boschee, Ralph Weischedel, and Alex Zama-
nian. 2005. Automatic Information Extraction. In
Proceedings of the International Conference on Intel-
ligence Analysis.

Razvan C. Bunescu and Raymond J. Mooney. 2005a. A
Shortest Path Dependency Kenrel for Relation Extrac-
tion. In Proceedings of HLT/EMNLP.

Razvan C. Bunescu and Raymond J. Mooney. 2005b.
Subsequence Kernels for Relation Extraction. In Pro-
ceedings of NIPS.

Yee S. Chan and Dan Roth. 2010. Exploiting Back-
ground Knowledge for Relation Extraction. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010), pages 152-
160, Beijing, China, August.

Ronan Collobert and Jason Weston. 2008. A Unied
Architecture for Natural Language Processing: Deep
Neural Networks with Multitask Learning. In Interna-
tional Conference on Machine Learning, ICML, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch.
Journal of Machine Learning Research 12:24932537.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
Tree Kernels for Relation Extraction. In Proceedings
of ACL 2004.

Hal Daumé II1. 2007. Frustratingly Easy Domain Adap-
tation. In Proceedings of the ACL, pages 256-263,
Prague, Czech Republic, June 2007.

Ralph Grishman, David Westbrook and Adam Meyers.
2005. NYUs English ACE 2005 System Description.
ACE 2005 Evaluation Workshop.

Jing Jiang and ChengXiang Zhai. 2007. A Systematic
Exploration of the Feature Space for Relation Extrac-
tion. In Proceedings of the Human Language Technol-
ogy Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL-
HLT’07), pages 113-120, 2007.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid o) Séaghdha, Sebastian Pad6, Marco
Pennacchiotti, Lorenza Romano, Stan Szpakowicz
2010. SemEval-2010 Task 8: Multi-Way Classifica-
tion of Semantic Relations Between Pairs of Nominals.

47

In Proceedings of the 5th International Workshop on
Semantic Evaluation, SemEval 2010.
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. 2012.
Improving  Neural  Networks by  Preventing
Co-Adaptation of Feature Detectors. CoRR,
abs/1207.0580.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel Weld. 2011. Knowledge-
based Weak Supervision for Information Extraction of
Overlapping Relations. In Proceedings of ACL 2011.

Nal Kalchbrenner, Edward Grefenstette and Phil Blun-
som. 2014. A Convolutional Neural Network for Mod-
elling Sentences. In Proceedings of ACL 2014.

Nanda Kambhatla. 2004. Combining Lexical, Syntactic,
and Semantic Features with Maximum Entropy Models
for Information Extraction. In Proceedings of ACL
2004.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of EMNLP
2014.

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick
Haffner. 1988. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE,
86(11):22782324, November, 1988.

ChunYang Liu, WenBo Sun, WenHan Chao, and WanX-
iang Che. 2013. Convolution Neural Network for Re-
lation Extraction. In Proceedings of 9th International
Conference on Advanced Data Mining and Applica-
tions, Part I (ADMA 2013), Hangzhou, China, De-
cember, 2013.

David McClosky, Eugene Charniak, and Mark Johnson.
2010. Automatic Domain Adaptation for Parsing. In
Proceedings of Human Language Technology Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 28-36, Los
Angeles, California, June 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed Representations
of Words and Phrases and their Compositionality. In
Proceedings of NIPS, 2013.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Juraf-
sky. 2009. Distant Supervision for Relation Extrac-
tion without Labeled Data. In Proceedings of ACL,
2009.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
Graphical Models for Statistical Language Modelling.
In Proceedings of ICML 07, pages 641-648, Corvallis,
OR, 2007.

Andriy Mnih and Geoffrey Hinton. 2009. A Scalable
Hierarchical Distributed Language Model. In NIPS,
page 1081-1088.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher and Hal Daumé III. 2014. A Neural



Network for Factoid Question Answering over Para-
graphs. In Proceedings of EMNLP 2014.

Thien Huu Nguyen and Ralph Grishman. 2014. Employ-
ing Word Representations and Regularization for Do-
main Adaptation of Relation Extraction. In Proceed-
ings of ACL 2014, pages 68-74, Baltimore, Maryland,
USA.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution Kernels on
Constituent, Dependency and Sequential Structures
for Relation Extraction. In Proceedings of EMNLP
09, pages 1378-1387, Stroudsburg, PA, USA.

Barbara Plank and Alessandro Moschitti. 2013. Embed-
ding Semantic Similarity in Tree Kernels for Domain
Adaptation of Relation Extraction. In Proceedings of
the ACL 2013, pages 1498-1507, Sofia, Bulgaria.

Longhua Qian, Guodong Zhou, Qiaoming Zhu and Peide
Qian. 2008. Exploiting Constituent Dependencies for
Tree Kernel-based Semantic Relation Extraction. In
Proceedings of COLING, pages 697-704, Manchester.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling Relations and their Mentions without
Labeled Text. In Proceedings of ECML PKDD, 2010.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng and
Grégoire Mesnil. 2014. Learning Semantic Represen-
tations Using Convolutional Neural Networks for Web
Search. In Proceedings of WWW 2014.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic Pooling and Unfolding Recursive Autoencoders
for Paraphrase Detection. In Proceedings of NIPS
2011.

Richard Socher, Brody Huval, Christopher D. Manning
and Andrew Y. Ng. 2012. Semantic Compositionality
through Recursive Matrix-Vector Spaces. In Proceed-
ings of EMNLP 2012.

Richard Socher, John Bauer, Christopher D. Manning and
Andrew Y. Ng. 2013. Parsing with Compositional
Vector Grammars. In Proceedings of ACL 2013.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Chris Manning, Andrew Ng and Chris Potts. 2013.
Recursive Deep Models for Semantic Compositional-
ity Over a Sentiment Treebank. In Proceedings of
EMNLP 2013.

Richard Socher, Dangi Chen, Christopher D. Manning,
Andrew Y. Ng. 2013. Reasoning With Neural Tensor
Networks for Knowledge Base Completion. In Pro-
ceedings of NIPS 2013.

Ang Sun, Ralph Grishman, and Satoshi Sekine. 2011.
Semi-supervised Relation Extraction with Large-scale
Word Clustering. In Proceedings of ACL-HLT, pages
521-529, Portland, Oregon, USA.

48

Le Sun and Xianpei Han 2014. A Feature-Enriched
Tree Kernel for Relation Extraction. In Proceedings of
ACL 2014, pages 61-67, Baltimore, Maryland, USA.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati and
Christopher D. Manning 2012. Multi-instance Multi-
label Learning for Relation Extraction. In Proceed-
ings of EMNLP-CoNLL 2012.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics (ACL’10), pages 384-394, Uppsala,
Sweden, July, 2010.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic Parsing for Single-Relation Question
Answering. In Proceddings of ACL 2014.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2014.
Factor-based Compositional Embedding Models. In
the NIPS Learning Semantics Workshop 2014.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR, abs/1212.5701.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel Methods for Relation
Extraction. Journal of Machine Learning Research,
3:10831106.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and
Jun Zhao. 2014. Relation Classification via Convolu-
tional Deep Neural Network. In Proceedings of COL-
ING 2014.

Min Zhang, Jie Zhang, Jian Su, and GuoDong Zhou.
2006. A Composite Kernel to Extract Relations be-
tween Entities with both Flat and Structured Features.
In Proceedings of COLING-ACL-06, pages 825-832,
Sydney.

Guodong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various Knowledge in Relation Ex-
traction. In Proceedings of ACL’05, pages 427-434,
Ann Arbor, USA, 2005.

Guodong Zhou, Min Zhang, DongHong Ji, and QiaoM-
ing Zhu. 2007. Tree Kernel-based Relation Extraction
with Context-sensitive Structured Parse Tree Informa-
tion. In Proceedings of EMNLP-CoNLL-07, pages
728-736, Prague.



