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Abstract

Concreteness and imageability have long been
held to play an important role in the mean-
ings of figurative expressions. Recent work
has implemented this idea in order to de-
tect metaphors in natural language discourse.
Yet, a relatively unexplored dimension of
metaphor is the role of affective meanings. In
this paper, we will show how combining con-
creteness, imageability and sentiment scores,
as features at different linguistic levels, im-
proves performance in such tasks as automatic
detection of metaphor in discourse. By grad-
ually refining these features through descrip-
tive studies, we found the best performing
classifier for our task to be random forests.
Further refining of our classifiers for part-of-
speech, led to very promising results, with F1
scores of .744 for nouns,.799 for verbs, .811
for prepositions. We suggest that our approach
works by capturing to some degree the com-
plex interactions between external sensory in-
formation (concreteness), information about
internal experience (imageability), and rela-
tively subjective meanings (sentiment), in the
use of metaphorical expressions in natural lan-
guage.

1 Introduction

Figurative language plays an important role in
“grounding” our communication in the world
around us. Being able to talk about “the journey of
life”, “getting into a relationship”, whether there are
“strings attached” to a contract, or even just “surf-
ing the internet”, are important and useful aspects

of everyday meaning-making practices. Much re-
cent work on modeling metaphor, especially using
computational techniques, has concentrated on more
inter-subjective aspects of such meanings, such as
the way that figurative expressions are apparently
used to inject meanings that are somehow more
“concrete” into daily discourse (Turney et al., 2011;
Tsvetkov et al., 2013).On such an account, describ-
ing love as a journey, or life as a test, is a way of
casting a fairly abstract idea, such as love or life, in
more concrete and everyday terms, such as a journey
or a test. Related dimensions of figurative meanings,
such as imageability, having to do with how readily
the concept expressed by some linguistic item brings
an image to mind, have also been investigated (Cac-
ciari and Glucksberg, 1995; Gibbs, 2006; Urena and
Faber, 2010).

Work across a range of disciplines has begun ex-
amining the complex interaction between metaphor
and the intra-subjective emotional meanings ex-
pressed at all levels of language (Kövecses, 2003;
Meier and Robinson, 2005; Strzalkowski et al.,
2014), although modelling such interaction has
proved to be somewhat challenging. For exam-
ple, while a native speaker of some language can
be expected to consistently and reliably rate iso-
lated words for their levels of valence (“pleasant-
ness”), arousal (“emotional intensity”) and domi-
nance (“control”) (Warriner et al., 2013), the same
cannot be expected for more complex expressions
such as “the journey of life” or “strings attached”.
Whether there are indeed systematic and stable pat-
terns for the intra-subjective meanings of such ex-
pressions is still an open question.
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Linking these two components of figurative
meaning, while it has been understood for some time
that concreteness and imageability very strongly
correlate (Paivio et al., 1968), recent work has sug-
gested strong reasons for rethinking this. On the
contrary, (Dellantonio et al., 2014) suggest that con-
creteness and imageability are in fact quite differ-
ent psychological constructs, and the basis for this
difference is that imageability involves both “exter-
nal sensory information” as well as “internal bodily-
related sensory experience,” whereas concreteness
ratings capture only external sensory information.
From this apparent difference internal vs. exter-
nal sensory information, they derive an index of the
“weight” such internal sensory information has in
relation to individual word meaning, which can be
derived as the difference between the concreteness
and imageability of a word. Labelling this weight as
w, we could symbolise this idea as follows:

w = |(CONC - IMAG)|

This will allow us to more clearly separate concrete-
ness from imageability in our modelling, and so bet-
ter examine the interactions of each with sentiment
in processing metaphor.

There has been much work on the interaction
between metaphor and sentiment (Fainsilber and
Ortony, 1987; Fussell and Moss, 1998; Littlemore
and Low, 2006). Metaphor researchers have long
recognised that metaphor and affective communica-
tion are central to each other: metaphor is a cen-
tral way of conveying affect, and conversely convey-
ing affect is a central function of metaphor. How-
ever, it is important to distinguish between (a) us-
ing metaphor to describe an emotion (e.g. “anger
swept through me”) vs. (b) emotion being conveyed
through connotations of source terms (e.g. “terror-
ism is a form of cancer”, where negative affect about
cancer carries over to terrorism).1 However, there is
still much more work to do in elucidating these com-
plex connections.

Motivated by such considerations, we focus here
on how concreteness, imageability, and affective
meaning, interact in metaphorical expressions, and
to this end we have examined a large corpus an-

1In order to maintain anonymity, references to this latter
work are suppressed during the review period.

notated for metaphor, the Vrije University Ams-
terdam Metaphor Corpus (VUAMC) (Steen et al.,
2010), with respect to such fetures as imageability
and concreteness, as well as valence, arousal and
dominance. The background for these studies is our
ongoing work on devising a computational tool for
detecting, and to some degree, also understanding,
metaphor.2

2 Method

2.1 Data

Our data comes from the Vrije University Ams-
terdam Metaphor Corpus (VUAMC), consisting of
over 188,000 words selected from the British Na-
tional Corpus-Baby (BNC-Baby), and annotated for
metaphor using the Metaphor Identification Proce-
dure (MIP) (Steen et al., 2010). The MIP involves
annotators considering individuals words from the
corpus, and answering the question (somewhat sim-
plified here): does this word have a more “ba-
sic” meaning3 than its current “contextual” meaning,
with the latter also being understandable in compar-
ison with the former? If the answer is “yes”, the
current item is used metaphorically, else it is used
non-metaphorically.

The corpus itself has four registers, of between
44,000 and 50,000 words each: academic texts,
news texts, fiction, and conversations, with over
23,600 words were annotated as metaphorical across
the 4 registers.4 Table (1) lists statistics for the
VUAMC from (Steen et al., 2010), specifically pre-
senting standardised residuals (SRs) for counts of
metaphorical vs. non-metaphorical nouns, verbs and
prepositions lexical units, and of5 SRs usefully en-
able pinpointing interesting deviations of the ob-
served frequency for items occurring in specific cat-
egories in our sample from the frequency we actu-
ally expect for them given their overall frequency

2Reference suppressed during the period of review.
3Defined in terms of being more concrete, related to bodily

actions, more precise, and historically older, see (Steen et al.,
2010) for details.

4The VUAMC is available from: http://ota.ahds.
ac.uk/desc/2541.html

5More strictly, they refer to so-called metaphor-related
words, i.e. a word the use of which “may potentially be ex-
plained by some form of cross-domain mapping from a more
basic meaning of that word.”
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in the entire sample.6 For example, while there are
far fewer nouns in all registers except Conversations,
prepositions occur with far greater than expected
frequency in all registers, and verbs are similar to
prepositions, although not as extreme, in occurring
with greater than expected frequency in all registers.
The VUAMC is usefully balanced across 4 registers,
making it highly useful for our ongoing work on au-
tomatic metaphor annotation.

2.2 Procedure

2.2.1 Pre-processing

We have enriched the VUAMC in several ways.
First, we have parsed the corpus using the graph-
based version of the Mate tools dependency parser
(Bohnet, 2010), adding rich syntactic information.7

Second, we have incorporated the MRC Psycholin-
guistic Database (Wilson, 1988), a dictionary of
150,837 words, with different subsets of these words
having been rated by human subjects in psycholin-
guistic experiments.8 Of special note, the database
includes 4,295 words rated with degrees of con-
creteness, these ratings ranging from 158 (meaning
highly abstract) to 670 (meaning highly concrete),
and also 9,240 words rated for degrees of image-
ability, which is taken to indicate how easily a word
can evoke mental imagery, these ratings also rang-
ing between 100 and 700 (a higher score indicating
greater imageability). The concreteness scores (and
to some extent the imageability ones also) have been
used extensively for work on metaphor, e.g. (Turney
et al., 2011; Tsvetkov et al., 2013). Finally, we have
incorporated the work by (Warriner et al., 2013) on
the Affective Norms for English Words (ANEW),
which provides 13,915 English content words, rated
for: valence (measuring the “pleasantness” of the
word), arousal (“emotional intensity” of the word)
and dominance (the degree of “control” evoked by
the thing that the word denotes). This latter dataset
includes rich statistical information (such as means

6For a proper appreciation of the statistics, please see the
relevant sections of (Steen et al., 2010).

7Note this includes POS tagging, POS tags rich enough to
capture such distinctions as common nouns vs. personal nouns,
participles vs. independent verbs vs. copula verbs, etc – see:
https://code.google.com/p/mate-tools/.

8http://ota.oucs.ox.ac.uk/headers/1054.
xml

and variance) for these scores, which we make use
of in our work.

Combining these resources, we extend the
VUAMC with information about dependency rela-
tions, concreteness, imageability, valence, arousal
and dominance. However, this combination is not
without problems, for example, the VUAMC data
set is much larger than the MRC data set, so that
many VUAMC words have no MRC scores, and
we need a smoothing procedure; a similar dispar-
ity in size exists between the VUAMC corpus and
the ANEW scores. Now, a key finding in the liter-
ature is that POS strongly correlates with metaphor;
Table (1) illustrates this quite well, and we have car-
ried out various studies in this direction (see below).
As a first approximation, we smooth such discrepan-
cies between the VUAMC and MRC, by calculating
an average MRC score for each POS across the en-
tire corpus, as follows: first, from VUAMC words
with MRC scores, we calculated an average MRC
score (concreteness/imageability) by POS across all
the the VUAMC data, second, those VUAMC words
without MRC scores (i.e. missing from the MRC
database) could then be assigned a score based on
their POS. We did the same for the ANEW scores,
but this time not in terms of POS, which is miss-
ing from ANEW: we maintained average ANEW
scores, and gave these to VUAMC items not rep-
resented in the ANEW dataset. However, this kind
of naive “global” average is not very discriminative
of the key difference we are trying to model be-
tween metaphorical vs. non-metaphorical expres-
sions, and we are currently re-implementing our
smoothing strategy.9

2.2.2 Experimental design
We carried out a preliminary study, followed by

three main studies, using the pre-processed data de-
scribed in Section (2.2.1). Below we list the aims,
hypotheses and procedures for these studies.

Preliminary study. This initial study aimed to se-
lect features for use in subsequent machine learning
studies. In particular, we covered features consid-
ered important for the task in previous literature. We

9Thanks to the reviewers for this workshop for noting this is-
sue; although, it we should point out that the planning phase for
re-implementing this aspect of our work pre-dates submission
of this paper.
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POS Academic News Fiction Conversation
Lit. Met. Lit. Met. Lit. Met. Lit. Met.

Nouns 82.4 17.6 86.8 13.2 89.5 10.5 91.7 8.3
(1.2) (-2.5) (4.0) (-9.1) (1.4) (-3.8) (-0.4) (1.5)

Prepositions 57.5 42.5 61.9 38.1 66.6 33.4 66.2 33.8
(-21.4) (45.0) (-17.0) (38.5) (-14.9) (40.6) (-13.5) (46.9)

Verbs 72.3 27.7 72.4 27.6 84.1 15.9 90.9 9.1
(-9.2) (19.3) (-10.9) (24.6) (-4.2) (11.6) (-1.7) (5.7)

Table 1: Percentages of POS and metaphors per register, with standardised residuals in brackets (n=47934)

were seeking to discover the optimal combination of
features for discriminating between literal and non-
literal words.

Study 1. This study aimed to find a suitable learn-
ing algorithm, for predicting literal vs. nonliteral
expressions. In addition, we also examined the rela-
tive importance of particular independent variables,
for predicting literal vs. nonliteral expressions, by
sampling a range of standard machine learning al-
gorithms,10 and from this we arrived at a smaller set
of more viable learning algorithms, specifically, ran-
dom forests (rf), gradient boosting machines (gbm),
k nearest neighbours (knn), and support vector ma-
chines (svm). In addition, we considered different
combinations of the features collected in the prelim-
inary studies. The resulting models (learning algo-
rithms, plus combinations of features) were chosen
because they showed promising performance, and
adequately represented the range of models used for
similar tasks in other studies elsewhere. This study
coincided with the initial phase in developing our
system for automatically annotating metaphor, and
for this early development version of our system, we
constructed a random sample covering 80% of the
VUAMC.

For evaluation, we compared results for each tar-
get model against a baseline model, this latter be-
ing the best single variable model we found in ear-
lier studies, which can predict whether a word is
metaphorical or not, based simply on the concrete-
ness score for that word. Results consisted of com-

10Specifically, we considered linear discriminant analysis, k
nearest neighbours, naive bayes, random forest, gradient boost-
ing machines, logistic regression, support vector machines.

paring confusion matrices for ground truth vs. the
output of each model, trained on a training set of
60% of the data, then these models were tuned with
a testing set of 20% of the data. Finally using a val-
idation set of the remaining 20% of the data, accu-
racy, precision, recall and F1 scores were calculated
for each model.

Study 2. For this next study, focusing on the Ran-
dom Forests algorithm, we extended our preliminary
studies in a quite natural way, and separated the clas-
sifiers according to POS, separately training random
forest classifiers on our original data set split into
nouns, verbs and prepositions. The training setup
used here was largely the same as the one used for
Study 1, except that the entire VUAMC data set was
employed for this study.

Study 3. Finally, having identified various dimen-
sions of metaphorical meaning, and having set out to
validate the interaction between these dimensions in
Studies 1 and 2, we next turned to possible explana-
tions of the patterns we observed across, for exam-
ple, different POS. Starting from the random forest
classifiers we had trained on the VUAMC in study
2, it was apparent that the sheer number of trees
used by such classifiers means they are far from be-
ing readily interpretable; nevertheless, we explored
the use of recent tools for attempting to improve
the interpretability of these kinds of ensemble clas-
sifiers.11

11In particular, we employed the “inTrees” R package for
this (Deng, 2014) – see also: http://cran.r-project.
org/web/packages/inTrees/index.html.
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3 Results

3.1 Preliminary study

In earlier work (Gargett et al., 2014), we examined
the role of concreteness and imageability in cap-
turing the variation between nonliteral vs. literal
expressions, for heads vs. their dependents. Fig-
ures (1) and (2) suggest that making this kind of
fine-grained distinction within our data set between
heads and their dependents, enables capturing vari-
ation between literal and nonliteral items for some
POS; for example, nonliteral head nouns appear to
have higher MRC scores than their dependents, dis-
tinct from literal head nouns (verbs appear to make
no such distinction). While literal and nonliteral
head prepositions both seem indistinguishable from
their dependents in terms of concreteness scores,
nonliteral head prepositions seem to have imageabil-
ity scores quite distinct from their dependents.

As can be seen from Figures (1) and (2), our ini-
tial study failed to capture variation between verbs.
As a follow-up, we incorporated features from the
ANEW data set; initial results are plotted in Fig-
ure (3), and the variation exibited across all POS in
this plot suggest, e.g., a possible role for arousal in
distinguishing literal from nonliteral verbs.

3.2 Study 1

Next, we focused on selecting a learning algorithm,
for predicting literal vs. nonliteral expressions. The
features used here are drawn from our earlier stud-
ies, directly incorporating the various scores from
the MRC and ANEW databases. Results are dis-
played in Table (2), with the boxed cell in this ta-
ble showing the strongest performing combination
of learning model and features, which turned out to
be all features from the MRC and ANEW scores,
trained using random forests.

3.3 Study 2

In Table (3), we present the results for our study of
different random forest models by POS. The met-
rics we used here are standard: harmonic mean of
recall and precision, or F1, and the overall agree-
ment rate between model and validation set, or ac-
curacy. A clear effect when including the “weight”
term w can be seen (recall this was the difference
between concreteness and imageability). The clear

winners in each vertical comparison (e.g. between
F1 for Verbs vs. Verbsw) is shown in this table. We
will come back to a discussion of the significance of
these results in Section (4) below.

3.4 Study 3

Our next study sets out to try to interpret in some
way the results from Study 2, and Tables (4) to (6)
present the rule conditions extracted from a sam-
ple of the first 100 trees for each random forest
model for each POS. Important measures of the per-
formance of the classifiers given here include err,
the so-called out-of-bag (OOB) error estimate, and
freq, the proportion of occurrences of instances of
this rule. OOB error rate is a statistic calculated in-
ternally while running the algorithm, and has been
shown to be unbiased: while constructing trees, a
bootstrap sample is taken from the original data,
with some proportion (e.g. about a third) left out,
which can be used as a test set while a particular
tree is being built, and in this way, a test classifica-
tion can be obtained for each case in this same pro-
portion (say, about a third) of trees. The error rate
is then the proportion of times this test classification
was wrong.

Ensemble methods such as random forests are no-
toriously opaque, largely due to the sheer volume
of trees constructed during model building, thereby
making clear interpretation of these models prob-
lematic (Breiman, 2002; Zhang and Wang, 2009);
and yet, they have also emerged as one of the best
performing learning models,12 and work very well
for classification tasks such as ours. Consequently,
there is broad interest in better interpretation of such
models, and development in this direction is ongo-
ing.

Many of the trees built by such ensemble meth-
ods,13 typically contain not only trees crucial for
classification performance, but also many which
could be removed without significant impact on per-
formance. Proceeding along these lines, “pruning”
the forest can result in a smaller, and thus more inter-
pretable, set of trees, without significant impact on
performance; from this smaller set, it is more feasi-

12As witnessed in several recent Kaggle competitions,
https://www.kaggle.com/wiki/RandomForests.

13Other relevant methods we are currently investigating in-
clude gradient boosting machines.
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Figure 1: Plot of concreteness scores for literal vs. nonliteral/metaphorical heads vs. their dependents, in the VUAMC,
grouped by parts of speech

Figure 2: Plot of imageability scores for literal vs. nonliteral/metaphorical heads vs. their dependents, in the VUAMC,
grouped by parts of speech

Figure 3: Plot of anew scores for literal vs. nonliteral/metaphorical verbs in the VUAMC

ble that a relatively transparent set of rules for con- structing some significant proportion of trees could
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Models Full Minimal MRC ANEW Base

gbm 0.7542 0.7364 0.7266 0.7051 0.6673
knn 0.6945 0.6793 0.6861 0.6823 0.6802
rf 0.7813 0.7362 0.7275 0.7144 0.6906

svm 0.6787 0.6689 0.6396 0.6690 0.6348

Table 2: Results (F1) of evaluating models with different combinations of features, for predicting non/literal items
(n=3574)

POS Accuracy F1 n

Nouns 0.733 0.737 1470
Nounsw 0.743 0.744 1470

Verbs 0.7870 0.799 2216
Verbsw 0.7866 0.798 2216

Prepositions 0.785 0.801 2294
Prepositionsw 0.790 0.811 2295

Table 3: Results (Accuracy, F1) for random forest models for different POS, for predicting non/literal items, for models
with and without the “weight” term w

len freq err condition prediction

1 0.059 0.019 pos ≤ 1.037 L

1 0.213 0.367 imag > 0.544 L

3 0.071 0.194 VSDSum ≤ -0.469 & NL
ASDSum ≤ -0.891 &
DRatSum ≤ -0.1925

3 0.225 0.396 AMeanSum ≤ -0.597 & L
DMeanSum > -0.272 &
w ≤ 0.121

2 0.012 0.477 conc > 1.030 & NL
DMeanSum ≤ -0.480

Table 4: Rules extracted from random forest models for Nouns (len=length of condition, freq=proportion of data
instances meeting condition, err=proportion of incorrectly classified instances as over instances meeting condition,
SD=standard deviation)

be extracted – this smaller set of rules could in prin-
ciple be used to attempt an interpretation of the re-
sulting model.

The results presented here are illustrative only, be-
ing based on a sample of the first 100 trees from
each classifier built for each POS. Looking across
these tables, we see some evidence of commonality

for some features across different POS; for example,
extensive use of the “weight” term w is made across
POS (see Section (1) about this).14 On the other
hand, there are also quite distinct combinations of

14Note also the use of the feature pos, which utilises the finer
POS distinctions made by the Mate tools (see Section (2.2.1)
about this).
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len freq err condition prediction

2 0.442 0.316 imag > -1.945 & NL
depslist DSDSum mean > -3.530

2 0.102 0.21 imag ≤ -1.578 & L
w ≤ -0.013

2 0.073 0.192 DMeanSum > 1.146 & L
depslist DSDSum mean ≤ -3.530

1 0.116 0.414 DMeanSum > 1.274 L

2 0.218 0.4 ARatSum ≤ -0.019 & NL
DRatSum > -0.222

2 0.534 0.395 imag > -1.827 & NL
depslist imag mean > -0.990

Table 5: Rules extracted from random forest models for Verbs (len=length of condition, freq=proportion of data
instances meeting condition, err=proportion of incorrectly classified instances for instances meeting condition,
SD=standard deviation, depslist=list of dependents)

len freq err condition prediction

1 0.73 0.349 imag > -1.124 NL

2 0.413 0.313 w > -0.0881 & NL
w ≤ 0.518

2 0.039 0.217 w ≤ 0.110 & L
w > 0.066

1 0.53 0.336 imag > -1.023 NL

Table 6: Rules extracted from random forest models for Prepositions (len=length of condition, freq=proportion of data
instances meeting condition, err=proportion of incorrectly classified instances for instances meeting condition)

concreteness, imageability, w, and a small but inter-
esting subset of the ANEW categories, across POS.
For example, while nouns make good use of con-
creteness, imageability and w, combinations of im-
ageability and w are prevalent for verbs and prepo-
sitions. Further, nouns and verbs, being content
words, seem to make good use of the ANEW fea-
tures, but prepositions make no use of such features,
perhaps due to their status as function words. More
careful study of a wider range of rules, as well as
possible conditioning environments is required, and
such suggestions remain tentative. Note also that
one complication in all of this is that there are exten-
sive errors for most of the extracted rules, and close
study of possible sources of such errors is planned

for future work.

4 Discussion

In this paper, we presented results from various stud-
ies we conducted to help us refine features, and
determine suitable training algorithms for our au-
tomatic metaphor detection system. The training
regime included training separate classifiers for dis-
tinct POS (nouns, verbs, prepositions), and also im-
plements suggestions from psycholinguistics, (Del-
lantonio et al., 2014), to model the interaction be-
tween concreteness, imageability and sentiment as
dimensions of figurative meaning, in particular, dis-
tinguishing concreteness from imageability as the
feature w (i.e. the difference between concreteness
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and imageability scores for individual lexical items).
Incorporating w led to marked improvement in our
classifier performance, and we reported very com-
petitive performance for this system: achieving an
FI of over .81 for prepositions, and just below .80
for verbs, with nouns achieving just under .75. Fi-
nally, we have attempted to go beyond detection,
toward trying to interpret the models we are us-
ing, which has led to a tentative proposal regard-
ing function vs. content words in our approach,
in terms of the features being used for classifica-
tion: whereas content words such as nouns and verbs
use the full range of the MRC and ANEW scores,
function words like prepositions tend to use a much
sparer combinations of features, such as the derived
score w together with imageability. We are currently
trying to exploit these and other insights to further
improve system performance.
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