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Abstract

We present a supervised machine learning sys-
tem for word-level classification of all content
words in a running text as being metaphori-
cal or non-metaphorical. The system provides
a substantial improvement upon a previously
published baseline, using re-weighting of the
training examples and using features derived
from a concreteness database. We observe that
while the first manipulation was very effec-
tive, the second was only slightly so. Possible
reasons for these observations are discussed.

1 Introduction

In this paper, we present a set of experiments aimed
at improving on previous work on the task of su-
pervised word-level detection of linguistic metaphor
in running text. The use of supervised machine
learning techniques for metaphor identification has
increased manyfold in the recent years (see sec-
tion 10, Related Work, for a review and refer-
ences), partially due to the availability of large-
scale annotated resources for training and evaluat-
ing the algorithms, such as the VU Amsterdam cor-
pus (Steen et al., 2010), datasets built as part of
a U.S. government-funded initiative to advance the
state-of-art in metaphor identification and interpreta-
tion (Mohler et al., 2013; Strzalkowski et al., 2013),
and recent annotation efforts with other kinds of
data (Beigman Klebanov and Flor, 2013; Jang et
al., 2014). Some of these data are publicly available
(Steen et al., 2010), allowing for benchmarking and
for measuring incremental improvements, which is
the approach taken in this paper.

Data #Texts content % metaphors
tokens

News 49 18,519 18%
Fiction 11 17,836 14%
Academic 12 29,469 13%
Conversation 18 15,667 7%
Essay Set A 85 21,838 11%
Essay Set B 79 22,662 12 %

Table 1: The sizes of the datasets used in this study, and
the proportion of metaphors. Content tokens are nouns,
adjectives, adverbs, and verbs.

We start with a baseline set of features and train-
ing regime from Beigman Klebanov et al. (2014),
and investigate the impact of re-weighting of train-
ing examples and of a suite of features related to
concreteness of the target concept, as well as to the
difference in concreteness within certain types of
dependency relations. The usage of concreteness
features was previously discussed in the literature;
to our knowledge, these features have not yet been
evaluated for their impact in a comprehensive sys-
tem for word-level metaphor detection, apart from
the concreteness features as used in Beigman Kle-
banov et al. (2014), which we use as a baseline.

2 Data

2.1 VU Amsterdam Data

We use the VU Amsterdam metaphor-annotated
dataset.1 The dataset consists of fragments sam-
pled across four genres from the British National

1http://www2.let.vu.nl/oz/metaphorlab/metcor/search/index.html
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Corpus (BNC): Academic, News, Conversation, and
Fiction. The data is annotated according to the
MIPVU procedure (Steen et al., 2010) with the inter-
annotator reliability of κ > 0.8.

In order to allow for direct comparison with prior
work, we used the same subset of these data as
Beigman Klebanov et al. (2014), in the same cross-
validation setting. The total of 90 fragments are used
in cross-validation: 10-fold on News, 9-fold on Con-
versation, 11 on Fiction, and 12 on Academic. All
instances from the same text were always placed
in the same fold. Table 1 shows the sizes of the
datasets for each genre, as well as the proportion of
metaphors therein.

2.2 Essay Data

The dataset contains 174 essays written for a large-
scale college-level assessment of analytical writ-
ing. The essays were written in response to one
of the following two topics: Discuss the state-
ment “High-speed electronic communications me-
dia, such as electronic mail and television, tend to
prevent meaningful and thoughtful communication”
(Set A, 85 essays), and “In the age of television,
reading books is not as important as it once was.
People can learn as much by watching television
as they can by reading books.” (Set B, 79 essays).
These essays were annotated for argumentation-
relevant metaphors (Beigman Klebanov and Flor,
2013), with inter-annotator reliability of κ = 0.58
and κ = 0.56 for Set A and Set B, respectively.
We will report results for 10-fold cross-validation
on each of sets A and B, as well as across prompts,
where the machine learner would be trained on Set
A and tested on Set B and vice versa. Please refer
to Table 1 for further details about the datasets. This
dataset was used in Beigman Klebanov et al. (2014),
allowing for a direct comparison.

3 Experimental Set-Up

In this study, each content-word token in a text is
an instance that is classified as either a metaphor
or not a metaphor. We use the logistic regres-
sion classifier as implemented in the SKLL package
(Blanchard et al., 2013), which is based on scikit-
learn (Pedregosa et al., 2011), with F1 optimization
(“metaphor” class). Performance will be evaluated

using Precision, Recall, and F-1 score, for the posi-
tive (”metaphor”) class.

As a baseline, we use the best performing fea-
ture set from Beigman Klebanov et al. (2014), who
investigated supervised word-level identification of
metaphors. We investigate the effect of reweighting
of examples, as well as the effectiveness of features
related to the notion of concreteness.

4 Baseline System

As a baseline, we use the best feature set from
Beigman Klebanov et al. (2014). Specifically, the
baseline contains the following families of features:

• Unigrams;

• Part-of-speech tags generated by Stanford POS
tagger 3.3.0 (Toutanova et al., 2003);

• Mean concreteness values from Brysbaert et al.
(2013) set of concreteness norms, represented
using 0.25-wide bins that span the 1-5 range of
possible values;

• logP (w|t)
P (w) values for each of 100 topics gener-

ated by Latent Dirichlet Allocation (Blei et al.,
2003) from the NYT corpus (Sandhaus, 2008).

5 Experiment 1: Re-weighting of
Examples

Given that the category distribution is generally
heavily skewed towards the non-metaphor category
(see Table 1), we experimented with cost-sensitive
machine learning techniques to try to correct for
the imbalanced class distribution (Yang et al., 2014;
Muller et al., 2014). The first technique uses Au-
toWeight (as implemented in the auto flag in scikit-
learn toolkit), where we assign weights that are in-
versely proportional to the class frequencies.2 Ta-
ble 2 shows the results.

The effect of auto-weighting on the VUA data is
quite dramatic: A 14-point drop in precision is off-
set by a 32-point increase in recall, on average, along
with a 10-point average increase in F1 score. The
precision-recall balance for VUA data changed from
P=0.58, R=0.34 to P=0.44, R=0.66, nearly doubling

2The re-weighting of examples was only applied to training
data; the test data is unweighted.
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Data Baseline AutoWeighting
P R F P R F

A-B .71 .35 .47 .52 .71 .60
B-A .57 .49 .53 .40 .67 .50
Set A .70 .48 .57 .50 .75 .60
Set B .76 .59 .67 .57 .80 .67
Av. Essays .69 .48 .56 .50 .74 .59
Acad. .63 .35 .42 .53 .66 .56
Conv. .50 .24 .32 .29 .69 .39
Fiction .55 .29 .38 .41 .61 .49
News .64 .46 .54 .53 .68 .59
Av. VUA .58 .34 .41 .44 .66 .51

Table 2: Performance of a model with AutoWeighted
training examples in comparison to the unweighted base-
line, in terms of Precision (P), Recall (R), and F-1 score
(F) for the positive (”metaphor”) class. A-B and B-A cor-
respond to training-testing scenarios where the system is
trained on Set A and tested on Set B and vice versa, re-
spectively. All other figures report average performance
across the cross-validation folds.

the recall. The effect on essay data is such that the
average drop in precision is larger than for VUA
data (19 points) while the improvement in recall is
smaller (26 points). The average increase in F-1
score is about 3 points, with the maximum of up to
13 F-1 points (A-B evaluation) and a 3-point drop
for B-A evaluation.

Overall, this experiment shows that the feature set
can support a radical change in the balance between
precision and recall. When precision is a priority (as
in a situation where feedback to the user is provided
in the form of highlighting of the metaphorically
used words, for example), it is possible to achieve
nearly 70% precision, while recovering about half
the metaphors. When recall is a priority (possibly
when an overall per-essay metaphoricity rate is esti-
mated and used as a feature in an essay scoring sys-
tem), it is possible to recover about 3 out of every
4 metaphors, with about 50% precision. For VUA
data, a similar trend is observed, with somewhat
worse performance, on average, than on essay data.
The performance on the VUA News and Academic
data is in line with the findings for the cross-prompt
generalization in the essay data, whereas Conversa-
tion and Fiction genres are more difficult for the cur-

rent system.3

Having observed the results of the auto-weighting
experiments, we conjectured that perhaps a more
even balance of precision and recall can be obtained
if the re-weighting gives extra weight to “metaphor”
class, but not to the extent that the auto-weighting
scheme does. In the second experiment, we tune the
weight parameter using grid search on the training
data (through a secondary 3-fold cross-validation
within training data) to find the optimal weighting in
terms of F-score (OptiWeight); the best-performing
weight was then evaluated on the test data (for
cross-prompt evaluations) or the test fold (cross-
validations). We used the grid from 1:1 weighting
up to 8:1, with increments of 0.33.

The first finding of note is that the optimal weight-
ing for the “metaphor” class is lower than the auto-
weight. For example, given that metaphors con-
stitute 11-12% of instances in the essay data, the
auto-weighting scheme for the A-B and B-A eval-
uations would choose the weights to be about 8:1,
whereas the grid search settled on 3:1 when trained
on prompt A and 3.33:1 when trained on prompt
B. A similar observation pertains to the VUA data:
The auto-weighting is expected to be about 4.5:1 for
News data, yet the grid search settled on 4:1, on av-
erage across folds. These observations suggest that
the auto-weighting scheme might not be the optimal
re-weighting strategy when optimizing for F1 score
with equal importance of precision and recall.

Table 3 shows the performance of the optimized
weighting scheme. For VUA data, the changes in
performance are generally positive albeit slight – the
F1 score increases by one point for 3 out of 4 eval-
uations). For essay data, it is clear that the imbal-
ance between precision and recall is substantially re-
duced (from the average difference between recall
and precision of 0.24 for the auto-weighted scheme
to the average difference of 0.08 for the optimized
weights; see column D in the Table). The best ef-
fect was observed for the B-A evaluation (train on
set B, test on set A) – a 6-point increase in preci-

3This could be partially explained by the fact that the sam-
ples for Fiction and Conversation contain long excerpts from
the same text, so they allow for less diversity than samples in
the News set, with a larger number of shorter excerpts, although
performance on the Academic set is not quite in line with these
observations.
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Data AutoWeight OptiWeight
P R F D P R F D

A-B .52 .71 .60 .19 .58 .55 .57 -.03
B-A .40 .67 .50 .27 .46 .65 .54 .20
A .50 .75 .60 .25 .56 .66 .60 .11
B .57 .80 .67 .23 .52 .69 .68 .03
Av. .50 .74 .59 .24 .57 .64 .60 .08
Ac. .53 .66 .56 .14 .52 .69 .57 .17
Con. .29 .69 .39 .39 .32 .63 .40 .31
Fict. .41 .61 .49 .20 .40 .66 .49 .26
News .53 .68 .59 .15 .51 .71 .60 .20
Av. .44 .66 .51 .22 44 .67 .51 .24

Table 3: Performance of a model with optimally weighted
training examples in comparison to the auto-weighted
scheme, in terms of Precision (P), Recall (R), F-1 score
(F), and the difference between Recall and Precision (D).
A-B and B-A correspond to training-testing scenarios
where the system is trained on Set A and tested on Set
B and vice versa, respectively. All other figures report
average performance across the cross-validation folds.

sion compensated well for the 2-point drop in recall,
relative to the auto-weighting scheme, with a result-
ing 4-point increase in F-score. The worst effect was
observed for the A-B evaluation, where the increase
of 6 points in precision was offset by a 16-point
drop in recall. We conclude, therefore, that a grid-
based optimization of weighting can help improve
the precision-recall balance of the learning system
and also improve the overall score in some cases.

6 Experiment 2: Re-representing
concreteness information

In this paper, we use mean concreteness scores for
words as published in the large-scale norming study
by Brysbaert et al. (2013). The dataset has a rea-
sonable coverage for our data; thus, 78% of tokens
in Set A have a concreteness rating. The ratings are
real numbers on the scale of 1 through 5; for exam-
ple, essentialness has the concreteness of 1.04, while
sled has the concreteness of 5.

The representation used by the baseline system
bins the continuous values into 17 bins, starting
with 1 and incrementing by 0.25 (the topmost bin
has words with concreteness value of 5). Com-
pared to a representation using a single continu-
ous variable, the binned representation allows the
machine-learner to provide different weights to dif-

Figure 1: Weights assigned to the different concreteness
bins by the logistic regression classifier with the baseline
feature set in an unweighted training regime. The bins
span the 1-5 range with 0.25 increments; words falling in
bin 1 are the most abstract, while words falling in bin 17
are the most concrete.

ferent bins, thus modeling a non-linear relationship
between concreteness and metaphoricity. Indeed,
the logistic regression classifier has made precisely
such use of this representation; Figure 1 shows the
weights assigned by the classifier to the various
bins, in a baseline model with unweighted exam-
ples trained on Set A data. Specifically, it is clear
that abstract words receive a negative weight (pre-
dict the class “non-metaphor”), while concreteness
values above 2.5 generally receive a positive weight
(apart form the top bin, which happens to have only
a single word in it).

One potential problem with binning as above
is that some of the features become quite sparse;
sparseness, in turn, makes them vulnerable to over-
fitting. Since the relationship between concreteness
and feature weight is mostly monotonic (between
bins 2 and 13), we experimented with defining bins
that would encode various thresholds. Thus, bin
b5 = [2, 2.5] would fire whenever the value of the in-
stance is at least 2 (x ∈ [2, 5]) or whenever the value
of the instance is at most 2.5 (x ∈ [1, 2.5]); we call
these theshold-up and threshold-down, respectively.
Thus, instead of a set of 17 binary bins coding for
intervals, we now have a set of 34 binary bins cod-
ing for upward and downward thresholds. The effect
of this manipulation on the performance was gener-
ally small, yet this version of the concreteness fea-
ture yielded more robust performance. Specifically,
the finding above of a drop in A-B performance in
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the optimal-weighting scheme is now largely miti-
gated, with precision staying the same (0.58), while
recall improving from 0.55 to 0.60, and the resulting
F1 score going up from 0.57 to 0.59, just one point
below the auto-weighted version. The improved per-
formance on B-A is preserved and even further im-
proved, with P=0.50, R=0.62, F=0.55. For the rest of
the datasets and weighting regimes, the performance
was within one F-score point of the performance of
the baseline feature set.

7 Experiment 3: Features capturing
difference in concreteness

In this section, we present results of experiments
trying to incorporate contextual information about
the difference in concreteness between the adjective
and its head noun (AdjN) and between the verb and
its direct object (VN). The intuition behind this ap-
proach is that a metaphor is often used to describe
an abstract concept in more familiar, physical terms.
A concrete adjective modifying an abstract noun is
likely to be used metaphorically (as in soft revolution
or dark thought); similarly, a concrete verb with an
abstract direct object is likely to be a metaphor (as in
pour consolation or drive innovation). Turney et al.
(2011) introduced a method for acquiring estimates
of concreteness of words automatically, and measur-
ing difference in concreteness in AdjN and VN con-
structions. They reported improved metaphor classi-
fication accuracies on constructed sets of AdjN and
VN pairs.

We implemented a difference-in-concreteness
feature using the values from Brysbaert et al. (2013)
database. We parsed texts using Stanford Depen-
dency Parser (de Marneffe et al., 2006), and iden-
tified all instances of amod, dobj, and rcmod rela-
tions that connect an adjective to a noun (amod), a
verb to its direct object (dobj), and a verb in a rela-
tive clause to its head noun (rcmod). For example,
in the sentence “I read the wonderful book that you
recommended,” the following pairs would be ex-
tracted: wonderful-book (amod), read-book (dobj),
and recommended-book (rcmod). The difference-in-
concreteness features are calculated for the adjec-
tives and the verbs participating in the above con-
structions, as follows. Let (adj,n) be a pair of words
in the amod relation; then the value of the difference

in concreteness (DC) for the adjective is given by:

DC(adj) = Concr(adj)− Concr(n) (1)

DC(v) for pairs (v,n) in dobj or rcmod relations
is defined analogously. Features based on DC ap-
ply only to adjectives and verbs participating in the
eligible constructions specified above.

To represent the difference in concreteness in-
formation for the machine learner, we utilize the
binned thresholded representation introduced in sec-
tion 6. The range of the values is now [-4,4]; hence
we define 33 bins for each of the threshold-up and
threshold-down versions.

Data UPT+ UPT+
CUpDown CUpDown+

DCUpDown
P R F P R F

A-B .712 .355 .474 .712 .362 .480
B-A .563 .495 .527 .565 .494 .527
Set A .703 .478 .567 .699 .475 .564
Set B .757 .594 .665 .760 .604 .672
Av. .684 .481 .558 .684 .484 .561
Acad. .633 .350 .419 .636 .356 .425
Conv. .500 .242 .317 .487 .236 .309
Fiction .550 .291 .377 .559 .309 .395
News .640 .465 .536 .636 .466 .536
Av. .581 .337 .412 .580 .342 .416

Table 4: Performance of a model trained with unweighted
examples with and without DC (difference in concrete-
ness) features.

Table 4 shows the incremental improvement as
a result of adding the DCUpDown features to the
system with UPT+CUpDown. The improvement
in recall and in F-score is very small – up to 0.4
F1 points on average across the evaluations. The
largest increase in performance is observed for the
VUA Fiction data (1.8 F1 points), with increases in
both precision and recall. Since unweighted training
scenario generally leads to high-precision low-recall
models, an improvement in recall without drop in
precision is helping the system to achieve a more
balanced performance.

Table 5 shows the incremental improvements in
performance when the system is trained in the auto-
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Data UPT+ UPT+
CUpDown CUpDown+

DCUpDown
P R F P R F

A-B .521 .716 .603 .528 .713 .607
B-A .401 .672 .503 .415 .670 .513
Set A .499 .751 .597 .500 .747 .597
Set B .571 .792 .663 .592 .773 .669
Av. .498 .733 .592 .509 .726 .597
Acad. .525 .662 .564 .525 .657 .562
Conv. .292 .691 .393 .293 .691 .396
Fiction .408 .608 .485 .411 .607 .486
News .528 .674 .590 .530 .673 .590
Av. .438 .659 .508 .440 .657 .509

Table 5: Performance of a model trained with auto-
weighted examples with and without DC (difference in
concreteness) features.

weighting regime. Here the effect of the differ-
ence in concreteness features is somewhat more pro-
nounced for the essay data, with an average F1-score
increase of 0.5 points, due to a 1.1 point average in-
crease in precision along with 0.6-point drop in re-
call. Since auto-weighting generally leads to high-
recall low-precision performance, improvement in
precision is helping the system to achieve a more
balanced performance.

The effect of the difference in concreteness fea-
tures on the performance in the optimized weighting
regime (Table 6) is less consistent across datasets;
while we observe an improvement in precision in
VUA data, the precision has dropped in the essay
data, and vice versa with recall.

8 Results

In this section, we put together the different ele-
ments addressed in this paper, namely, the weight-
ing regime, the different representation given to the
concreteness feature relative to baseline, and the
newly introduced difference in concreteness fea-
tures. We compare performance to the baseline fea-
ture set (UPT+CBins) containing unigrams, POS
features, topic features, and binned concreteness
features (without thresholding), in an unweighted
training regime, corresponding to the best feature
set in Beigman Klebanov et al. (2014). These re-
sults are compared to the current best feature set

Data UPT+ UPT+
CUpDown CUpDown+

DCUpDown
P R F P R F

A-B .584 .596 .590 .593 .556 .574
B-A .499 .620 .553 .485 .635 .550
Set A .562 .659 .603 .561 .661 .604
Set B .674 .697 .684 .662 .722 .690
Av. .580 .643 .608 .575 .644 .605
Acad. .532 .655 .564 .531 .655 .564
Conv. .292 .691 .393 .293 .691 .396
Fiction .400 .643 .490 .414 .621 .493
News .513 .711 .592 .513 .709 .590
Av. .434 .675 .510 .438 .669 .511

Table 6: Performance of a model trained with optimally-
weighted examples with and without DC (difference in
concreteness) features.

(UPT+CUpDown+DCUpDown), in the optimized
weighted training regime. The results are summa-
rized in Table 7.

The overall effect of the proposed improvements
is an absolute increase of 5.2 F1 points (9% rela-
tive increase) on essay data, on average, and 9.8 F1
points (24% relative increase) on VU Amsterdam
data, on average.

9 Discussion

While the proposed improvements are effective
overall, as shown in section 8 (Results), it is clear
that the main driver of the improvement is the re-
weighting of examples, while the contribution of the
other changes is very small (observe the small dif-
ference between the second column in Table 7 and
the OptiWeight column in Table 3). The small im-
provement is perhaps not surprising, since the base-
line model itself already contains a version of the
concreteness features. Given the relevant literature
that has put forward concreteness and difference in
concreteness as important predictors of metaphoric-
ity (Dunn, 2014; Tsvetkov et al., 2014; Gandy et
al., 2013; Assaf et al., 2013; Turney et al., 2011), it
is instructive to evaluate the overall contribution of
the concreteness features over the UPT baseline (no
concreteness features), across the different weight-
ing regimes. Table 9 provides this information.
The improvement afforded by the concreteness and
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Data UPT+ UPT+
CBins CUpDown+

unweighted DCUpDown
(Baseline) opti-weighted

P R F P R F
A-B .713 .351 .470 .593 .556 .574
B-A .567 .491 .527 .485 .635 .550
Set A .701 .478 .566 .561 .661 .604
Set B .760 .592 .665 .662 .722 .690
Av. .685 .478 .557 .575 .644 .605
Acad. .631 .351 .419 .531 .655 .564
Conv. .503 .241 .317 .293 .691 .396
Fiction .551 .291 .378 .414 .621 .493
News .640 .464 .536 .513 .709 .590
Av. .581 .337 .413 .438 .669 .511

Table 7: Performance the baseline model UPT+CBins
in the baseline configuration (unweighted) the
UPT+CUpDown+DCUpDown model in opti-weighted
configuration.

difference-in-concrteness features is 1.4 F1 points,
on average, for the unweighted and auto-weighted
regimes for essay data and 0.6 F1 points, on average,
for the VUA data; there is virtually no improvement
in the optimized weighting regime.

To exemplify the workings of the concrete-
ness and difference-in-concreteness features,
Table 8 shows the instances of the adjective
full observed in Set B where UPT predicts
non-metaphor (P(metaphor)=0.41), while the
UPT+CUpDown+DCUpDown model predicts
metaphoricity (P(metaphor) > 0.5). We use logistic
regression models trained on Set A data to output
the probabilities for class 1 (metaphor) for these
instances. The metaphoricity prediction in these
cases is mostly correct; the one instance where the
prediction is incorrect seems to be due to noise in
the human annotations: The instance where the
system is most confident in assigning class 1 label
– full in “ full educational experience” – has the
adjective full labeled as a non-metaphor, which
appears to be an annotator error.

In light of the findings in the literature regarding
the effectiveness of concreteness and of difference in
concreteness for predicting metaphoricity, it is per-
haps surprising that the effect of these features is
rather modest.

Expression Conc. Conc. P(meta)
Adj N

full educational 3.6 1.8 0.72
[experience]

reach FULL [potential] 3.6 1.9 0.60
to its FULL [potential] 3.6 1.9 0.60
FULL [understanding] 3.6 1.9 0.60
FULL [truth] 3.6 2.0 0.60

Table 8: Instances of the adjective full in Set B that
are predicted to be non-metaphors by the UPT model
trained on Set A in the unweighted regime, while the
UPT+CUpDown+DCUpDown model classifies these as
metaphors. The noun that is recognized as being in
the amod relation with full is shown in square brackets.
FULL (small caps) indicates an instance that is annotated
as a metaphor; lowercase version corresponds to a non-
metaphor annotation.

The incompleteness of the coverage of the con-
creteness database is one possible reason; 22% of
instances in Set A do not have a concreteness value
in the Brysbaert et al. (2013) database. Another pos-
sibility is that much of the information contained in
concreteness features pertains to commonly used ad-
jectives and verbs, which are covered by the unigram
features. Mistakes made by the dependency parser
in identifying eligible constructions could also im-
pair effectiveness.

It is also possible that the concreteness ratings for
adjectives in Brysbaert et al. (2013) data are some-
what problematic. In particular, we noticed that
some adjectives that would seem quite concrete to us
are given a concreteness rating that is not very high.
For example, round, white, soft, cold, rough, thin,
dry, black, blue, hard, high, gray, heavy, deep, tall,
ugly, small, strong, tiny, wide all have a concrete-
ness rating below 4 on a scale of 1 to 5. At the same
time, they all have a fairly high value for the stan-
dard deviation (1.2-1.7) across about 30 responses
collected per word. This suggests that when think-
ing about the concreteness of a word out of context,
people might have conjured different senses, includ-
ing metaphorical ones, and the judgment of con-
creteness in many of these cases might have been
influenced by the metaphorical use. For example, if
a person considered a concept like “dark thoughts”
when assigning a concreteness value to dark, the
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concept is quite abstract, so perhaps the word dark is
given a relatively abstract rating. This is, of course,
circular, because the perceived abstractness of “dark
thoughts” came about precisely because a concrete
term dark is accommodated, metaphorically, into an
abstract domain of thinking.

Another possibility is that it is not concreteness
but some other property of adjectives that is relevant
for metaphoricity. According to Hill and Korhonen
(2014), the property of interest for adjectives is sub-
jectivity, rather than concreteness. A feature captur-
ing subjectivity of an adjective is a possible avenue
for future work. In addition, they provide evidence
that a potentially better way to quantify the concrete-
ness of an adjective is to use mean concreteness of
the nouns it modifies – as if concreteness for adjec-
tives were a reflected property, based on its com-
panion nouns. A large discrepancy between thusly
calculated concreteness and the concreteness of the
actual noun corresponds to non-literal meanings, es-
pecially for cases where the predicted concreteness
of the adjective is high while the concreteness of the
actual noun is low.

10 Related Work

The field of automated identification of metaphor
has grown dramatically over the last few years, and
there exists a plurality of approaches to the task.
Shutova and Sun (2013) and Shutova et al. (2013)
explored unsupervised clustering-based approaches.
Features used in supervised learning approaches in-
clude selectional preferences violation, outlier de-
tection, semantic analysis using topical signatures
and ontologies, as well as n-gram features, among
others (Tsvetkov et al., 2014; Schulder and Hovy,
2014; Beigman Klebanov et al., 2014; Mohler et al.,
2013; Dunn, 2013; Tsvetkov et al., 2013; Hovy et
al., 2013; Strzalkowski et al., 2013; Bethard et al.,
2009; Pasanek and Sculley, 2008).

A number of previous studies used features cap-
turing concreteness of concepts and difference in
concreteness between concepts standing in AdjN
and VN dependency relations. The approach pro-
posed by Turney et al. (2011) derives concreteness
information using a small seed set of concrete and
abstract terms and a corpus-based method for infer-
ring the values for the remaining words. This infor-

mation was used to build a feature for detection of
metaphorical AdjN phrases; the methodology was
extended in Assaf et al. (2013) and again in Neuman
et al. (2013) to provide more sophisticated methods
of measuring concreteness and using this informa-
tion for classifying AdjN and VN pairs. Gandy et al.
(2013) extended Turney et al. (2011) algorithm to be
more sensitive to the fact that a certain concrete facet
might be more or less salient for the given concept.
Tsvetkov et al. (2014) used a supervised learning ap-
proach to predict concreteness ratings for terms by
extending the MRC concreteness ratings. Hill and
Korhonen (2014) used Brysbaert et al. (2013) data
to obtain values for the concreteness of nouns, and
derived the values for adjectives using average con-
creteness of nouns occurring with the adjectives in
a background corpus. Apart from the exact source
of the concreteness values, our work differs from
these studies in that we evaluate the impact of the
concreteness-related measures on an overall word-
level metaphor classification system that attempts to
classify every content word in a running text. In
contrast, the approaches above were evaluated using
data specially constructed to evaluate the algorithms,
that is, using isolated AdjN or VN pairs.

The problem of machine learning with class-
imbalanced datasets has been extensively re-
searched; see He and Garcia (2009) for a review.
Yang et al. (2014) and Muller et al. (2014) specif-
ically evaluated the AutoWeighting technique on
two different linguistic classfication tasks against a
resamping-based technique, and found the former to
yield better performance.

11 Conclusion

In this paper, we presented a supervised machine
learning system for word-level classification of all
content words in a running text as being metaphori-
cal or non-metaphorical. The system provides a sub-
stantial improvement upon a previously published
baseline, using re-weighting of the training exam-
ples and using features derived from a concreteness
database. We observe that while the first manipula-
tion was very effective, the second was only slightly
so. Possible reasons for these observations are dis-
cussed.
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Data UPT UPT+
CUpDown+
DCUpDown

P R F P R F
A-B .714 .337 .458 .712 .362 .480
B-A .573 .480 .522 .565 .494 .527
Set A .693 .462 .552 .699 .475 .564
Set B .767 .576 .657 .760 .604 .672
Av. .687 .464 .547 .684 .484 .561
Acad. .635 .347 .418 .636 .356 .425
Conv. .506 .240 .316 .487 .236 .309
Fiction .549 .288 .374 .559 .309 .395
News .641 .457 .531 .636 .466 .536
Av. .583 .333 .410 .580 .342 .416

A-B .513 .693 .590 .528 .713 .607
B-A .400 .647 .494 .415 .670 .513
Set A .498 .741 .594 .500 .747 .597
Set B .568 .775 .655 .592 .773 .669
Av. .495 .714 .583 .509 .726 .597
Acad. .524 .651 .558 .525 .657 .562
Conv. .292 .688 .392 .293 .691 .396
Fiction .400 .600 .476 .411 .607 .486
News .529 .665 .587 .530 .673 .590
Av. .436 .651 .503 .440 .657 .509

A-B .578 .597 .587 .593 .556 .574
B-A .502 .612 .552 .485 .635 .550
Set A .558 .659 .602 .561 .661 .604
Set B .645 .705 .671 .662 .722 .690
Av. .571 .643 .603 .575 .644 .605
Acad. .521 .671 .565 .531 .655 .564
Conv. .321 .614 .404 .293 .691 .396
Fiction .398 .620 .481 .414 .621 .493
News .506 .711 .586 .513 .709 .590
Av. .437 .654 .509 .438 .669 .511

Table 9: Performance of a model without any
concreteness features (UPT) and the model
UPT+CUpDown+DCUpDown, in no-reweighting
regime (top), auto-weighting (middle), and optimal
weighting (bottom).
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