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Introduction

Characteristic to all areas of human activity (from poetic to ordinary to scientific) and, thus, to all types
of discourse, metaphor becomes an important problem for natural language processing. Its ubiquity in
language has been established in a number of corpus studies and the role it plays in human reasoning
has been confirmed in psychological experiments. This makes metaphor an important research area for
computational and cognitive linguistics, and its automatic identification and interpretation indispensable
for any semantics-oriented NLP application.

This year’s workshop is the third Metaphor in NLP workshop, following the first workshop held at
NAACL 2013 and the second workshop held at ACL 2014. In 2013, accepted papers dealt with
metaphor annotation, features for metaphor identification, and with generalization of the techniques
across languages. These themes were also represented in the 2014 workshop, along with interpretation,
applications, and relationships with related phenomena. In 2015, prominent themes include creation
and utilization of semantic resources for metaphor identification and interpretation; features for
metaphor identification that capture properties of concepts such as concreteness, imageability, affect,
and sensorial modalities; relationships between social dynamic and individual history and metaphor
use; and metaphor generation. We received 13 submissions and accepted 10, based on detailed and
careful reviews by members of the Program Committee.

Creation and utilization of semantic resources to support metaphor identification is a recurrent theme
in the 2015 workshop. An invited talk by Prof. Martha Palmer and Dr. Susan Brown about metaphor in
VerbNet was followed by a number of contributions describing the creation of resources in support of
metaphor identification and analysis. Li, Bai ,Yin, and Xu describe the construction of a resource where
salient properties of concepts expressed by thousands of Chinese verbs and nouns are collected. Dodge,
Hong, and Stickles describe MetaNet, a system combining a repository of metaphors and frames, and a
metaphor detection component that utilizes the repository. Gordon, Jobbs, May, and Morbini describe
an enhancement to their knowledge-based metaphor identification system that infers lexical axioms
– rules which encode information about what words or phrases trigger particular source and target
concepts.

Gordon, Hobbs, May, Mohler, Morbini, Rink, Tomlinson, and Wertheim describe their ontology of
commonly used source domains and release a corpus of manually validated annotations of linguistic
metaphors about governance, economy, and gun control with source and target domains, as well as
specific roles (slots) that support the interpretation of the metaphor. For example, according to the
ontology, a metaphor drawing on the source domain of JOURNEY can be annotated with elements such
as source, target, agent, goal, facilitator, barrier, change, and type of change (increase or decrease). The
goal of the dataset is to support the analysis of ways in which a person or a group conceives of a target
concept.

A similar goal is a starting point of the contribution by Shaikh, Strzalkowski, Taylor, Lien, Liu,
Broadwell, Feldman, Yarrom, Cho, and Peshkova. The authors exemplify the use of their system
for detection of linguistic metaphors and their source-target interpretation to analyze the metaphorical
content of a specific debate (gun control in the U.S.). Having identified documents on both sides of the
debate and the main points of disagreement, they show that the two sides use different metaphors to
argue their cause. In conjunction with measures of influence and centrality, the authors show that the
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kinds of metaphors used and their variety can help to determine the dominant side in the debate. Moving
from social to personal, Jang, Wen, and Rose shed light on the relationship between the personal history
of a participant in an online discussion forum and their use of metaphor.

Beigman Klebanov, Leong, and Flor describe supervised learning experiments aimed at identifying
all content-word linguistic metaphors in a corpus of argumentative essays and in the VU Amsterdam
corpus, addressing specifically the impact of features related to concreteness. Concreteness,
imageability and affective meanings are also modeled in the contribution by Gargett and Barnden.
Tekiroglu, Ozbal, and Strapparava evaluate sensorial features for predicting metaphoricity of adjective-
noun constructions, deriving their features from Senticon – a lexicon of words annotated for their
association with different sensorial modalities, such as taste or smell.

The contribution by T. Veale presents an automated system for generating metaphors; the evaluation
shows that people found about half the metaphors to be highly novel, and about 15% – worthy of
sharing with other people.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, the invited speaker
and panelists for sharing their perspectives on the topic, and all the attendees of the workshop. All of
these factors contribute to a truly enriching event!

Workshop co-chairs:
Ekaterina Shutova, University of Cambridge, UK
Beata Beigman Klebanov, Educational Testing Service, USA
Patricia Lichtenstein, University of California, Merced, USA
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Abstract

Accurate metaphor detection remains an open
challenge. In this paper, we explore a new
type of clue for disambiguating terms that may
be used metaphorically or literally in an on-
line medical support community. In particular,
we investigate the influence of situational fac-
tors on propensity to employ the metaphorical
sense of words when they can be used to illus-
trate the emotion behind the experience of the
event. Specifically we consider the experience
of stressful illness-related events in a poster’s
recent history as situational factors. We eval-
uate the positive impact of automatically ex-
tracted cancer events on a metaphor detec-
tion task using data from an online cancer fo-
rum. We also provide a discussion of specific
associations between events and metaphors,
such as journey with diagnosis or warrior with
chemotherapy.

1 Introduction

In this paper we present a novel approach to
metaphor detection that leverages situational factors
in the life of a speaker that alter the propensity to
employ the metaphorical sense of specific terms. In
recent years, the field of language technologies has
made advances in the area of metaphor detection by
leveraging some linguistic regularities such as lexi-
cal selection, lexical co-occurrence, and abstractness
versus concreteness. On the other hand, we know
that metaphor is creative at its core, and these lin-
guistic regularities, though essential, are bounded in
their ability to enable accurate metaphor detection
in a broad sense. In contrast to previous approaches
focusing on these linguistically inspired features, we

begin to explore situational factors coming from a
pragmatic perspective, related to the reasons why
people choose to use metaphors. The situational fac-
tors may provide a complementary set of indicators
to partner with tried and true linguistically inspired
features in order to increase performance. Specifi-
cally, we explore expressions of metaphors used in
a cancer support community in connection with dis-
cussion around stressful cancer events. In particu-
lar, we provide evidence that propensity to employ
metaphorical language increases around the time of
stressful cancer events.

Describing an experience metaphorically is an ef-
fective conversational strategy for achieving social
goals that are relevant within an online medical sup-
port community. For example, a metaphor may be
useful for drawing the listener closer by revealing
not just what has been experienced, but how the
speaker is personally engaged with the event, such
as journey and battle (Jang et al., 2014). For ex-
ample, the journey metaphor conveys the experi-
ence of cancer treatment as a process of progressing
along a path in which the cancer patient is a trav-
eler, whereas the battle metaphor conveys a more
active attitude towards cancer treatment by com-
paring cancer treatment to conflict and war where
the speaker is positioned as a warrior. In this way,
metaphors may be used to build solidarity or a
sense of camaraderie as they increase insight into
the speaker’s personal experience and thus facili-
tate empathetic understanding between the partici-
pants (Ritchie, 2013).

Beyond the social implications of using a
metaphor, there are implications at the cognitive
level as well. In particular, metaphor is a type of
linguistic tool used to express an abstraction. As
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such, usage of metaphor requires somewhat more
cognitive effort than the equivalent literal descrip-
tion. Usage of a metaphor may thus reflect the effort
the speaker has invested in making sense out of the
associated experience.

Both cognitive and social factors may contribute
towards an elevated level of usage of specific
metaphors that are associated with the experience
of a stressful cancer event in the recent past of a
speaker. Specifically, speakers experience a need for
more social support during and soon after a stress-
ful event, and thus may engage in behaviors that are
useful for building closeness and drawing others in.
Additionally, as part of the coping process, experi-
encers of stressful cancer events are faced with the
need to adjust to a new reality after the experience,
and this adjustment process may be reflected in lin-
guistic mechanisms that are associated with abstrac-
tion and reasoning. Leveraging this insight, we hy-
pothesize that for ambiguous terms (those that can
be used either in a literal or metaphorical sense),
the concentration of metaphorical use will be ele-
vated within a short window of time following the
experience of the associated cancer events. We thus
hypothesize that a context variable associated with
these events will be a useful clue for increasing ac-
curacy at disambiguating the interpretation of these
terms.

In this paper, we present a corpus analysis of data
extracted from an online medical support commu-
nity, where technology has been deployed to ex-
tract mentions of specific cancer events (e.g. di-
agnosis, chemotherapy, etc.). First, we investigate
how popular metaphors we find to be unambiguous
in our data from the discussion forum are used in
connection with major cancer events. This validates
the proposed association between cancer events and
metaphor usage. Second, we evaluate the extent to
which event information can be helpful for a com-
putational metaphor disambiguation task over more
ambiguous candidate metaphor words. In this work,
we quantitatively verify the effectiveness of consid-
ering situational features in metaphor detection.

The major contribution of this work from a
computational perspective is to introduce novel
types of features for automatic metaphor detection.
Metaphor is not a purely linguistic phenomenon
only, but it is language in use. It can depend on

a variety of factors including the mood, audience,
identity of speaker, and the situational context of
the speaker. Thus, we believe that combining in-
sights both from linguistics and language in use will
be able to benefit metaphor detection. Our hope is
that this work opens a door to more diverse kinds of
situational features to be used for metaphor detec-
tion, together with linguistically inspired features.
In addition, our work reinforces and extends earlier
insights into social and cognitive factors that influ-
ence usage of metaphor in discussion, and illustrates
a new impact of accurate event extraction.

The remainder of the paper is organized as fol-
lows. Section 2 relates our work to prior work on
computational metaphor detection. Section 3 de-
scribes the data used for our experiment. Section 4
explains the event extraction method we adopted.
Section 5 illustrates popular metaphors related to
cancer events in our data through a statistical analy-
sis. Section 6 presents our successful metaphor dis-
ambiguation experiments. Section 7 concludes the
paper with a discussion of limitations and next steps
in the work.

2 Related Work

In this section, we introduce two main bodies of
relevant prior work in language technologies: case
studies in online medical support communities and
computational metaphor detection.

2.1 Case Studies in Online Medical Support
Communities

Analysis of language patterns in online cancer fo-
rums have shown effects of time and experience.
For example, with respect to time, Nguyen and
Rosé (2011) examine how language use patterns
are linked with increased personal connection with
the community over time. They show consistent
growth in adoption of community language usage
norms over time. Prior work on online cancer sup-
port discussion forums also shows that participants’
behavior patterns are influenced by the experience
of stress-inducing events. For example, Wen and
Rosé (2012) show that frequency of participants’
posting behavior is correlated with stress-inducing
events. Wen et al. (2011) conducted a study to
analyze patterns of discussion forum posts relating
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to one specific woman’s cancer treatment process.
However, these studies have not performed compu-
tational analysis on the role of metaphor in these
tasks. Metaphor use in this domain is highly preva-
lent, and plays an important role in analysis of lan-
guage use, however its usage patterns in this type of
context have not been systematically explored.

2.2 Computational Metaphor Detection
There has been much work on computational
metaphor detection. Among these published works,
the approaches used have typically fallen into one
of three categories: selectional preferences, abstract-
ness and concreteness, and lexical incoherence.

Selectional preferences relate to how semantically
compatible predicates are with particular arguments.
For example, the verb eat prefers food as an object
over chair. The idea of using selectional preferences
for metaphor detection is that metaphorically used
words tend to break selectional preferences. In the
example of The clouds sailed across the sky, sailed
is determined to be a metaphor since clouds as a
subject violates its selectional preferences. Selec-
tional preferences have been considered in a variety
of studies about metaphor detection (Martin, 1996;
Shutova and Teufel, 2010; Shutova et al., 2010;
Shutova et al., 2013; Huang, 2014)

The abstractness/concreteness approach asso-
ciates metaphorical use with the degree of abstract-
ness and concreteness within the components of a
phrase. In an phrase of adjective and noun such
as green idea and green frog, the former is consid-
ered metaphorical since an abstract word (idea) is
modified by a concrete word (green), while the lat-
ter is considered literal since both words are con-
crete (Turney et al., 2011). Broadwell et al. (2013)
use measures of imageability to detect metaphor, a
similar concept to abstractness and concreteness.

The lexical coherence approach uses the fact that
metaphorically used words are semantically not co-
herent with context words. Broadwell et al. (2013)
use topic chaining to categorize words as non-
metaphorical when they have a semantic relation-
ship to the main topic. Sporleder and Li (2009) also
use lexical chains and semantic cohesion graphs to
detect metaphors.

To the best of our knowledge, there has been no
computational work on the effect of situational fac-

tors, such as the experience of stressful events, on
computational metaphor detection. Demonstrating
how situational factors could be useful for compu-
tational metaphor detection is one of our contribu-
tions.

3 Data

We conduct experiments using data from discussion
boards for an online breast cancer support group.
Participants in the discussion forums are mainly pa-
tients, family members, and caregivers. People use
the discussion for exchanging both informational
support and emotional support with each other by
sharing their stories, and through questioning and
answering. Some people begin participating in this
forum immediately after being diagnosed with can-
cer, while others do not make their first post until a
later event in the cancer treatment process, such as
chemotherapy (Wen and Rosé, 2012).

The data contains all the public posts, users, and
profiles on the discussion boards from October 2001
to January 2011. The dataset consists of 1,562,459
messages and 90,242 registered members. 31,307
users have at least one post, and the average number
of posts per user is 24.

We picked this dataset for our study of rela-
tionship between metaphor and situational factors
for two reasons. First, people in this community
have a common set of events (e.g cancer diagnosis,
chemotherapy, etc.) that are frequently discussed
in user posts. Second, people use metaphorical ex-
pressions quite frequently in this domain. Thus, the
dataset is suitable for a study about metaphor use
related with user events. Below is an example post
containing metaphors. Some parts in the post have
been changed for private information.

Meghan, I was diagnosed this pst
09/02/07. I was upset for a day when I
realized after I had two mammograms and
the ultrasound that I had cancer-I didn’t
have a diagnosis, but I knew. After the
ultrasound came the biopsy and then the
diagnosis, I was fine. I did research. I
made up my mind about what treatement
I thought I wanted. I was good...I really
was fine up to my visit with the surgeon
last week. That made it really real for me.
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I am waiting for my breast MRI results,
and I have to have an ultrasound needle
guided auxillary node biopsy before I
even get to schedule my surgery. My
PET showed other issues in the breast,
thus the MRI and the biopsy. Be kind to
yourself. It will be a roller coaster ride
of emotions. Some days really up and
strong, other days needing lots of hugs
and kleenex. Melody

4 Extracting Cancer Event Histories

The cancer events investigated in this paper in-
clude Diagnosis, Chemotherapy, Radiation Ther-
apy, Lumpectomy, Mastectomy, Breast Reconstruc-
tion, Cancer Recurrence and Metastasis. All these
eight events induce significant physical, practical
and emotional challenges. The event dates are ex-
tracted from the users’ posts as well as the “Diag-
nosis” and “Biography” sections in their user pro-
files. 33% of members filled in a personal profile
providing additional information about themselves
and their disease (e.g., age, occupation, cancer stage,
diagnosis date).

We apply the approach of Wen et al. (2013) to ex-
tract dates of cancer events for each of the users from
their posting histories. A temporal tagger retrieves
and normalizes dates mentioned informally in social
media to actual month and year referents. Build-
ing on this, an event date extraction system learns to
integrate the likelihood of candidate dates extracted
from time-rich sentences with temporal constraints
extracted from event-related sentences.

Wen et al. (2013) evaluate their event extraction
approach in comparison with the best competing
state-of-the-art approach and show that their ap-
proach performs significantly better, achieving an
88% F1 (corresponding to 91% precision and 85%
recall) at resolution of extracted temporal expres-
sions to actual calendar dates, and correctly iden-
tifies 90% of the event dates that are possible given
the performance of that temporal extraction step.

We adopt the same method to extract all users’
cancer event dates in our corpus. Note that even
were we to use a perfect event extraction system,
we can only extract events that the users explicitly
mention in their posts. Users may experience addi-
tional events during their cancer treatment process,

and simply choose not to mention them during their
posts.

5 Investigation into the Connection
between Metaphor and Events

As users continue to participate in the cancer com-
munity we are studying, over time they experience
more and more significant cancer events. Earlier
work (Wen and Rosé, 2012) shows elevated lev-
els of participation frequency and posting frequency
around the time of and immediately after experienc-
ing one of these stress-causing events. This pattern
suggests that one way users work to process their
traumatic experience is by participating in the fo-
rum and obtaining support from other people who
are going through similar experiences. Since us-
ing metaphorical language suggests elevated levels
of cognitive effort related to the associated concept,
it is reasonable to expect that users may also engage
in a higher concentration of metaphorical language
during this time as well as an additional reflection of
that processing. In this section, we investigate how
the use of metaphor changes with respect to specific
traumatic cancer events. We examine a set of com-
mon metaphors to see whether situational factors,
i.e. cancer events, affect their use. We use cancer
event dates extracted in (Wen et al., 2013) as de-
scribed in Section 4

5.1 Before and After Events

As our first analysis of the relationship between
metaphor use and events, we pick eight unambigu-
ous metaphor words in our data – journey, boat, war-
rior, angel, battle, victor, one step at a time, and
roller coaster ride – and consider the distribution of
these metaphors around each event. We categorized
these metaphors as unambiguous based on their us-
age within a small sample of posts we analyzed by
hand. Since these are unambiguous, we can be sure
that each time we detect these words being used, the
speaker is making a metaphor. For each metaphor-
event pair, we construct a graph showcasing the fre-
quency of the metaphor usage both before and after
the event. We center each user’s post dates around
the month of the event, so times on the x-axis are
relative dates rather than absolute dates (the center
of the graph corresponds to the actual event month).
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The graphs for journey and warrior paired with the
diagnosis event are shown in Figure 1 and Figure 2,
respectively.

Certain metaphor/event pairs show a peak around
the event, or at 1 year after the event, for example on
the anniversary of diagnosis, which is a significant
event in the life of a cancer patient. However, the
pattern does not hold across all such pairs, making
it difficult to generalize. For example, in Figure 1,
we see a peak of metaphor frequency occurring at
the time of the event, but in Figure 2, we do not see
such a peak at the time of the event, but see other
peaks both before and after the event date. Another
complicating factor is that different users experience
different cancer treatment timelines. For instance,
one user might experience these events over a long
period of time, whereas another user may encounter
these events in quick succession (Wen and Rosé,
2012). These factors motivated us to consider other
methods, including hierarchical mixed models, for
more in-depth analysis.

Figure 1: Distribution of journey metaphor centered
around diagnosis event (x-axis: months from event, y-
axis: average frequency of metaphor usage)

Figure 2: Distribution of warrior metaphor centered
around diagnosis event (x-axis: months from event, y-
axis: average frequency of metaphor usage)

5.2 Associated Events Analysis

Hierarchical mixed models enable us to model the
effect of the experience of a cancer event in the his-
tory of a user while controlling for other important
factors, such as time and personal tendency. We pre-
pared data for analysis by sampling users. We iden-
tified the list of users who used any of our target
metaphors at least once, and extracted all the posts
of those users. In our models, we treat the message
as the unit of analysis, and the dependent measure is
always either the presence or absence of a specific
metaphor, or the presence or absence of metaphor-
ical language more generally, in all cases indicated
by a dichotomous variable. Independent variables
including dichotomous indicators of the experience
of a specific cancer event in the recent past. We treat
each user post as being in the critical period of a
cancer event if the post date falls within a time win-
dow of two months prior to the event month to two
months after the event month, which we selected
based on informal observation. Data statistics are
shown in Table 1.

We tested the association between each depen-
dent variable and the set of independent variables.
These hierarchical mixed models were built using
the Generalized Linear Latent and Mixed Models
(GLLAMM) add-on package in STATA (Rabe-
Hesketh and Skrondal, 2008; Rabe-Hesketh et al.,
2004), using maximum likelihood estimation to esti-
mate the models. A random intercept is included for
each poster, which is necessary for avoiding obtain-
ing biased estimates of the parameters since there
were multiple data points for each user, and users
varied in their tendency to use metaphorical lan-
guage or not. We also experimented with time as
an independent variable to control for potential con-
sistent increases in usage of metaphorical language
over time, but we did not find any such strong effect,
and so we dropped this variable from our models.

We did not find significant effects with a depen-
dent measure that indicated that any of the set of
metaphors were used, however, we did find sig-
nificant associations between metaphors and events
when we used dependent variables associated with
specific metaphors. Our finding was that the sub-
set of events associated with a metaphor varied by
metaphor in a way that made sense given the conno-
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metaphor # %
M L M L

journey 5,787 1,329,560 0.43 99.57
boat 21,398 1,313,849 1.60 98.40
warrior 3,462 1,331,785 0.26 99.74
angel 16,025 1,319,222 1.20 98.80
battle 6,347 1,328,900 0.48 99.52
victor 3,540 1,331,707 0.27 99.73
one step at a time 1,554 1,333,693 0.12 99.88
roller coaster ride 536 1,334,711 0.04 99.96
all 64,755 1,270,492 4.85 95.15

Table 1: Corpus-wide unambiguous popular metaphor use statistics (among posts where the user used the metaphor at
least once) (M: posts that contain each metaphor, L: posts that do not contain each metaphor).

candidate associated events
journey diagnosis, recurrence,

mastectomy
boat diagnosis, reconstruction
warrior chemo
angel chemo, rads, mets
battle diagnosis, rads, lumpec-

tomy
victor chemo, rads, reconstruc-

tion
one step at a time diagnosis
roller coaster ride diagnosis, reconstruction

Table 2: Metaphor candidates and their associated events

tation of the metaphor. For instance, warrior is asso-
ciated with chemo, and journey is associated with di-
agnosis, recurrence, and mastectomy. Associations
for all metaphors used for analysis are listed in Ta-
ble 2.

6 Metaphor Disambiguation

Knowing that there is a significant association be-
tween the experience of a cancer event and the us-
age of a metaphor opens up the possibility for using
knowledge of a user’s experience of cancer events in
the interpretation of their language choices. In par-
ticular, if they use a word that may or may not be
metaphorical, and the metaphorical usage is associ-
ated with a cancer event that occurred in their recent
past, then the model should be more likely to pre-

dict the metaphorical interpretation. Conversely, if
the user is not within the critical period of the event
associated with the potential metaphorical interpre-
tation, the metaphorical interpretation should be cor-
respondingly less preferred. We hypothesize that us-
age of this contextual information might improve the
accuracy of disambiguation of potentially metaphor-
ical language. In this section, we test that hypothesis
in a corpus based experiment conducted this time on
a set of ambiguous, potentially metaphorical words.

6.1 Task

Our task is metaphor disambiguation: given a
candidate word, decide whether the word is used
metaphorically or literally in a post. For example,
road in (1) is used metaphorically, and road in (2)
is used literally. The task is to classify road into
metaphor and literal use.

(1) Great hobbies! ... My hobbie that I
love is road bike riding. My husband
and I both have bikes and we love to
ride. ... That’s the beauty of living in
the south is that you can ride all year
long.

(2) Another thing to consider is cosmetic
outcome. ... If you have a recurrence
of cancer and have to do a mast down
the road, reconstruction is more dif-
ficult after having radiation. ...
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6.2 Data Annotation

We picked six metaphor candidates that appear ei-
ther metaphorically or literally in the breastcancer
corpus: candle, light, ride, road, spice, and train.

We employed MTurk workers to annotate
metaphor use for candidate words. A candidate
word was given highlighted in the full post it came
from. MTurkers were instructed to copy and paste
the sentence where a given highlighted word is con-
tained to a given text box to make sure that MTurk-
ers do not give a random answer. They were given a
simple definition of metaphor from Wikipedia along
with a few examples to guide them. Then, they were
questioned whether the highlighted word is used
metaphorically or literally. Each candidate word
was labeled by five different MTurk workers, and
we paid $0.03 for annotating each word. To control
annotation quality, we required that all workers have
a United States location and have 98% or more of
their previous submissions accepted. We filtered out
annotations whose the first task of copy and paste
failed, and 18 out of 11,675 annotations were ex-
cluded.

To evaluate the reliability of the annotations by
MTurkers, we calculated Fleiss’s kappa (Fleiss,
1971). Fleiss’s kappa is appropriate for assessing
inter-reliability when different items are rated by dif-
ferent judges. The annotation was 1 if the MTurker
coded a word as a metaphorical use, otherwise the
annotation was 0. The kappa value is 0.80.

We split the data randomly into two subsets, one
for analysis of related events, and the other for clas-
sification. The former set contains 803 instances,
and the latter contains 1,532 instances. The unusual
number of instances within each subset arises from
the fact that some posts contain multiple metaphors,
and we specifically chose to set aside 1,500 posts for
classification.

6.3 Analysis on Associated Events

We performed a statistical analysis on the six
metaphor candidate words as in Section 5.2. We
combined the users from all the six metaphor can-
didates, and extracted posts of these users. Indepen-
dent variables for the model were binary values for
each event, where the value is 1 if a post was writ-
ten in the critical period (defined previously in Sec-

candidate # %
N L N L

candle* 4 18 18.18 81.81
light 503 179 73.75 26.25
ride 234 185 55.85 44.15
road 924 129 87.75 12.25
spice* 3 21 12.50 87.50
train 94 41 69.63 30.37
all 1762 573 75.46 24.54

Table 3: Metaphor use statistics of data used for MTurk (*
indicates metaphor candidates for which the literal usage
is more common than the non-literal one, N: nonliteral
use L: literal use).

candidate associated events
candle none
light diagnosis, rads, mast
ride diagnosis
road diagnosis, rads
spice none
train mast

Table 4: Metaphor candidates and their associated events

tion 5.2), and 0 otherwise. The dependent variable
is a binary value regarding the usage of a metaphor
candidate within a post. If a particular post does not
include a metaphor candidate or if a post includes a
literally used metaphor candidate, the binary depen-
dent value is set to 0. Otherwise, it is set to 1.

The results of conducting the hierarchical mixed
model analysis on the data similar to the one con-
ducted above on non-ambiguous metaphors suggest
that some candidate words show an association with
different cancer events as shown in Table 4.

6.4 Classification
We used the LightSIDE (Mayfield and Penstein-
Rosé, 2010) toolkit for extracting features and clas-
sification. For the machine learning algorithm, we
used the support vector machine (SVM) classifier
provided in LightSIDE with the default options.
We used basic unigram features extracted by Light-
SIDE.

To see the effect of event information for classi-
fication, we defined two sets of event features. One
is a feature vector over all the events, consisting of
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model Accuracy Kappa Precision Recall F1 score
(1) word 0.8133 0.3493 0.8105 0.9827 0.8884
(2) context unigram 0.8094 0.4701 0.8651 0.8860 0.8754
(3) context unigram + event 0.8127 0.4777 0.8657 0.8903 0.8778
(4) context unigram + associated event 0.8146 0.4729 0.8612 0.8998 0.8801
(5) context unigram + fs 0.8277 0.5155 0.8731 0.9033 0.8879
(6) context unigram + event + fs 0.8336 0.5325 0.8772 0.9067 0.8917
(7) context unigram + associated event + fs 0.8244 0.504 0.8695 0.9033 0.8861

Table 5: Performance on metaphor disambiguation evaluation. (6) is significantly better than (5) [p=0.013] (fs.: used
feature selection)

both binary variables to indicate whether or not a
post belongs to the critical period of each event, and
numerical variables to indicate how many months
the post is written from a known event. We will re-
fer to these features as event in Table 5. The other
is a binary variable to indicate whether or not a post
belongs to the critical period of any of the associ-
ated events for the given metaphor (defined in Sec-
tion 6.3). We will refer to this feature as associated
event in Table 5.

We used multilevel modeling for the features
when including associated event. We also used the
FeatureSelection feature in LightSIDE, where a sub-
set of features is picked on each fold before passing
it to the learning plugin. We performed 10-fold cross
validation for these experiments.

Because we want to see the effect of event in-
formation, we compare our model with a unigram
model that uses only the word itself as in (Klebanov
et al., 2014), and the context unigram model which
uses all the context words in a post as features as
baselines.

6.5 Results

Table 5 displays the results for our experiments.
First, we observe the strong performance of the un-
igram baseline. As in (Klebanov et al., 2014), our
evaluation also shows that just using the word cur-
rently being classified gives relatively high perfor-
mance. This result suggests that our candidate words
are popular metaphors repeatedly used metaphori-
cally in this domain, as precision is above 80%.

Second, surprisingly, we do not see improvement
on accuracy from adding the context words as fea-
tures. However, we do observe that this addition

results in a higher kappa value than just using the
candidate words themselves.

Finally, we can see both event and associated
event features show promising results. Both addi-
tions give higher result when added to the context
unigram model, and the event features continue to
show improvement when considering models with
feature selection. The best model, using event fea-
tures with feature selection, shows significant im-
provement (p < 0.05) over the next best model of
context unigram with feature selection.

7 Conclusion

In this paper, we discussed how situational factors
affect people’s metaphor use. We presented a study
in an online medical support community, which con-
tains a variety of related events (e.g. diagnosis,
chemotherapy, etc.). First, we investigated how pop-
ular unambiguous metaphors in the discussion fo-
rum are used in relation to major cancer events. Sec-
ond, we demonstrated that event information can be
helpful for a computational metaphor disambigua-
tion task over ambiguous candidate metaphor words.
In this work we quantitatively verified the effect of
situational features.

Our analysis showed that some popular unam-
biguous metaphors in the discussion forum are used
in connection with stressful cancer events. Usage
of different metaphors is associated with different
cancer events. We also observed that the personal
tendency factor is about 10 times as strong as the
situational factor. For our future work, it will be an
interesting problem to design a model considering
the personal tendency factor. It will require a latent
variable model to properly tease these factors apart.
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In addition, our metaphor disambiguation exper-
iments validated the proposed association between
cancer events and metaphor usage. Using event in-
formation as features showed significant improve-
ment. Although our classification results using as-
sociated event information show weak improvement
to no improvement depending on whether feature se-
lection is used, it is important to note that our anal-
ysis consistently identified a strong relationship be-
tween metaphors and their associated events (Table
4). Therefore, we believe that it is crucial to develop
a classification model that can better leverage the
metaphor-event association, which remains as our
future work. We also want to try different sized con-
text windows for the critical period of a cancer event
in order to see the effect of time with respect to situ-
ational factors.

One limitation of this research is that our analysis
relies on the event extraction results. Although the
event extraction approach we adopted is currently
the best performing state-of-the-art technique, it still
makes mistakes that could make our analysis inac-
curate. Another limitation is that it is hard to ob-
tain data big enough to split the data into subparts
for both the hierarchical mixed model analysis and
classification.
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Abstract

We present a supervised machine learning sys-
tem for word-level classification of all content
words in a running text as being metaphori-
cal or non-metaphorical. The system provides
a substantial improvement upon a previously
published baseline, using re-weighting of the
training examples and using features derived
from a concreteness database. We observe that
while the first manipulation was very effec-
tive, the second was only slightly so. Possible
reasons for these observations are discussed.

1 Introduction

In this paper, we present a set of experiments aimed
at improving on previous work on the task of su-
pervised word-level detection of linguistic metaphor
in running text. The use of supervised machine
learning techniques for metaphor identification has
increased manyfold in the recent years (see sec-
tion 10, Related Work, for a review and refer-
ences), partially due to the availability of large-
scale annotated resources for training and evaluat-
ing the algorithms, such as the VU Amsterdam cor-
pus (Steen et al., 2010), datasets built as part of
a U.S. government-funded initiative to advance the
state-of-art in metaphor identification and interpreta-
tion (Mohler et al., 2013; Strzalkowski et al., 2013),
and recent annotation efforts with other kinds of
data (Beigman Klebanov and Flor, 2013; Jang et
al., 2014). Some of these data are publicly available
(Steen et al., 2010), allowing for benchmarking and
for measuring incremental improvements, which is
the approach taken in this paper.

Data #Texts content % metaphors
tokens

News 49 18,519 18%
Fiction 11 17,836 14%
Academic 12 29,469 13%
Conversation 18 15,667 7%
Essay Set A 85 21,838 11%
Essay Set B 79 22,662 12 %

Table 1: The sizes of the datasets used in this study, and
the proportion of metaphors. Content tokens are nouns,
adjectives, adverbs, and verbs.

We start with a baseline set of features and train-
ing regime from Beigman Klebanov et al. (2014),
and investigate the impact of re-weighting of train-
ing examples and of a suite of features related to
concreteness of the target concept, as well as to the
difference in concreteness within certain types of
dependency relations. The usage of concreteness
features was previously discussed in the literature;
to our knowledge, these features have not yet been
evaluated for their impact in a comprehensive sys-
tem for word-level metaphor detection, apart from
the concreteness features as used in Beigman Kle-
banov et al. (2014), which we use as a baseline.

2 Data

2.1 VU Amsterdam Data

We use the VU Amsterdam metaphor-annotated
dataset.1 The dataset consists of fragments sam-
pled across four genres from the British National

1http://www2.let.vu.nl/oz/metaphorlab/metcor/search/index.html
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Corpus (BNC): Academic, News, Conversation, and
Fiction. The data is annotated according to the
MIPVU procedure (Steen et al., 2010) with the inter-
annotator reliability of κ > 0.8.

In order to allow for direct comparison with prior
work, we used the same subset of these data as
Beigman Klebanov et al. (2014), in the same cross-
validation setting. The total of 90 fragments are used
in cross-validation: 10-fold on News, 9-fold on Con-
versation, 11 on Fiction, and 12 on Academic. All
instances from the same text were always placed
in the same fold. Table 1 shows the sizes of the
datasets for each genre, as well as the proportion of
metaphors therein.

2.2 Essay Data

The dataset contains 174 essays written for a large-
scale college-level assessment of analytical writ-
ing. The essays were written in response to one
of the following two topics: Discuss the state-
ment “High-speed electronic communications me-
dia, such as electronic mail and television, tend to
prevent meaningful and thoughtful communication”
(Set A, 85 essays), and “In the age of television,
reading books is not as important as it once was.
People can learn as much by watching television
as they can by reading books.” (Set B, 79 essays).
These essays were annotated for argumentation-
relevant metaphors (Beigman Klebanov and Flor,
2013), with inter-annotator reliability of κ = 0.58
and κ = 0.56 for Set A and Set B, respectively.
We will report results for 10-fold cross-validation
on each of sets A and B, as well as across prompts,
where the machine learner would be trained on Set
A and tested on Set B and vice versa. Please refer
to Table 1 for further details about the datasets. This
dataset was used in Beigman Klebanov et al. (2014),
allowing for a direct comparison.

3 Experimental Set-Up

In this study, each content-word token in a text is
an instance that is classified as either a metaphor
or not a metaphor. We use the logistic regres-
sion classifier as implemented in the SKLL package
(Blanchard et al., 2013), which is based on scikit-
learn (Pedregosa et al., 2011), with F1 optimization
(“metaphor” class). Performance will be evaluated

using Precision, Recall, and F-1 score, for the posi-
tive (”metaphor”) class.

As a baseline, we use the best performing fea-
ture set from Beigman Klebanov et al. (2014), who
investigated supervised word-level identification of
metaphors. We investigate the effect of reweighting
of examples, as well as the effectiveness of features
related to the notion of concreteness.

4 Baseline System

As a baseline, we use the best feature set from
Beigman Klebanov et al. (2014). Specifically, the
baseline contains the following families of features:

• Unigrams;

• Part-of-speech tags generated by Stanford POS
tagger 3.3.0 (Toutanova et al., 2003);

• Mean concreteness values from Brysbaert et al.
(2013) set of concreteness norms, represented
using 0.25-wide bins that span the 1-5 range of
possible values;

• logP (w|t)
P (w) values for each of 100 topics gener-

ated by Latent Dirichlet Allocation (Blei et al.,
2003) from the NYT corpus (Sandhaus, 2008).

5 Experiment 1: Re-weighting of
Examples

Given that the category distribution is generally
heavily skewed towards the non-metaphor category
(see Table 1), we experimented with cost-sensitive
machine learning techniques to try to correct for
the imbalanced class distribution (Yang et al., 2014;
Muller et al., 2014). The first technique uses Au-
toWeight (as implemented in the auto flag in scikit-
learn toolkit), where we assign weights that are in-
versely proportional to the class frequencies.2 Ta-
ble 2 shows the results.

The effect of auto-weighting on the VUA data is
quite dramatic: A 14-point drop in precision is off-
set by a 32-point increase in recall, on average, along
with a 10-point average increase in F1 score. The
precision-recall balance for VUA data changed from
P=0.58, R=0.34 to P=0.44, R=0.66, nearly doubling

2The re-weighting of examples was only applied to training
data; the test data is unweighted.
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Data Baseline AutoWeighting
P R F P R F

A-B .71 .35 .47 .52 .71 .60
B-A .57 .49 .53 .40 .67 .50
Set A .70 .48 .57 .50 .75 .60
Set B .76 .59 .67 .57 .80 .67
Av. Essays .69 .48 .56 .50 .74 .59
Acad. .63 .35 .42 .53 .66 .56
Conv. .50 .24 .32 .29 .69 .39
Fiction .55 .29 .38 .41 .61 .49
News .64 .46 .54 .53 .68 .59
Av. VUA .58 .34 .41 .44 .66 .51

Table 2: Performance of a model with AutoWeighted
training examples in comparison to the unweighted base-
line, in terms of Precision (P), Recall (R), and F-1 score
(F) for the positive (”metaphor”) class. A-B and B-A cor-
respond to training-testing scenarios where the system is
trained on Set A and tested on Set B and vice versa, re-
spectively. All other figures report average performance
across the cross-validation folds.

the recall. The effect on essay data is such that the
average drop in precision is larger than for VUA
data (19 points) while the improvement in recall is
smaller (26 points). The average increase in F-1
score is about 3 points, with the maximum of up to
13 F-1 points (A-B evaluation) and a 3-point drop
for B-A evaluation.

Overall, this experiment shows that the feature set
can support a radical change in the balance between
precision and recall. When precision is a priority (as
in a situation where feedback to the user is provided
in the form of highlighting of the metaphorically
used words, for example), it is possible to achieve
nearly 70% precision, while recovering about half
the metaphors. When recall is a priority (possibly
when an overall per-essay metaphoricity rate is esti-
mated and used as a feature in an essay scoring sys-
tem), it is possible to recover about 3 out of every
4 metaphors, with about 50% precision. For VUA
data, a similar trend is observed, with somewhat
worse performance, on average, than on essay data.
The performance on the VUA News and Academic
data is in line with the findings for the cross-prompt
generalization in the essay data, whereas Conversa-
tion and Fiction genres are more difficult for the cur-

rent system.3

Having observed the results of the auto-weighting
experiments, we conjectured that perhaps a more
even balance of precision and recall can be obtained
if the re-weighting gives extra weight to “metaphor”
class, but not to the extent that the auto-weighting
scheme does. In the second experiment, we tune the
weight parameter using grid search on the training
data (through a secondary 3-fold cross-validation
within training data) to find the optimal weighting in
terms of F-score (OptiWeight); the best-performing
weight was then evaluated on the test data (for
cross-prompt evaluations) or the test fold (cross-
validations). We used the grid from 1:1 weighting
up to 8:1, with increments of 0.33.

The first finding of note is that the optimal weight-
ing for the “metaphor” class is lower than the auto-
weight. For example, given that metaphors con-
stitute 11-12% of instances in the essay data, the
auto-weighting scheme for the A-B and B-A eval-
uations would choose the weights to be about 8:1,
whereas the grid search settled on 3:1 when trained
on prompt A and 3.33:1 when trained on prompt
B. A similar observation pertains to the VUA data:
The auto-weighting is expected to be about 4.5:1 for
News data, yet the grid search settled on 4:1, on av-
erage across folds. These observations suggest that
the auto-weighting scheme might not be the optimal
re-weighting strategy when optimizing for F1 score
with equal importance of precision and recall.

Table 3 shows the performance of the optimized
weighting scheme. For VUA data, the changes in
performance are generally positive albeit slight – the
F1 score increases by one point for 3 out of 4 eval-
uations). For essay data, it is clear that the imbal-
ance between precision and recall is substantially re-
duced (from the average difference between recall
and precision of 0.24 for the auto-weighted scheme
to the average difference of 0.08 for the optimized
weights; see column D in the Table). The best ef-
fect was observed for the B-A evaluation (train on
set B, test on set A) – a 6-point increase in preci-

3This could be partially explained by the fact that the sam-
ples for Fiction and Conversation contain long excerpts from
the same text, so they allow for less diversity than samples in
the News set, with a larger number of shorter excerpts, although
performance on the Academic set is not quite in line with these
observations.
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Data AutoWeight OptiWeight
P R F D P R F D

A-B .52 .71 .60 .19 .58 .55 .57 -.03
B-A .40 .67 .50 .27 .46 .65 .54 .20
A .50 .75 .60 .25 .56 .66 .60 .11
B .57 .80 .67 .23 .52 .69 .68 .03
Av. .50 .74 .59 .24 .57 .64 .60 .08
Ac. .53 .66 .56 .14 .52 .69 .57 .17
Con. .29 .69 .39 .39 .32 .63 .40 .31
Fict. .41 .61 .49 .20 .40 .66 .49 .26
News .53 .68 .59 .15 .51 .71 .60 .20
Av. .44 .66 .51 .22 44 .67 .51 .24

Table 3: Performance of a model with optimally weighted
training examples in comparison to the auto-weighted
scheme, in terms of Precision (P), Recall (R), F-1 score
(F), and the difference between Recall and Precision (D).
A-B and B-A correspond to training-testing scenarios
where the system is trained on Set A and tested on Set
B and vice versa, respectively. All other figures report
average performance across the cross-validation folds.

sion compensated well for the 2-point drop in recall,
relative to the auto-weighting scheme, with a result-
ing 4-point increase in F-score. The worst effect was
observed for the A-B evaluation, where the increase
of 6 points in precision was offset by a 16-point
drop in recall. We conclude, therefore, that a grid-
based optimization of weighting can help improve
the precision-recall balance of the learning system
and also improve the overall score in some cases.

6 Experiment 2: Re-representing
concreteness information

In this paper, we use mean concreteness scores for
words as published in the large-scale norming study
by Brysbaert et al. (2013). The dataset has a rea-
sonable coverage for our data; thus, 78% of tokens
in Set A have a concreteness rating. The ratings are
real numbers on the scale of 1 through 5; for exam-
ple, essentialness has the concreteness of 1.04, while
sled has the concreteness of 5.

The representation used by the baseline system
bins the continuous values into 17 bins, starting
with 1 and incrementing by 0.25 (the topmost bin
has words with concreteness value of 5). Com-
pared to a representation using a single continu-
ous variable, the binned representation allows the
machine-learner to provide different weights to dif-

Figure 1: Weights assigned to the different concreteness
bins by the logistic regression classifier with the baseline
feature set in an unweighted training regime. The bins
span the 1-5 range with 0.25 increments; words falling in
bin 1 are the most abstract, while words falling in bin 17
are the most concrete.

ferent bins, thus modeling a non-linear relationship
between concreteness and metaphoricity. Indeed,
the logistic regression classifier has made precisely
such use of this representation; Figure 1 shows the
weights assigned by the classifier to the various
bins, in a baseline model with unweighted exam-
ples trained on Set A data. Specifically, it is clear
that abstract words receive a negative weight (pre-
dict the class “non-metaphor”), while concreteness
values above 2.5 generally receive a positive weight
(apart form the top bin, which happens to have only
a single word in it).

One potential problem with binning as above
is that some of the features become quite sparse;
sparseness, in turn, makes them vulnerable to over-
fitting. Since the relationship between concreteness
and feature weight is mostly monotonic (between
bins 2 and 13), we experimented with defining bins
that would encode various thresholds. Thus, bin
b5 = [2, 2.5] would fire whenever the value of the in-
stance is at least 2 (x ∈ [2, 5]) or whenever the value
of the instance is at most 2.5 (x ∈ [1, 2.5]); we call
these theshold-up and threshold-down, respectively.
Thus, instead of a set of 17 binary bins coding for
intervals, we now have a set of 34 binary bins cod-
ing for upward and downward thresholds. The effect
of this manipulation on the performance was gener-
ally small, yet this version of the concreteness fea-
ture yielded more robust performance. Specifically,
the finding above of a drop in A-B performance in
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the optimal-weighting scheme is now largely miti-
gated, with precision staying the same (0.58), while
recall improving from 0.55 to 0.60, and the resulting
F1 score going up from 0.57 to 0.59, just one point
below the auto-weighted version. The improved per-
formance on B-A is preserved and even further im-
proved, with P=0.50, R=0.62, F=0.55. For the rest of
the datasets and weighting regimes, the performance
was within one F-score point of the performance of
the baseline feature set.

7 Experiment 3: Features capturing
difference in concreteness

In this section, we present results of experiments
trying to incorporate contextual information about
the difference in concreteness between the adjective
and its head noun (AdjN) and between the verb and
its direct object (VN). The intuition behind this ap-
proach is that a metaphor is often used to describe
an abstract concept in more familiar, physical terms.
A concrete adjective modifying an abstract noun is
likely to be used metaphorically (as in soft revolution
or dark thought); similarly, a concrete verb with an
abstract direct object is likely to be a metaphor (as in
pour consolation or drive innovation). Turney et al.
(2011) introduced a method for acquiring estimates
of concreteness of words automatically, and measur-
ing difference in concreteness in AdjN and VN con-
structions. They reported improved metaphor classi-
fication accuracies on constructed sets of AdjN and
VN pairs.

We implemented a difference-in-concreteness
feature using the values from Brysbaert et al. (2013)
database. We parsed texts using Stanford Depen-
dency Parser (de Marneffe et al., 2006), and iden-
tified all instances of amod, dobj, and rcmod rela-
tions that connect an adjective to a noun (amod), a
verb to its direct object (dobj), and a verb in a rela-
tive clause to its head noun (rcmod). For example,
in the sentence “I read the wonderful book that you
recommended,” the following pairs would be ex-
tracted: wonderful-book (amod), read-book (dobj),
and recommended-book (rcmod). The difference-in-
concreteness features are calculated for the adjec-
tives and the verbs participating in the above con-
structions, as follows. Let (adj,n) be a pair of words
in the amod relation; then the value of the difference

in concreteness (DC) for the adjective is given by:

DC(adj) = Concr(adj)− Concr(n) (1)

DC(v) for pairs (v,n) in dobj or rcmod relations
is defined analogously. Features based on DC ap-
ply only to adjectives and verbs participating in the
eligible constructions specified above.

To represent the difference in concreteness in-
formation for the machine learner, we utilize the
binned thresholded representation introduced in sec-
tion 6. The range of the values is now [-4,4]; hence
we define 33 bins for each of the threshold-up and
threshold-down versions.

Data UPT+ UPT+
CUpDown CUpDown+

DCUpDown
P R F P R F

A-B .712 .355 .474 .712 .362 .480
B-A .563 .495 .527 .565 .494 .527
Set A .703 .478 .567 .699 .475 .564
Set B .757 .594 .665 .760 .604 .672
Av. .684 .481 .558 .684 .484 .561
Acad. .633 .350 .419 .636 .356 .425
Conv. .500 .242 .317 .487 .236 .309
Fiction .550 .291 .377 .559 .309 .395
News .640 .465 .536 .636 .466 .536
Av. .581 .337 .412 .580 .342 .416

Table 4: Performance of a model trained with unweighted
examples with and without DC (difference in concrete-
ness) features.

Table 4 shows the incremental improvement as
a result of adding the DCUpDown features to the
system with UPT+CUpDown. The improvement
in recall and in F-score is very small – up to 0.4
F1 points on average across the evaluations. The
largest increase in performance is observed for the
VUA Fiction data (1.8 F1 points), with increases in
both precision and recall. Since unweighted training
scenario generally leads to high-precision low-recall
models, an improvement in recall without drop in
precision is helping the system to achieve a more
balanced performance.

Table 5 shows the incremental improvements in
performance when the system is trained in the auto-
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Data UPT+ UPT+
CUpDown CUpDown+

DCUpDown
P R F P R F

A-B .521 .716 .603 .528 .713 .607
B-A .401 .672 .503 .415 .670 .513
Set A .499 .751 .597 .500 .747 .597
Set B .571 .792 .663 .592 .773 .669
Av. .498 .733 .592 .509 .726 .597
Acad. .525 .662 .564 .525 .657 .562
Conv. .292 .691 .393 .293 .691 .396
Fiction .408 .608 .485 .411 .607 .486
News .528 .674 .590 .530 .673 .590
Av. .438 .659 .508 .440 .657 .509

Table 5: Performance of a model trained with auto-
weighted examples with and without DC (difference in
concreteness) features.

weighting regime. Here the effect of the differ-
ence in concreteness features is somewhat more pro-
nounced for the essay data, with an average F1-score
increase of 0.5 points, due to a 1.1 point average in-
crease in precision along with 0.6-point drop in re-
call. Since auto-weighting generally leads to high-
recall low-precision performance, improvement in
precision is helping the system to achieve a more
balanced performance.

The effect of the difference in concreteness fea-
tures on the performance in the optimized weighting
regime (Table 6) is less consistent across datasets;
while we observe an improvement in precision in
VUA data, the precision has dropped in the essay
data, and vice versa with recall.

8 Results

In this section, we put together the different ele-
ments addressed in this paper, namely, the weight-
ing regime, the different representation given to the
concreteness feature relative to baseline, and the
newly introduced difference in concreteness fea-
tures. We compare performance to the baseline fea-
ture set (UPT+CBins) containing unigrams, POS
features, topic features, and binned concreteness
features (without thresholding), in an unweighted
training regime, corresponding to the best feature
set in Beigman Klebanov et al. (2014). These re-
sults are compared to the current best feature set

Data UPT+ UPT+
CUpDown CUpDown+

DCUpDown
P R F P R F

A-B .584 .596 .590 .593 .556 .574
B-A .499 .620 .553 .485 .635 .550
Set A .562 .659 .603 .561 .661 .604
Set B .674 .697 .684 .662 .722 .690
Av. .580 .643 .608 .575 .644 .605
Acad. .532 .655 .564 .531 .655 .564
Conv. .292 .691 .393 .293 .691 .396
Fiction .400 .643 .490 .414 .621 .493
News .513 .711 .592 .513 .709 .590
Av. .434 .675 .510 .438 .669 .511

Table 6: Performance of a model trained with optimally-
weighted examples with and without DC (difference in
concreteness) features.

(UPT+CUpDown+DCUpDown), in the optimized
weighted training regime. The results are summa-
rized in Table 7.

The overall effect of the proposed improvements
is an absolute increase of 5.2 F1 points (9% rela-
tive increase) on essay data, on average, and 9.8 F1
points (24% relative increase) on VU Amsterdam
data, on average.

9 Discussion

While the proposed improvements are effective
overall, as shown in section 8 (Results), it is clear
that the main driver of the improvement is the re-
weighting of examples, while the contribution of the
other changes is very small (observe the small dif-
ference between the second column in Table 7 and
the OptiWeight column in Table 3). The small im-
provement is perhaps not surprising, since the base-
line model itself already contains a version of the
concreteness features. Given the relevant literature
that has put forward concreteness and difference in
concreteness as important predictors of metaphoric-
ity (Dunn, 2014; Tsvetkov et al., 2014; Gandy et
al., 2013; Assaf et al., 2013; Turney et al., 2011), it
is instructive to evaluate the overall contribution of
the concreteness features over the UPT baseline (no
concreteness features), across the different weight-
ing regimes. Table 9 provides this information.
The improvement afforded by the concreteness and
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Data UPT+ UPT+
CBins CUpDown+

unweighted DCUpDown
(Baseline) opti-weighted

P R F P R F
A-B .713 .351 .470 .593 .556 .574
B-A .567 .491 .527 .485 .635 .550
Set A .701 .478 .566 .561 .661 .604
Set B .760 .592 .665 .662 .722 .690
Av. .685 .478 .557 .575 .644 .605
Acad. .631 .351 .419 .531 .655 .564
Conv. .503 .241 .317 .293 .691 .396
Fiction .551 .291 .378 .414 .621 .493
News .640 .464 .536 .513 .709 .590
Av. .581 .337 .413 .438 .669 .511

Table 7: Performance the baseline model UPT+CBins
in the baseline configuration (unweighted) the
UPT+CUpDown+DCUpDown model in opti-weighted
configuration.

difference-in-concrteness features is 1.4 F1 points,
on average, for the unweighted and auto-weighted
regimes for essay data and 0.6 F1 points, on average,
for the VUA data; there is virtually no improvement
in the optimized weighting regime.

To exemplify the workings of the concrete-
ness and difference-in-concreteness features,
Table 8 shows the instances of the adjective
full observed in Set B where UPT predicts
non-metaphor (P(metaphor)=0.41), while the
UPT+CUpDown+DCUpDown model predicts
metaphoricity (P(metaphor) > 0.5). We use logistic
regression models trained on Set A data to output
the probabilities for class 1 (metaphor) for these
instances. The metaphoricity prediction in these
cases is mostly correct; the one instance where the
prediction is incorrect seems to be due to noise in
the human annotations: The instance where the
system is most confident in assigning class 1 label
– full in “ full educational experience” – has the
adjective full labeled as a non-metaphor, which
appears to be an annotator error.

In light of the findings in the literature regarding
the effectiveness of concreteness and of difference in
concreteness for predicting metaphoricity, it is per-
haps surprising that the effect of these features is
rather modest.

Expression Conc. Conc. P(meta)
Adj N

full educational 3.6 1.8 0.72
[experience]

reach FULL [potential] 3.6 1.9 0.60
to its FULL [potential] 3.6 1.9 0.60
FULL [understanding] 3.6 1.9 0.60
FULL [truth] 3.6 2.0 0.60

Table 8: Instances of the adjective full in Set B that
are predicted to be non-metaphors by the UPT model
trained on Set A in the unweighted regime, while the
UPT+CUpDown+DCUpDown model classifies these as
metaphors. The noun that is recognized as being in
the amod relation with full is shown in square brackets.
FULL (small caps) indicates an instance that is annotated
as a metaphor; lowercase version corresponds to a non-
metaphor annotation.

The incompleteness of the coverage of the con-
creteness database is one possible reason; 22% of
instances in Set A do not have a concreteness value
in the Brysbaert et al. (2013) database. Another pos-
sibility is that much of the information contained in
concreteness features pertains to commonly used ad-
jectives and verbs, which are covered by the unigram
features. Mistakes made by the dependency parser
in identifying eligible constructions could also im-
pair effectiveness.

It is also possible that the concreteness ratings for
adjectives in Brysbaert et al. (2013) data are some-
what problematic. In particular, we noticed that
some adjectives that would seem quite concrete to us
are given a concreteness rating that is not very high.
For example, round, white, soft, cold, rough, thin,
dry, black, blue, hard, high, gray, heavy, deep, tall,
ugly, small, strong, tiny, wide all have a concrete-
ness rating below 4 on a scale of 1 to 5. At the same
time, they all have a fairly high value for the stan-
dard deviation (1.2-1.7) across about 30 responses
collected per word. This suggests that when think-
ing about the concreteness of a word out of context,
people might have conjured different senses, includ-
ing metaphorical ones, and the judgment of con-
creteness in many of these cases might have been
influenced by the metaphorical use. For example, if
a person considered a concept like “dark thoughts”
when assigning a concreteness value to dark, the
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concept is quite abstract, so perhaps the word dark is
given a relatively abstract rating. This is, of course,
circular, because the perceived abstractness of “dark
thoughts” came about precisely because a concrete
term dark is accommodated, metaphorically, into an
abstract domain of thinking.

Another possibility is that it is not concreteness
but some other property of adjectives that is relevant
for metaphoricity. According to Hill and Korhonen
(2014), the property of interest for adjectives is sub-
jectivity, rather than concreteness. A feature captur-
ing subjectivity of an adjective is a possible avenue
for future work. In addition, they provide evidence
that a potentially better way to quantify the concrete-
ness of an adjective is to use mean concreteness of
the nouns it modifies – as if concreteness for adjec-
tives were a reflected property, based on its com-
panion nouns. A large discrepancy between thusly
calculated concreteness and the concreteness of the
actual noun corresponds to non-literal meanings, es-
pecially for cases where the predicted concreteness
of the adjective is high while the concreteness of the
actual noun is low.

10 Related Work

The field of automated identification of metaphor
has grown dramatically over the last few years, and
there exists a plurality of approaches to the task.
Shutova and Sun (2013) and Shutova et al. (2013)
explored unsupervised clustering-based approaches.
Features used in supervised learning approaches in-
clude selectional preferences violation, outlier de-
tection, semantic analysis using topical signatures
and ontologies, as well as n-gram features, among
others (Tsvetkov et al., 2014; Schulder and Hovy,
2014; Beigman Klebanov et al., 2014; Mohler et al.,
2013; Dunn, 2013; Tsvetkov et al., 2013; Hovy et
al., 2013; Strzalkowski et al., 2013; Bethard et al.,
2009; Pasanek and Sculley, 2008).

A number of previous studies used features cap-
turing concreteness of concepts and difference in
concreteness between concepts standing in AdjN
and VN dependency relations. The approach pro-
posed by Turney et al. (2011) derives concreteness
information using a small seed set of concrete and
abstract terms and a corpus-based method for infer-
ring the values for the remaining words. This infor-

mation was used to build a feature for detection of
metaphorical AdjN phrases; the methodology was
extended in Assaf et al. (2013) and again in Neuman
et al. (2013) to provide more sophisticated methods
of measuring concreteness and using this informa-
tion for classifying AdjN and VN pairs. Gandy et al.
(2013) extended Turney et al. (2011) algorithm to be
more sensitive to the fact that a certain concrete facet
might be more or less salient for the given concept.
Tsvetkov et al. (2014) used a supervised learning ap-
proach to predict concreteness ratings for terms by
extending the MRC concreteness ratings. Hill and
Korhonen (2014) used Brysbaert et al. (2013) data
to obtain values for the concreteness of nouns, and
derived the values for adjectives using average con-
creteness of nouns occurring with the adjectives in
a background corpus. Apart from the exact source
of the concreteness values, our work differs from
these studies in that we evaluate the impact of the
concreteness-related measures on an overall word-
level metaphor classification system that attempts to
classify every content word in a running text. In
contrast, the approaches above were evaluated using
data specially constructed to evaluate the algorithms,
that is, using isolated AdjN or VN pairs.

The problem of machine learning with class-
imbalanced datasets has been extensively re-
searched; see He and Garcia (2009) for a review.
Yang et al. (2014) and Muller et al. (2014) specif-
ically evaluated the AutoWeighting technique on
two different linguistic classfication tasks against a
resamping-based technique, and found the former to
yield better performance.

11 Conclusion

In this paper, we presented a supervised machine
learning system for word-level classification of all
content words in a running text as being metaphori-
cal or non-metaphorical. The system provides a sub-
stantial improvement upon a previously published
baseline, using re-weighting of the training exam-
ples and using features derived from a concreteness
database. We observe that while the first manipula-
tion was very effective, the second was only slightly
so. Possible reasons for these observations are dis-
cussed.
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Data UPT UPT+
CUpDown+
DCUpDown

P R F P R F
A-B .714 .337 .458 .712 .362 .480
B-A .573 .480 .522 .565 .494 .527
Set A .693 .462 .552 .699 .475 .564
Set B .767 .576 .657 .760 .604 .672
Av. .687 .464 .547 .684 .484 .561
Acad. .635 .347 .418 .636 .356 .425
Conv. .506 .240 .316 .487 .236 .309
Fiction .549 .288 .374 .559 .309 .395
News .641 .457 .531 .636 .466 .536
Av. .583 .333 .410 .580 .342 .416

A-B .513 .693 .590 .528 .713 .607
B-A .400 .647 .494 .415 .670 .513
Set A .498 .741 .594 .500 .747 .597
Set B .568 .775 .655 .592 .773 .669
Av. .495 .714 .583 .509 .726 .597
Acad. .524 .651 .558 .525 .657 .562
Conv. .292 .688 .392 .293 .691 .396
Fiction .400 .600 .476 .411 .607 .486
News .529 .665 .587 .530 .673 .590
Av. .436 .651 .503 .440 .657 .509

A-B .578 .597 .587 .593 .556 .574
B-A .502 .612 .552 .485 .635 .550
Set A .558 .659 .602 .561 .661 .604
Set B .645 .705 .671 .662 .722 .690
Av. .571 .643 .603 .575 .644 .605
Acad. .521 .671 .565 .531 .655 .564
Conv. .321 .614 .404 .293 .691 .396
Fiction .398 .620 .481 .414 .621 .493
News .506 .711 .586 .513 .709 .590
Av. .437 .654 .509 .438 .669 .511

Table 9: Performance of a model without any
concreteness features (UPT) and the model
UPT+CUpDown+DCUpDown, in no-reweighting
regime (top), auto-weighting (middle), and optimal
weighting (bottom).
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Abstract

Concreteness and imageability have long been
held to play an important role in the mean-
ings of figurative expressions. Recent work
has implemented this idea in order to de-
tect metaphors in natural language discourse.
Yet, a relatively unexplored dimension of
metaphor is the role of affective meanings. In
this paper, we will show how combining con-
creteness, imageability and sentiment scores,
as features at different linguistic levels, im-
proves performance in such tasks as automatic
detection of metaphor in discourse. By grad-
ually refining these features through descrip-
tive studies, we found the best performing
classifier for our task to be random forests.
Further refining of our classifiers for part-of-
speech, led to very promising results, with F1
scores of .744 for nouns,.799 for verbs, .811
for prepositions. We suggest that our approach
works by capturing to some degree the com-
plex interactions between external sensory in-
formation (concreteness), information about
internal experience (imageability), and rela-
tively subjective meanings (sentiment), in the
use of metaphorical expressions in natural lan-
guage.

1 Introduction

Figurative language plays an important role in
“grounding” our communication in the world
around us. Being able to talk about “the journey of
life”, “getting into a relationship”, whether there are
“strings attached” to a contract, or even just “surf-
ing the internet”, are important and useful aspects

of everyday meaning-making practices. Much re-
cent work on modeling metaphor, especially using
computational techniques, has concentrated on more
inter-subjective aspects of such meanings, such as
the way that figurative expressions are apparently
used to inject meanings that are somehow more
“concrete” into daily discourse (Turney et al., 2011;
Tsvetkov et al., 2013).On such an account, describ-
ing love as a journey, or life as a test, is a way of
casting a fairly abstract idea, such as love or life, in
more concrete and everyday terms, such as a journey
or a test. Related dimensions of figurative meanings,
such as imageability, having to do with how readily
the concept expressed by some linguistic item brings
an image to mind, have also been investigated (Cac-
ciari and Glucksberg, 1995; Gibbs, 2006; Urena and
Faber, 2010).

Work across a range of disciplines has begun ex-
amining the complex interaction between metaphor
and the intra-subjective emotional meanings ex-
pressed at all levels of language (Kövecses, 2003;
Meier and Robinson, 2005; Strzalkowski et al.,
2014), although modelling such interaction has
proved to be somewhat challenging. For exam-
ple, while a native speaker of some language can
be expected to consistently and reliably rate iso-
lated words for their levels of valence (“pleasant-
ness”), arousal (“emotional intensity”) and domi-
nance (“control”) (Warriner et al., 2013), the same
cannot be expected for more complex expressions
such as “the journey of life” or “strings attached”.
Whether there are indeed systematic and stable pat-
terns for the intra-subjective meanings of such ex-
pressions is still an open question.
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Linking these two components of figurative
meaning, while it has been understood for some time
that concreteness and imageability very strongly
correlate (Paivio et al., 1968), recent work has sug-
gested strong reasons for rethinking this. On the
contrary, (Dellantonio et al., 2014) suggest that con-
creteness and imageability are in fact quite differ-
ent psychological constructs, and the basis for this
difference is that imageability involves both “exter-
nal sensory information” as well as “internal bodily-
related sensory experience,” whereas concreteness
ratings capture only external sensory information.
From this apparent difference internal vs. exter-
nal sensory information, they derive an index of the
“weight” such internal sensory information has in
relation to individual word meaning, which can be
derived as the difference between the concreteness
and imageability of a word. Labelling this weight as
w, we could symbolise this idea as follows:

w = |(CONC - IMAG)|

This will allow us to more clearly separate concrete-
ness from imageability in our modelling, and so bet-
ter examine the interactions of each with sentiment
in processing metaphor.

There has been much work on the interaction
between metaphor and sentiment (Fainsilber and
Ortony, 1987; Fussell and Moss, 1998; Littlemore
and Low, 2006). Metaphor researchers have long
recognised that metaphor and affective communica-
tion are central to each other: metaphor is a cen-
tral way of conveying affect, and conversely convey-
ing affect is a central function of metaphor. How-
ever, it is important to distinguish between (a) us-
ing metaphor to describe an emotion (e.g. “anger
swept through me”) vs. (b) emotion being conveyed
through connotations of source terms (e.g. “terror-
ism is a form of cancer”, where negative affect about
cancer carries over to terrorism).1 However, there is
still much more work to do in elucidating these com-
plex connections.

Motivated by such considerations, we focus here
on how concreteness, imageability, and affective
meaning, interact in metaphorical expressions, and
to this end we have examined a large corpus an-

1In order to maintain anonymity, references to this latter
work are suppressed during the review period.

notated for metaphor, the Vrije University Ams-
terdam Metaphor Corpus (VUAMC) (Steen et al.,
2010), with respect to such fetures as imageability
and concreteness, as well as valence, arousal and
dominance. The background for these studies is our
ongoing work on devising a computational tool for
detecting, and to some degree, also understanding,
metaphor.2

2 Method

2.1 Data

Our data comes from the Vrije University Ams-
terdam Metaphor Corpus (VUAMC), consisting of
over 188,000 words selected from the British Na-
tional Corpus-Baby (BNC-Baby), and annotated for
metaphor using the Metaphor Identification Proce-
dure (MIP) (Steen et al., 2010). The MIP involves
annotators considering individuals words from the
corpus, and answering the question (somewhat sim-
plified here): does this word have a more “ba-
sic” meaning3 than its current “contextual” meaning,
with the latter also being understandable in compar-
ison with the former? If the answer is “yes”, the
current item is used metaphorically, else it is used
non-metaphorically.

The corpus itself has four registers, of between
44,000 and 50,000 words each: academic texts,
news texts, fiction, and conversations, with over
23,600 words were annotated as metaphorical across
the 4 registers.4 Table (1) lists statistics for the
VUAMC from (Steen et al., 2010), specifically pre-
senting standardised residuals (SRs) for counts of
metaphorical vs. non-metaphorical nouns, verbs and
prepositions lexical units, and of5 SRs usefully en-
able pinpointing interesting deviations of the ob-
served frequency for items occurring in specific cat-
egories in our sample from the frequency we actu-
ally expect for them given their overall frequency

2Reference suppressed during the period of review.
3Defined in terms of being more concrete, related to bodily

actions, more precise, and historically older, see (Steen et al.,
2010) for details.

4The VUAMC is available from: http://ota.ahds.
ac.uk/desc/2541.html

5More strictly, they refer to so-called metaphor-related
words, i.e. a word the use of which “may potentially be ex-
plained by some form of cross-domain mapping from a more
basic meaning of that word.”
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in the entire sample.6 For example, while there are
far fewer nouns in all registers except Conversations,
prepositions occur with far greater than expected
frequency in all registers, and verbs are similar to
prepositions, although not as extreme, in occurring
with greater than expected frequency in all registers.
The VUAMC is usefully balanced across 4 registers,
making it highly useful for our ongoing work on au-
tomatic metaphor annotation.

2.2 Procedure

2.2.1 Pre-processing

We have enriched the VUAMC in several ways.
First, we have parsed the corpus using the graph-
based version of the Mate tools dependency parser
(Bohnet, 2010), adding rich syntactic information.7

Second, we have incorporated the MRC Psycholin-
guistic Database (Wilson, 1988), a dictionary of
150,837 words, with different subsets of these words
having been rated by human subjects in psycholin-
guistic experiments.8 Of special note, the database
includes 4,295 words rated with degrees of con-
creteness, these ratings ranging from 158 (meaning
highly abstract) to 670 (meaning highly concrete),
and also 9,240 words rated for degrees of image-
ability, which is taken to indicate how easily a word
can evoke mental imagery, these ratings also rang-
ing between 100 and 700 (a higher score indicating
greater imageability). The concreteness scores (and
to some extent the imageability ones also) have been
used extensively for work on metaphor, e.g. (Turney
et al., 2011; Tsvetkov et al., 2013). Finally, we have
incorporated the work by (Warriner et al., 2013) on
the Affective Norms for English Words (ANEW),
which provides 13,915 English content words, rated
for: valence (measuring the “pleasantness” of the
word), arousal (“emotional intensity” of the word)
and dominance (the degree of “control” evoked by
the thing that the word denotes). This latter dataset
includes rich statistical information (such as means

6For a proper appreciation of the statistics, please see the
relevant sections of (Steen et al., 2010).

7Note this includes POS tagging, POS tags rich enough to
capture such distinctions as common nouns vs. personal nouns,
participles vs. independent verbs vs. copula verbs, etc – see:
https://code.google.com/p/mate-tools/.

8http://ota.oucs.ox.ac.uk/headers/1054.
xml

and variance) for these scores, which we make use
of in our work.

Combining these resources, we extend the
VUAMC with information about dependency rela-
tions, concreteness, imageability, valence, arousal
and dominance. However, this combination is not
without problems, for example, the VUAMC data
set is much larger than the MRC data set, so that
many VUAMC words have no MRC scores, and
we need a smoothing procedure; a similar dispar-
ity in size exists between the VUAMC corpus and
the ANEW scores. Now, a key finding in the liter-
ature is that POS strongly correlates with metaphor;
Table (1) illustrates this quite well, and we have car-
ried out various studies in this direction (see below).
As a first approximation, we smooth such discrepan-
cies between the VUAMC and MRC, by calculating
an average MRC score for each POS across the en-
tire corpus, as follows: first, from VUAMC words
with MRC scores, we calculated an average MRC
score (concreteness/imageability) by POS across all
the the VUAMC data, second, those VUAMC words
without MRC scores (i.e. missing from the MRC
database) could then be assigned a score based on
their POS. We did the same for the ANEW scores,
but this time not in terms of POS, which is miss-
ing from ANEW: we maintained average ANEW
scores, and gave these to VUAMC items not rep-
resented in the ANEW dataset. However, this kind
of naive “global” average is not very discriminative
of the key difference we are trying to model be-
tween metaphorical vs. non-metaphorical expres-
sions, and we are currently re-implementing our
smoothing strategy.9

2.2.2 Experimental design
We carried out a preliminary study, followed by

three main studies, using the pre-processed data de-
scribed in Section (2.2.1). Below we list the aims,
hypotheses and procedures for these studies.

Preliminary study. This initial study aimed to se-
lect features for use in subsequent machine learning
studies. In particular, we covered features consid-
ered important for the task in previous literature. We

9Thanks to the reviewers for this workshop for noting this is-
sue; although, it we should point out that the planning phase for
re-implementing this aspect of our work pre-dates submission
of this paper.
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POS Academic News Fiction Conversation
Lit. Met. Lit. Met. Lit. Met. Lit. Met.

Nouns 82.4 17.6 86.8 13.2 89.5 10.5 91.7 8.3
(1.2) (-2.5) (4.0) (-9.1) (1.4) (-3.8) (-0.4) (1.5)

Prepositions 57.5 42.5 61.9 38.1 66.6 33.4 66.2 33.8
(-21.4) (45.0) (-17.0) (38.5) (-14.9) (40.6) (-13.5) (46.9)

Verbs 72.3 27.7 72.4 27.6 84.1 15.9 90.9 9.1
(-9.2) (19.3) (-10.9) (24.6) (-4.2) (11.6) (-1.7) (5.7)

Table 1: Percentages of POS and metaphors per register, with standardised residuals in brackets (n=47934)

were seeking to discover the optimal combination of
features for discriminating between literal and non-
literal words.

Study 1. This study aimed to find a suitable learn-
ing algorithm, for predicting literal vs. nonliteral
expressions. In addition, we also examined the rela-
tive importance of particular independent variables,
for predicting literal vs. nonliteral expressions, by
sampling a range of standard machine learning al-
gorithms,10 and from this we arrived at a smaller set
of more viable learning algorithms, specifically, ran-
dom forests (rf), gradient boosting machines (gbm),
k nearest neighbours (knn), and support vector ma-
chines (svm). In addition, we considered different
combinations of the features collected in the prelim-
inary studies. The resulting models (learning algo-
rithms, plus combinations of features) were chosen
because they showed promising performance, and
adequately represented the range of models used for
similar tasks in other studies elsewhere. This study
coincided with the initial phase in developing our
system for automatically annotating metaphor, and
for this early development version of our system, we
constructed a random sample covering 80% of the
VUAMC.

For evaluation, we compared results for each tar-
get model against a baseline model, this latter be-
ing the best single variable model we found in ear-
lier studies, which can predict whether a word is
metaphorical or not, based simply on the concrete-
ness score for that word. Results consisted of com-

10Specifically, we considered linear discriminant analysis, k
nearest neighbours, naive bayes, random forest, gradient boost-
ing machines, logistic regression, support vector machines.

paring confusion matrices for ground truth vs. the
output of each model, trained on a training set of
60% of the data, then these models were tuned with
a testing set of 20% of the data. Finally using a val-
idation set of the remaining 20% of the data, accu-
racy, precision, recall and F1 scores were calculated
for each model.

Study 2. For this next study, focusing on the Ran-
dom Forests algorithm, we extended our preliminary
studies in a quite natural way, and separated the clas-
sifiers according to POS, separately training random
forest classifiers on our original data set split into
nouns, verbs and prepositions. The training setup
used here was largely the same as the one used for
Study 1, except that the entire VUAMC data set was
employed for this study.

Study 3. Finally, having identified various dimen-
sions of metaphorical meaning, and having set out to
validate the interaction between these dimensions in
Studies 1 and 2, we next turned to possible explana-
tions of the patterns we observed across, for exam-
ple, different POS. Starting from the random forest
classifiers we had trained on the VUAMC in study
2, it was apparent that the sheer number of trees
used by such classifiers means they are far from be-
ing readily interpretable; nevertheless, we explored
the use of recent tools for attempting to improve
the interpretability of these kinds of ensemble clas-
sifiers.11

11In particular, we employed the “inTrees” R package for
this (Deng, 2014) – see also: http://cran.r-project.
org/web/packages/inTrees/index.html.
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3 Results

3.1 Preliminary study

In earlier work (Gargett et al., 2014), we examined
the role of concreteness and imageability in cap-
turing the variation between nonliteral vs. literal
expressions, for heads vs. their dependents. Fig-
ures (1) and (2) suggest that making this kind of
fine-grained distinction within our data set between
heads and their dependents, enables capturing vari-
ation between literal and nonliteral items for some
POS; for example, nonliteral head nouns appear to
have higher MRC scores than their dependents, dis-
tinct from literal head nouns (verbs appear to make
no such distinction). While literal and nonliteral
head prepositions both seem indistinguishable from
their dependents in terms of concreteness scores,
nonliteral head prepositions seem to have imageabil-
ity scores quite distinct from their dependents.

As can be seen from Figures (1) and (2), our ini-
tial study failed to capture variation between verbs.
As a follow-up, we incorporated features from the
ANEW data set; initial results are plotted in Fig-
ure (3), and the variation exibited across all POS in
this plot suggest, e.g., a possible role for arousal in
distinguishing literal from nonliteral verbs.

3.2 Study 1

Next, we focused on selecting a learning algorithm,
for predicting literal vs. nonliteral expressions. The
features used here are drawn from our earlier stud-
ies, directly incorporating the various scores from
the MRC and ANEW databases. Results are dis-
played in Table (2), with the boxed cell in this ta-
ble showing the strongest performing combination
of learning model and features, which turned out to
be all features from the MRC and ANEW scores,
trained using random forests.

3.3 Study 2

In Table (3), we present the results for our study of
different random forest models by POS. The met-
rics we used here are standard: harmonic mean of
recall and precision, or F1, and the overall agree-
ment rate between model and validation set, or ac-
curacy. A clear effect when including the “weight”
term w can be seen (recall this was the difference
between concreteness and imageability). The clear

winners in each vertical comparison (e.g. between
F1 for Verbs vs. Verbsw) is shown in this table. We
will come back to a discussion of the significance of
these results in Section (4) below.

3.4 Study 3

Our next study sets out to try to interpret in some
way the results from Study 2, and Tables (4) to (6)
present the rule conditions extracted from a sam-
ple of the first 100 trees for each random forest
model for each POS. Important measures of the per-
formance of the classifiers given here include err,
the so-called out-of-bag (OOB) error estimate, and
freq, the proportion of occurrences of instances of
this rule. OOB error rate is a statistic calculated in-
ternally while running the algorithm, and has been
shown to be unbiased: while constructing trees, a
bootstrap sample is taken from the original data,
with some proportion (e.g. about a third) left out,
which can be used as a test set while a particular
tree is being built, and in this way, a test classifica-
tion can be obtained for each case in this same pro-
portion (say, about a third) of trees. The error rate
is then the proportion of times this test classification
was wrong.

Ensemble methods such as random forests are no-
toriously opaque, largely due to the sheer volume
of trees constructed during model building, thereby
making clear interpretation of these models prob-
lematic (Breiman, 2002; Zhang and Wang, 2009);
and yet, they have also emerged as one of the best
performing learning models,12 and work very well
for classification tasks such as ours. Consequently,
there is broad interest in better interpretation of such
models, and development in this direction is ongo-
ing.

Many of the trees built by such ensemble meth-
ods,13 typically contain not only trees crucial for
classification performance, but also many which
could be removed without significant impact on per-
formance. Proceeding along these lines, “pruning”
the forest can result in a smaller, and thus more inter-
pretable, set of trees, without significant impact on
performance; from this smaller set, it is more feasi-

12As witnessed in several recent Kaggle competitions,
https://www.kaggle.com/wiki/RandomForests.

13Other relevant methods we are currently investigating in-
clude gradient boosting machines.
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Figure 1: Plot of concreteness scores for literal vs. nonliteral/metaphorical heads vs. their dependents, in the VUAMC,
grouped by parts of speech

Figure 2: Plot of imageability scores for literal vs. nonliteral/metaphorical heads vs. their dependents, in the VUAMC,
grouped by parts of speech

Figure 3: Plot of anew scores for literal vs. nonliteral/metaphorical verbs in the VUAMC

ble that a relatively transparent set of rules for con- structing some significant proportion of trees could

26



Models Full Minimal MRC ANEW Base

gbm 0.7542 0.7364 0.7266 0.7051 0.6673
knn 0.6945 0.6793 0.6861 0.6823 0.6802
rf 0.7813 0.7362 0.7275 0.7144 0.6906

svm 0.6787 0.6689 0.6396 0.6690 0.6348

Table 2: Results (F1) of evaluating models with different combinations of features, for predicting non/literal items
(n=3574)

POS Accuracy F1 n

Nouns 0.733 0.737 1470
Nounsw 0.743 0.744 1470

Verbs 0.7870 0.799 2216
Verbsw 0.7866 0.798 2216

Prepositions 0.785 0.801 2294
Prepositionsw 0.790 0.811 2295

Table 3: Results (Accuracy, F1) for random forest models for different POS, for predicting non/literal items, for models
with and without the “weight” term w

len freq err condition prediction

1 0.059 0.019 pos ≤ 1.037 L

1 0.213 0.367 imag > 0.544 L

3 0.071 0.194 VSDSum ≤ -0.469 & NL
ASDSum ≤ -0.891 &
DRatSum ≤ -0.1925

3 0.225 0.396 AMeanSum ≤ -0.597 & L
DMeanSum > -0.272 &
w ≤ 0.121

2 0.012 0.477 conc > 1.030 & NL
DMeanSum ≤ -0.480

Table 4: Rules extracted from random forest models for Nouns (len=length of condition, freq=proportion of data
instances meeting condition, err=proportion of incorrectly classified instances as over instances meeting condition,
SD=standard deviation)

be extracted – this smaller set of rules could in prin-
ciple be used to attempt an interpretation of the re-
sulting model.

The results presented here are illustrative only, be-
ing based on a sample of the first 100 trees from
each classifier built for each POS. Looking across
these tables, we see some evidence of commonality

for some features across different POS; for example,
extensive use of the “weight” term w is made across
POS (see Section (1) about this).14 On the other
hand, there are also quite distinct combinations of

14Note also the use of the feature pos, which utilises the finer
POS distinctions made by the Mate tools (see Section (2.2.1)
about this).
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len freq err condition prediction

2 0.442 0.316 imag > -1.945 & NL
depslist DSDSum mean > -3.530

2 0.102 0.21 imag ≤ -1.578 & L
w ≤ -0.013

2 0.073 0.192 DMeanSum > 1.146 & L
depslist DSDSum mean ≤ -3.530

1 0.116 0.414 DMeanSum > 1.274 L

2 0.218 0.4 ARatSum ≤ -0.019 & NL
DRatSum > -0.222

2 0.534 0.395 imag > -1.827 & NL
depslist imag mean > -0.990

Table 5: Rules extracted from random forest models for Verbs (len=length of condition, freq=proportion of data
instances meeting condition, err=proportion of incorrectly classified instances for instances meeting condition,
SD=standard deviation, depslist=list of dependents)

len freq err condition prediction

1 0.73 0.349 imag > -1.124 NL

2 0.413 0.313 w > -0.0881 & NL
w ≤ 0.518

2 0.039 0.217 w ≤ 0.110 & L
w > 0.066

1 0.53 0.336 imag > -1.023 NL

Table 6: Rules extracted from random forest models for Prepositions (len=length of condition, freq=proportion of data
instances meeting condition, err=proportion of incorrectly classified instances for instances meeting condition)

concreteness, imageability, w, and a small but inter-
esting subset of the ANEW categories, across POS.
For example, while nouns make good use of con-
creteness, imageability and w, combinations of im-
ageability and w are prevalent for verbs and prepo-
sitions. Further, nouns and verbs, being content
words, seem to make good use of the ANEW fea-
tures, but prepositions make no use of such features,
perhaps due to their status as function words. More
careful study of a wider range of rules, as well as
possible conditioning environments is required, and
such suggestions remain tentative. Note also that
one complication in all of this is that there are exten-
sive errors for most of the extracted rules, and close
study of possible sources of such errors is planned

for future work.

4 Discussion

In this paper, we presented results from various stud-
ies we conducted to help us refine features, and
determine suitable training algorithms for our au-
tomatic metaphor detection system. The training
regime included training separate classifiers for dis-
tinct POS (nouns, verbs, prepositions), and also im-
plements suggestions from psycholinguistics, (Del-
lantonio et al., 2014), to model the interaction be-
tween concreteness, imageability and sentiment as
dimensions of figurative meaning, in particular, dis-
tinguishing concreteness from imageability as the
feature w (i.e. the difference between concreteness
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and imageability scores for individual lexical items).
Incorporating w led to marked improvement in our
classifier performance, and we reported very com-
petitive performance for this system: achieving an
FI of over .81 for prepositions, and just below .80
for verbs, with nouns achieving just under .75. Fi-
nally, we have attempted to go beyond detection,
toward trying to interpret the models we are us-
ing, which has led to a tentative proposal regard-
ing function vs. content words in our approach,
in terms of the features being used for classifica-
tion: whereas content words such as nouns and verbs
use the full range of the MRC and ANEW scores,
function words like prepositions tend to use a much
sparer combinations of features, such as the derived
score w together with imageability. We are currently
trying to exploit these and other insights to further
improve system performance.
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Abstract

Language is the main communication device
to represent the environment and share a com-
mon understanding of the world that we per-
ceive through our sensory organs. Therefore,
each language might contain a great amount of
sensorial elements to express the perceptions
both in literal and figurative usage. To tackle
the semantics of figurative language, several
conceptual properties such as concreteness or
imegeability are utilized. However, there is no
attempt in the literature to analyze and bene-
fit from the sensorial elements for figurative
language processing. In this paper, we in-
vestigate the impact of sensorial features on
metaphor identification. We utilize an exist-
ing lexicon associating English words to sen-
sorial modalities and propose a novel tech-
nique to automatically discover these associ-
ations from a dependency-parsed corpus. In
our experiments, we measure the contribution
of the sensorial features to the metaphor iden-
tification task with respect to a state of the
art model. The results demonstrate that sen-
sorial features yield better performance and
show good generalization properties.

1 Introduction

Languages include many lexical items that are con-
nected to sensory modalities in various semantic
roles. For instance, while some words can be used
to describe a perception activity (e.g., to sniff, to
watch, to feel), others can simply be physical phe-
nomena that can be perceived by sensory receptors
(e.g., light, song, salt, smoke). Common usage of

language, either figurative or literal, can be very
dense in terms of sensorial words. As an example,
the sentence “I heard a harmonic melody.” contains
three sensorial words: to hear as a perception ac-
tivity, harmonic as a perceived sensorial feature and
melody as a perceivable phenomenon. The connec-
tion to the sense modalities of the words might not
be mutually exclusive, that is to say a word can be
associated with more than one sense. For instance,
the adjective sweet could be associated with both
taste and smell.

The description of one kind of sense impression
by using words that normally describe another is
commonly referred to as linguistic synaesthesia1.
As an example, we can consider the slogans “The
taste of a paradise” where the sense of sight is com-
bined with the sense of taste or “Hear the big pic-
ture” where sight and hearing are merged. Synaes-
thesia strengthens creative thinking and it is com-
monly exploited as an imagination boosting tool in
advertisement slogans (Pricken, 2008).

Synaesthesia is also commonly used in
metaphors. Synaesthesic metaphors use words
from one type of sensory modality, such as sight,
hearing, smell, taste and touch, to describe a
concept from another modality. In conceptual
metaphor theory, metaphor is defined as a system-
atic mapping between two domains; namely target
(or tenor) and source (or vehicle) domains (Lakoff
and Johnson, 1980). Such mappings are asymmetric
and might not correlate all features from the source
domain to the target domain. Systematic studies
on synaesthetic metaphors propose that there is a

1http://ahdictionary.com/
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certain directionality of sense modality mappings.
(Ullman, 1957), in a very early study, presented
this directionality as a linear hierarchy of lower
and higher sense modalities. In this hieararchy,
modalities are ordered from lower to higher as
touch, taste, smell, sound and color. Ullman (1957)
proposes that lower modalities tend to occur as
the source domain, while higher modalities tend
to occur as the target domain. For instance, in the
synaesthetic metaphor “soft light”, the target do-
main of seeing is associated with the source domain
of touching, while the target domain of hearing
is associated with the source domain of tasting in
“sweet music”. However, later studies (Williams,
1976; Shen, 1997) propose that the mapping in
the synaesthetic metaphorical transfer is more
complex among the sensory modalities. Williams
(1976) constitutes a generalized mapping for the
synaesthetic metaphorical transfer by means of the
diachronic semantic change of sensorial adjectives.
Having regard to the citation dates of adjective
meanings from Oxford English Dictionary2 and
Middle English Dictionary3, the regular transfer
rules among the sensorial modalities are introduced.

Several techniques for metaphor identification
have been explored, including selectional preference
violations (Fass, 1991; Neuman et al., 2013) or verb
and noun clustering (Shutova et al., 2010; Birke
and Sarkar, 2006; Shutova and Sun, 2013), super-
vised classification (Gedigian et al., 2006; Mohler
et al., 2013; Tsvetkov et al., 2014a). As well as the
identification techniques, different cognitive proper-
ties such as imageability (Broadwell et al., 2013;
Tsvetkov et al., 2014a) and concreteness of the
metaphor constituents (Neuman et al., 2013; Turney
et al., 2011; Tsvetkov et al., 2014a), or lexical se-
mantic properties such as supersenses (Hovy et al.,
2013; Tsvetkov et al., 2014a) have been exploited.

While detecting and interpreting metaphors, im-
ageability and concreteness features are generally
utilized to identify the metaphorical transfer from
a more concrete to a less concrete or from a more
imageable to a less imageable word. However, in
synaesthetic metaphors, the imageability or con-
creteness levels of both tenor and vehicle (or tar-

2http://www.oed.com/
3http://quod.lib.umich.edu/m/med/

get and source) words can be similar. For instance,
according to the MRC Psycholinguistic Database
(MRCPD) (Coltheart, 1981) the concreteness (C)
and imageability (I) values for target smell and
source cold in the sentence “The statue has a cold
smell.” are C:450, I:477 and C:457, I:531 respec-
tively. Likewise, in the noun phrase “Sweet silence”
the values are very close to each other (C:352, I:470
for silence and C:463, I:493 for sweet). As demon-
strated by these examples, while both imageabil-
ity and concreteness are related to human senses,
these features alone might not be sufficient to model
synaesthetic metaphors.

In this paper, we fill in this gap by measuring the
contribution of the sensorial features to the identifi-
cation of metaphors in the form of adjective-noun
pairs. We explicitly integrate features that repre-
sent the sensorial associations of words for metaphor
identification. To achieve that, we both utilize an
existing sensorial lexicon and propose to discover
these associations from a dependency-parsed cor-
pus. In addition, we exploit the synaesthetic direc-
tionality rules proposed by Williams (1976) to en-
code a degree to which an adjective-noun pair is
consistent with the synaesthetic metaphorical trans-
fer. Our experiments show that sensorial associa-
tions of words could be useful for the identification
of metaphorical expressions.

The rest of the paper is organized as follows. We
first review the relevant literature to this study in
Section 2. Then in Section 3, we describe the word-
sense association resources. In Section 4, we de-
scribe the features that we introduce and detail the
experiments that we conducted. Finally, in Section
5, we draw our conclusions and outline possible fu-
ture directions.

2 Related Work

Mohler et al. (2013) exploit a supervised classifi-
cation approach to detect linguistic metaphors. In
this work, they first produce a domain-specific se-
mantic signature which can be found to be encoded
in the semantic network (linked senses) of Word-
Net, Wikipedia4 links and corpus collocation statis-
tics. A set of binary classifiers are actuated to detect
metaphoricity within a text by comparing its seman-

4http://www.wikipedia.org/
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tic signature to the semantic signatures of a set of
known metaphors.

Schulder and Hovy (2014) consider the term rel-
evance as an indicator of being non-literal and pro-
pose that novel metaphorical words are less prone to
occur in the typical vocabulary of a text. The perfor-
mance of this approach is evaluated both as a stan-
dalone metaphor classifier and as a component of a
classifier using lexical properties of the words such
as part-of-speech roles. The authors state that term
relevance could improve the random baselines for
both tasks and it could especially be useful in case
of a sparse dataset.

Rather than an anomaly in the language or a sim-
ple word sense disambiguation problem, a cogni-
tive linguistic view considers metaphor as a method
for transferring knowledge from a concrete do-
main to a more abstract domain (Lakoff and John-
son, 1980). Following this view, Turney et al.
(2011) propose an algorithm to classify adjectives
and verbs as metaphorical or literal based on their
abstractness/concreteness levels in association with
the nouns they collocate with. The authors describe
words as concrete if they are things, events, and
properties that can be perceivable by human senses.

Neuman et al. (2013) extend the abstract-
ness/concreteness model of Turney et al. (2011) with
a selectional preference approach in order to detect
metaphors consisting of concrete concepts. They fo-
cus on three types of metaphors including i) a sub-
ject noun and an object noun associated by the verb
to be (e.g., “God is a king”), ii) the metaphorical
verb representing the act of a subject noun on an ob-
ject noun (e.g., “The war absorbed his energy”), iii)
metaphorical adjective-noun phrases (e.g., “sweet
kid”).

Beigman Klebanov et al. (2014) propose a super-
vised approach to predict the metaphoricity of all
content words with any part-of-speech in a running
text. The authors propose a model combining uni-
gram, topic models, POS, and concreteness features.
While unigram features contribute the most, con-
creteness features are found to be effective only for
some of the sets.

Based on the hypothesis that on the conceptual
level, metaphors are shared across languages, rather
than being lexical or language specific, Tsvetkov
et al. (2014a) propose a metaphor detection system

with cross-lingual model transfer for English that
exploits several conceptual semantic features; ab-
stractness and imageability, semantic supersenses,
vector space word representations. They focus on
two types of metaphors with the subject-verb-object
(SVO) and adjective-noun (AN) syntactic relations.
As another contribution, they create new metaphor-
annotated corpora for English and Russian. In ad-
dition, they support the initial hypothesis by show-
ing that the model trained in English can detect
metaphors in Spanish, Farsi and Russian by project-
ing the features from the English model into another
language using a bilingual dictionary. To the best of
our knowledge, this system is the current state of the
art for metaphor detection in English and constitutes
the baseline for our experiments.

3 Word-Sense Associations

Following the hypothesis of Broadwell et al. (2013)
that “Metaphors are likely to use highly imageable
words, and words that are generally more imageable
than the surrounding context”, we introduce a novel
hypothesis that metaphors are likely to also use sen-
sorial words. To extract the sensorial associations of
words, we use the following two resources.

3.1 Sensicon

This resource (Tekiroglu et al., 2014) is a large sen-
sorial lexicon that associates 22,684 English words
with human senses. It is constructed by employing a
two phased computational approach.

In the first phase, a bootstrapping strategy is per-
formed to generate a relatively large set of sensory
seed words from a small set of manually selected
seed words. Following an annotation task to select
the seed words from FrameNet (Baker et al., 1998),
WordNet relations are exploited to expand the sen-
sory seed synsets that are acquired by mapping the
seed words to WordNet synsets. At each bootstrap-
ping cycle, a five-class sensorial classifier model is
constructed over the seed synsets defined by their
WordNet glosses. The expansion continues until the
prediction performance of the model steadily drops.

In the second phase, a corpus based method is
utilized to estimate the association scores in the fi-
nal lexicon. Each entry in the lexicon consists of a
lemma and part-of-speech (POS) tag pair and their
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associations to the five human senses (i.e. sight,
hearing, taste, smell and touch) measured in terms of
normalized pointwise mutual information (NPMI).
Each sensorial association provided by the lexicon
is a float value in the range of -1 and 1.

Due to the way it is constructed, Sensicon might
tend to give high association values for metaphori-
cal sense associations of words as well as the literal
ones. For instance, while adjective dark is related
to sight as the literal sense association, Sensicon as-
signs very high association values to both sight and
taste. While this tendency would be helpful as a hint
for identifying synaesthetic words, metaphor iden-
tification task would need a complementary word-
sense association resource that could highlight the
literal sense association of a word.

3.2 Dependency-parsed corpus (DPC)

As an alternative to Sensicon for building word-
sense associations, we extract this information from
a corpus of dependency-parsed sentences. To
achieve that, we follow a similar approach to Özbal
et al. (2014) and use a database that stores, for each
relation in the dependency treebank of LDC Giga-
Word 5th Edition corpus5), its occurrences with spe-
cific “governors” (heads) and “dependents” (mod-
ifiers). To determine the sensorial load of a noun
n, we first count how many times n occurs with
the verb lemmas ‘see’, ‘smell’, ‘hear’, ‘touch’ and
‘taste’ in a direct object (dobj) syntactic relation in
the database. Then, we divide each count by the
number of times n appears in a direct object syntac-
tic relation independently of the head that it is con-
nected to. More specifically, the probability that n is
associated to sense s is calculated as:

p(s, n) =
cdobj(vs, n)∑
hi

cdobj(hi, n)
(1)

where cr(h, m) is the number of times that m de-
pends on h in relation r (in this case, r = dobj) in
the dependency database, vs is the most represen-
tative verb for sense s (e.g., the verb ‘hear’ for the
sense of hearing) and each hi is a different governor
of n in a dobj relation as observed in the database.

5http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2011T07

Our hypothesis is that nouns frequently acting as a
direct object of a verb representing a human sense s
are highly associated to s.

Similarly, to extract the sensorial load of an ad-
jective a, we calculate the number of times a occurs
with the verb lemmas ‘look’, ‘smell’, ‘sound’, ‘feel’
and ‘taste’ in an adjectival complement (acomp)
syntactic relation in the database. Then, we divide
each count by the number of times a appears in
an acomp syntactic relation. More specifically, the
probability that a is associated to sense s is calcu-
lated as:

p(s, a) =
cacomp(vs, a)∑
hi

cacomp(hi, a)
(2)

The two resources capture different properties of
words with respect to their sensorial load. While
Sensicon yields indirect sensorial associations by
modeling distributional properties of the lexicon,
DPC attempts to directly model these associations
independently of the context. For instance, while
Sensicon associates the noun plate with taste as it
frequently occurs in contexts involving eating, DPC
assigns the highests scores to sight and touch.

4 Evaluation

In this section, we demonstrate the impact of sen-
sorial associations of words on the classification of
adjective-noun pairs as metaphorical or literal ex-
pressions.

4.1 Dataset
As an initial attempt to investigate the impact of sen-
sorial associations of words in metaphor identifica-
tion, we target metaphorical expressions which can
easily be isolated from their context. In this study,
we focus on adjective-noun (AN) pairs which could
also well suit a common definition of the synaes-
thetic metaphors as adjective metaphors where an
adjective associated to one sense modality describes
a noun related to another modality (Utsumi and
Sakamoto, 2007). To this end, we experiment
with the AN dataset constructed by Tsvetkov et
al. (2014a). The dataset consists of literal and
metaphorical AN relations collected from public re-
sources on the web and validated by human annota-
tors. For instance, it includes green energy, straight
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answer as metaphorical relations and bloody nose,
cool air as literal relations. To be able to compare
our model with the state-of-the-art, we use the same
training and test split as Tsvetkov et al. (2014a).
More precisely, 884 literal and 884 metaphorical AN
pairs are used for training, while 100 literal and 100
metaphorical AN pairs are used for testing.

4.2 Classifier and Features

We perform a literal/metaphorical classification task
by adding sensorial features on top of the features
proposed by Tsvetkov et al. (2014a), which consti-
tute our baseline: concreteness, imageability, super-
senses and vector space word representations. As
we discussed earlier, imageability (I) and concrete-
ness (C) are highly effective in metaphor identifi-
cation task. We obtain the I and C scores of each
word from the resource constructed by Tsvetkov
et al. (2014a) by projecting I and C values of
words in MRCPD onto 150,114 English words. Su-
persenses are coarse semantic representations that
could reflect the conceptual mappings between ad-
jective and noun components of a relation. We at-
tain noun supersenses from the lexicographer files of
WordNet, such as noun.phenomenon, noun.feeling,
verb.perception, and adjective supersenses from the
resource generated by Tsvetkov et al. (2014b). As
the last baseline feature, Vector Space Word Rep-
resentations can be considered as lexical-semantic
properties where each word is represented by a vec-
tor and semantically similar words have similar vec-
tors. The detailed description of how the baseline
features are extracted can be found in Tsvetkov et
al. (2014a).

As the main focus of this study, we extract the
sensorial features from Sensicon and a dependency-
parsed corpus (DPC). For each adjective and noun
in an AN relation, we add as features its five sense
associations according to the two resources. This
results in 10 features (S) coming from Sensicon and
10 features (D) coming from DPC. From S and D,
we derive two more features (pS and pD respec-
tively) computed as the Pearson correlation between
the sense features for the noun and the adjective.

As the third type of sensorial feature, we add
a feature (R) which encodes the degree to which
the adjective noun pair is consistent with William’s
theory of sense modality directionality in synaes-

Touch Taste Smell

Color

Dimen-
sion

Sound

Figure 1: Directionality of sensory modalities as pro-
posed by Williams(1976).

thetic metaphors (Williams, 1976). According to
Williams, the mapping between the source and tar-
get sense of a synaesthetic adjective is more likely to
flow in some directions and not in others, as exem-
plified in Figure 1. For example, while synaesthetic
metaphors could be constructed with touch related
adjectives and taste related nouns, the opposite di-
rection, a taste related adjective and touch related
noun, is less likely to occur. In our study, we em-
ployed simplified version of the directionality map-
ping in Figure 1 by identifying sight modality with
dimension and color. For an AN relation, we first
assign a sense to each component (i.e., adjective and
noun) by choosing the highest sense association in
DPC. We decided to employ DPC instead of Sen-
sicon in the definition of this feature since by con-
struction it provides a more direct association be-
tween words and senses. The value of R is set to 1.0
if the sense associations of the adjective and noun
satisfies a direction in Figure 1. If the associations
violate the directions in the figure, the value of the
feature is set to 0.5. In all other cases it is set to 0.

Another sensorial feature set (W ) is constructed
by checking if the constituents of an AN pair appear
in the Sensicon seed set, which consists of 4,287
sensorial words. For each adjective and noun, we
add 5 binary features (one for each sense) and if the
word is listed among the seeds for a specific sense,
the feature for that sense is set to 1. In the same
way, we construct another feature set (L) from the
resource described in (Lynott and Connell, 2013;
Lynott and Connell, 2013). This resource contains
1,000 nouns and object properties annotated with the
five senses. Table 1 summarizes the features used in
the classification task.
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Feature Name Abbreviation # of the Features

Baseline B 183
Baseline - VSM B′ 55

Sensicon S 10
Sensicon Pearson pS 1
DPC D 10
DPC Pearson pD 1
Sensicon Seeds W 10
Lynott-Connell Sense Words L 10
Directionality Rules R 1
All sensorial features A 43

Table 1: Feature sets used in the experiments.

To replicate the experimental setup of Tsvetkov
et al. (2014a) as closely as possible, for our experi-
ment we also use a Random Forest classifier, which
was demonstrated to outperform other classification
algorithms and to be robust to overfitting (Breiman,
2001). To fine tune the classifier and find the best
Random Forest model for each feature set combi-
nation, we perform a grid search over the number
of the generated trees (in the range between 50 and
300) and the maximum depth of the tree (in the range
between 0 and 50) using 10-fold cross validation on
AN training data. We choose the best model for each
feature combination based on the maximum average
cross validation accuracy - standard deviation value
obtained by applying the given parameters.

4.3 Evaluation of the Baseline Features

The first row in Table 2 demonstrates the accuracy
obtained with the complete set of baseline features.
As it can be observed from the results, there is
a significant drop of accuracy when moving from
training to test data. We suspect that this perfor-
mance loss might be due to the high dimensionality
of the vector space feature set. Since according to
Tsvetkov et al. (2014a) these features were designed
mostly to deal with the multilinguality of their ex-
perimental setting, we evaluate the performance of
the baseline excluding the vector space features. The
row labeled B′ reports the resulting accuracy values.
The figures show that this simpler model has better
generalization performance on monolingual English
data. Hence, we decide to add our sensorial features
on top of the simplified B′ baseline.

Features Cross-validation Test

B 0.851 0.798
B′ 0.831 0.845

Table 2: The cross validation and test accuracies of the
baseline with and without vector space features.

4.4 Evaluation of the Sensorial Features

The second row labeled ‘All’ in Table 3 shows the
cross validation and test accuracies of the sensorial
features added on top of B′. The following rows
show the outcome of the ablation experiments in
which we remove each feature set at a time. The
results that are marked with one or more ∗ indicate
a statistically significant improvement in compari-
son to B′ according to McNemar’s test (McNemar,
1947). From the results it can be observed that the
model including all sensorial features outperforms
the baseline in both cross-validation and testing even
though the difference on test data is not significant.

According to the ablation experiments, sensorial
transaction rules (R) yield the highest contribution.
While the Pearson correlation value calculated with
Sensicon (pS) results in an improvement, the feature
representing the correlation with DPC (pD) causes a
decrease in the performance of the model. In gen-
eral, all models using any tested subset of the senso-
rial features outperform the very competitive base-
line even though the difference is significant only in
two cases. To have more conclusive insights about
the importance of each feature, an analysis on a
larger dataset would be necessary. Overall, all the
results demonstrate the useful contribution of the
sensorial features to the task.

4.5 Error Analysis

The analysis that we performed on the test results
shows that the noticeable performance differences
among test results arise from the number of the in-
stances in the test set. Indeed, a more comprehen-
sive and bigger test set would provide better insights
about the performance of sensorial features in the
metaphor identification task.

6For two classifiers that have the same accuracy, McNemar
test can yield different results with respect to the same baseline,
depending on the tendency of each classifier to make the same
errors as the baseline.
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Features Cross-validation Test

B′ 0.831 0.845

All 0.852** 0.875

All-S 0.850** 0.870
All-D 0.838 0.875
All-pS 0.855*** 0.870
All-pD 0.851** 0.890*
All-R 0.838 0.865
All-L 0.853** 0.880
All-W 0.853** 0.880*6

Table 3: Performance of the B′ baseline in combination
with the different sets of sensorial features. Statistical
significance: ***, p < .001; **, p < .01; *, p < .05.

Regarding the impact of the sensorial features, the
test results indicate that sensorial association of the
words could be beneficial in resolving the metaphors
that include at least one sensorial component. For
instance, the best configuration All-pD could iden-
tify the quiet revolution as metaphorical while iden-
tifying quiet voice as literal with the sensorial adjec-
tive quiet.

A highly observable problem that causes error in
the predictions is the limited coverage of the sen-
sorial association resources. As an example, the lit-
eral AN pair woolly mammoth could not be resolved,
since the adjective woolly, which is highly related to
touch modality, can not be found in either Sensicon
or DPC.

As another type of error, for less direct relations
to sensory modalities, DPC might not provide the
right information. For instance, in the literal AN re-
lation blind man, the adjective blind is associated
with taste as the highest sensory relation while asso-
ciating man with sight modality. This might lead to
the classification of this literal pair as metaphorical.

Considering the shortcomings of the current sen-
sorial resources, a better sensorial lexicon differen-
tiating various aspects of sensorial words such as
direct sensorial properties (e.g., coldness, odor or
touch), perceptibility of the concepts such as the
visible concept (e.g., cloud), or tasteable concept
(e.g., food), and also deeper cognitive relations of
the words with senses such as microphone with hear-
ing or blind with sight, could increase the perfor-

mance of the metaphor identification systems.

5 Conclusion

In this paper, we investigated the impact of senso-
rial features on the identification of metaphors in the
form of adjective-noun pairs. We adopted a lexical
approach for feature extraction in the same vein as
the other cognitive features employed in metaphor
identification, such as imageability and concrete-
ness. To this end, we first utilized a state-of-the-
art lexicon (i.e. Sensicon) associating English words
to sensorial modalities. Then, we proposed a novel
technique to automatically discover these associa-
tions from a dependency-parsed corpus. In our ex-
periments, we evaluated the contribution of the sen-
sorial features to the task when added to a state-
of-the art model. Our results demonstrate that sen-
sorial features are beneficial for the task and they
generalize well as the accuracy improvements ob-
served on the training data constantly reflect on test
performance. To the best of our knowledge, this
is the first model explicitly using sensorial features
for metaphor detection. We believe that our results
should encourage the community to explore further
ways to encode sensorial information for the task
and possibly to also use such features for other NLP
tasks.

As future work, we would like to investigate the
impact of sensorial features on the classification of
other metaphor datasets such as VU Amsterdam
Metaphor Corpus (Steen et al., 2010) and TroFi
(Trope Finder) Example Base7. It would also be
interesting to explore the contribution of these fea-
tures for other figure of speech types such as simi-
les. Furthermore, we plan to extend DPC approach
with the automatic discovery of sensorial associa-
tions of verbs and adverbs in addition to adjectives
and nouns. These efforts could result in the compi-
lation of a new sensorial lexicon.
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Abstract 

This paper describes a system that makes use 

of a repository of formalized frames and met-

aphors to automatically detect, categorize, and 

analyze expressions of metaphor in corpora. 

The output of this system can be used as a ba-

sis for making further refinements to the sys-

tem, as well as supporting deep semantic 

analysis of metaphor expressions in corpora. 

This in turn provides a way to ground and test 

empirical conceptual metaphor theory, as well 

as serving as a means to gain insights into the 

ways conceptual metaphors are expressed in 

language.  

1 Introduction 

Recognition of the ubiquity of metaphor in lan-

guage has led to increased interest in automatic 

identification of metaphoric expressions in lan-

guage. Typical approaches to metaphor analysis in 

linguistics comprise (a) theory-driven introspective 

top-down methods, and (b) bottom-up corpus ap-

proaches with an emphasis on analyzing how met-

aphors are used in discourse. Computational 

approaches tend to focus on the task of metaphor 

detection (i.e. determining whether a particular 

expression metaphoric or not) rather than attempt-

ing to identify and analyze which conceptual met-

aphors are being expressed.  

The MetaNet approach described here bridges 

the two linguistic methodologies above by provid-

ing (a) a linguist-friendly interface for formally 

representing conceptual metaphor theoretic anal-

yses and principles, and (b) an automatic metaphor 

detection system that applies those analyses and 

principles to identify metaphoric expressions with-

in large-scale corpora. What results is an integrated 

system that connects the output of the metaphor 

detection process to rich information that enables 

further semantic analysis. This serves as a means 

for advancing and refining conceptual metaphor 

theory, and increasing our understanding of how 

metaphors are used in language. 

  

1.1 Related work 

Our work addresses two important criticisms that 

have been directed toward much previous linguis-

tic work in conceptual metaphor analysis. One is-

sue is that such analyses are often idiosyncratic, 

with methods of analysis and representations of 

metaphor varying from analyst to analyst; to ad-

dress this, metaphor study needs rigorous meth-

odological analyses that can be replicated 

(Pragglejaz 2007, Kövecses 2011). Another criti-

cism is that metaphor theorists often take a top-

down approach that relies on analysis of data gath-

ered from introspection; this tends to limit discov-

ery of new metaphors, and focus analysis on those 

metaphors the analyst has already identified or vet-

ted from the literature. This contrasts with a bot-

tom-up, corpus-based approach espoused by 

Stefanowitsch (2006), Deignan (2005), Martin 

(2006), and others, who argue that identifying as 

many metaphors as possible in a corpus leads to a 

clearer picture of the full inventory of metaphoric 

expressions, as well as providing a measure of 

their relative frequency of use. Furthermore, such a 

method can serve to verify theories based on pre-

viously-identified metaphors, as well as aiding the 

discovery of previously-unidentified metaphors.  

Various computational approaches have been 

applied to the task of metaphor detection. Among 

the first systems, Fass (1991) used selectional pref-
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erence violations as a cue for nonliteralness, and 

then relied on comparisons to a knowledge base for 

further disambiguation. Gedigian et al. (2006)’s 

system achieved high accuracy at classifying verbs 

in PropBank annotated texts, though only from a 

limited domain for a small range of source domain 

frames, using features consisting of the verb plus 

its argument filler types expressed as WordNet 

synsets. In a larger-scale system, Shutova et al. 

(2010) used unsupervised clustering methods to 

create noun and verb clusters that represent target 

and source concepts, respectively. Mappings be-

tween them, established by metaphoric seed ex-

pressions, were then used to generate novel target-

source expressions. Similarly, Mohler et al. 

(2013)’s system builds semantic signatures that 

map text to areas in a multidimensional conceptual 

space and represent associations between concepts.  

These are compared to known metaphoric ones to 

detect novel metaphoric expressions. Other sys-

tems, such as Turney et al. (2011) and Tsvetkov et 

al. (2014) determine metaphoricity based on lexi-

cal features such as abstractness/concreteness, im-

ageability, and supersenses derived from WordNet. 

Our approach to metaphor detection differs 

from previous approaches in its deliberate depend-

ence on formalization of a particular theory of 

metaphor and the correctness and completeness of 

a conceptual metaphor repository expressed in that 

formalism. By design, we expect the system to 

succeed at identifying metaphoric expressions to 

the extent that the formalism and the repository are 

consistent and correct. The approach thus inte-

grates top-down linguistic and bottom-up computa-

tional approaches to metaphor identification and 

annotation, combining the strengths of each. A 

significant outcome is that in addition to detecting 

metaphors in text, our system also yields semantic 

information about each of these expressions, in-

cluding identification of source and target domains 

and links to underlying conceptual metaphors.  

1.2 System overview  

There are three key components in our system: (1) 

a repository of formalized metaphors, frames, met-

aphor constructions, and metaphoric relational pat-

terns; (2) an automated metaphor extraction system 

that utilizes information from the repository to 

identify expressions of metaphor in text and anno-

tate them for additional semantic information; and 

(3) computational tools to evaluate, analyze, and 

visualize the extracted metaphor data. Together, 

these are used to form a ‘cycle’ of analysis, in 

which analysis of extracted data serves as a means 

to refine and expand the repository, which in turn 

improves metaphor extraction results. The system 

is currently in development for analysis of Ameri-

can English, Mexican Spanish, and Russian. 

 

2 Improvements to Extraction Based on For-

malization of Metaphor Theory 

Since Lakoff and Johnson’s first book on concep-

tual metaphor theory (1980), the field has come to 

recognize the hierarchical and taxonomic nature of 

metaphors and the concepts that comprise their 

source and target domains. For example, consider 

the phrases poverty infects society and crime is 

plaguing the nation, which instantiate the specific 

metaphors POVERTY IS A DISEASE and CRIME IS A 

DISEASE, respectively. However, they inherit much 

of their semantics from a more general metaphor, 

SOCIAL PROBLEMS ARE AFFLICTIONS; this in turn 

inherits from a yet more general metaphor, 

NEGATIVELY EVALUTED CONDITIONS ARE 

PHYSICALLY HARMFUL, as shown in Figure 1.  

 

 
Figure 1. Metaphor inheritance network 

 

It is also clear that the semantic domains of 

these metaphors are  themselves hierarchically re-

lated: poverty and crime are social problems, 

which are negative conditions; meanwhile, disease 

is a type of physical affliction, which in turn is 

something that causes physical harm. These do-

mains are represented in our system as semantic 

frames (Fillmore 1976) similar to those instantiated 

in FrameNet (Ruppenhofer et al., 2010), which 

constitute conceptual gestalts that describe particu-

lar situations or events along with their participants 

and other basic conceptual structures. By develop-

ing a system that formally represents these struc-

tures and relations in an ontology of frames and 

metaphors, we enable the possibility of a rigorous 
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system of representation that can be computation-

ally implemented and leveraged for improved met-

aphor detection. 

2.1 Repository of metaphors and frames 

The MetaNet project represents an effort to formal-

ly represent and categorize metaphors and frames 

that comprise their source and target domains, and 

relations between them. Frames are coherent, con-

ceptual gestalts organized in a hierarchical struc-

ture. These range from experiential universal 

structures such as Motion Along a Path and Verti-

cality, to more specific situations such as Physical 

Restraints and Disease; they also include less phys-

ically concrete culturally-based frames like Pov-

erty and Corruption. More-specific frames 

incorporate the semantics and internal structure of 

the more-general frames they inherit from, forming 

a complex network of related concepts. Relations 

between frames define how elements of a parent 

frame are incorporated by the child frame. For in-

stance, the ‘subcase of’ relation indicates that the 

child fully inherits and elaborates the structure of 

the parent frame. In addition to traditional ontolog-

ical relations, we also include relations specific to 

frame semantics and metaphor theory. A fragment 

of this network is illustrated in Figure 2.  
 

 
 

Figure 2. Non-metaphoric frame network pattern 

 

Sub-networks like the group of Physical Afflic-

tion frames in Figure 2 are further grouped togeth-

er to form families of frames, which define 

collections of broader, but still coherent, conceptu-

al domains. 

In addition to relations between frames, struc-

ture within frames is also represented in the reposi-

tory. This includes such elements as participant 

roles, aspectual and causal structures, relationships 

between roles, and lexical units that evoke the 

frame. Figure 3 illustrates partial frame representa-

tions of the Poverty and Disease frames. Internal 

frame structure not only enables improved analysis 

by requiring the analyst to consider the details of 

each frame, but also provides additional infor-

mation in metaphor detection. As the detection 

system identifies the frames that contribute to the 

identified metaphor, the detailed semantics of 

those concepts can be accessed via these frame 

entries. 

Metaphors are essentially representations of 

mappings between frames. The structure of the 

source domain frame maps onto the structure of the 

target domain frame (Figure 3); hence, in POVERTY 

IS A DISEASE, the impoverished people of the Pov-

erty frame are understood as the patient experienc-

ing the disease in the Disease frame. Specifically, 

the roles of the Disease frame map onto their coun-

terparts of the Poverty frame. 

 

 
Figure 3. Metaphor structure 

 

Furthermore, just as frame-frame relations de-

fine how one frame incorporates the semantics of 

another, metaphor-metaphor relations define the 

hierarchy of metaphors (Figure 1). The result is a 

complex, lattice-like inheritance network of con-

cepts and metaphors. 

The computational architecture used for this 

purpose is a Wiki, based on the Semantic Me-

diawiki format (Krötzsch et al. 2006). Linguists 

trained in conceptual metaphor theory create frame 

and metaphor entries as individual pages, specify-

Physical 
Affliction 

subcase of 

subcase of subcase of 

 

Treating A  
Physical Affliction Disease 

Cancer Polio 

incorporates as a role 
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ing for each metaphor its source and target domain 

frames, role-to-role mappings, and relations be-

tween that metaphor and others in a network. Ini-

tially the repository was seeded from metaphors 

previously identified in the past 30 years of meta-

phor literature; including comprehensive analysis 

of primary metaphors provides broad coverage of 

conceptual metaphors that are applicable to many 

target domains. For example, the metaphor MORE 

IS UP can be found in such varied expressions as 

prices skyrocketed, she had high hopes, and study-

ing boosted his GPA. Following this initial stage, 

additional metaphors are added as analysts find 

them via focused study of particular target do-

mains; however, the system can identify metaphor-

ic language even in the absence of specific 

metaphors by utilizing the frame network to find 

more general-level metaphors, as will be shown in 

section 3.2.  
 

2.2 Metaphor constructions 

Previous research has demonstrated that metaphors 

tend to be expressed in certain regular construc-

tional patterns (Croft 2002; Sullivan 2007, 2013). 

For example, the noun phrase poverty trap has the 

source domain lexeme trap modified by the target 

domain lexeme poverty; these noun-noun metaphor 

constructions consistently appear in this dependen-

cy relation. In contrast, the reverse construction 

with the source modifying the target is not ob-

served in corpus data (Sullivan 2013). Building on 

this research, our project has defined a set of 

grammatical constructions that represent several 

different types of frequently occurring patterns. In 

each, the construction specifies which construc-

tional element evokes the source domain, and 

which evokes the target domain (Table 1). The 

source term fills different slots in these various 

patterns; the source may appear not only as a verb, 

but also as a noun or adjective. As described in 

section 3.1, these constructions enable us to link a 

broad range of potentially metaphoric expressions 

(e.g. lexical units, expressed in some construction-

al pattern) to the frames and conceptual metaphors 

in our repository. However, while this process 

eliminates much data that is not metaphoric, it does 

not positively identify expressions that are meta-

phoric: for example, the same noun-noun pattern 

that identifies poverty trap also returns the literal 

expression bear trap. Hence, disambiguating be-

tween these two types of expressions requires a 

second step of metaphoricity evaluation. 

 

Constructional pattern Examples 

T-subj_S-verb poverty infects 

T-subj_S-verb-conj  poverty infects and maims 

T-subj-conj_S-verb  homelessness and poverty 

infect 

S-verb_T-dobj  escape poverty 

S-verb_T-dobj-conj  escape despair and pov-

erty  

S-verb_Prep_T-noun  slide into poverty / 

pull up out of poverty  

S-noun_of_T-noun trap of poverty 

T-noun_poss_S-noun poverty's undertow 

S-noun_prep_T-noun path to poverty  

T-noun_mod_S-noun  poverty trap 

S-adj_mod_T-noun burdensome poverty 

T-noun_cop_S-noun-adj 

  

poverty is a disease / 

poverty is burdensome  

Table 1. Constructional Patterns 

 

3 Metaphor Extraction and Identification 

Our automatic metaphor identification system di-

vides into two main phases. In the first, we use a 

set of manually defined metaphoric constructional 

patterns to identify candidate expressions with ex-

plicitly realized potential target and source ele-

ments. In the second, we identify the frames that 

are evoked by these elements, and use our concep-

tual network of frames and metaphors, along with 

a set of patterns of relationships between nodes in 

the network, to determine the likelihood of a can-

didate expression being metaphoric. These phases 

are presented in detail below. 

 

3.1 Matching constructional patterns 

The first step in the process is to identify potential-

ly metaphoric expressions in the corpus; the sys-

tem can search for metaphors for a particular target 

domain family, metaphors that make use of a par-

ticular source domain family, or simply all the 

metaphoric expressions in the data. This search is 

performed by making use of the metaphoric con-

structional patterns as described in section 2.2. 

They are represented as SPARQL queries that 
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specify document structural constraints, including 

grammatical constraints. To search texts for con-

structional matches, we construct Resource De-

scription Framework (RDF) models of each 

sentence in terms of an ontology defined in the 

Web Ontology Language (OWL). The ontology 

defines the classes Document, Sentence, and 

Word, and properties, some of which are shown in 

Table 2 and with their domain and range.  

 
 Domain Range 

inDocument Sentence Document 

inSentence Word Sentence 

follows Word Word 

precedes Word Word 

dep Word Word 

hasIdx Sentence,Word integer 

hasForm Word string 

hasLemma Word string 

hasPOS Word string 

    Table 2. Document properties 

 

The resulting RDF representation of the input 

text constitutes a graph structure in which words, 

sentences, and documents are nodes in the graph. 

Properties serve to characterize nodes in terms of 

string or integer information, such as form, lemma, 

part of speech (POS), or position, as well as in 

terms of a node’s relation to other nodes. Such re-

lations, with respect to Word nodes, include order-

ing relations and grammatical dependency 

relations. While Table 2 shows only the root of the 

dependency relations, dep, the ontology includes a 

grammatical relations hierarchy that represents a 

merger of the hierarchies used by the Stanford (De 

Marneffe et al., 2006), RASP (Briscoe et al., 

2006), and Spanish Freeling (Lloberes et al., 2010) 

dependency parsers.  

Generating this representation requires that 

NLP tools such as lemmatizers, POS taggers, and 

dependency parsers be available for the language 

in question. Because dependency parsing is the 

most computationally expensive step in this pro-

cess, in cases where the metaphor extraction is be-

ing run only for certain target or source domains, a 

preprocessing step identifies sentences of interest 

based on the presence of a word from those do-

mains. 

In order to search large volumes of text using 

SPARQL constructional pattern queries, docu-

ments are converted to RDF and uploaded to an 

OpenRDF Sesame triplestore. Constructional pat-

tern matching queries are run in succession over 

each document, with queries written so that each 

match result includes a sentence index, as well as 

the lemma and word index of the potentially meta-

phoric lexical elements. Documents are processed 

in parallel to the extent possible given hardware 

limitations.  With six compute servers each provid-

ing 16 cores and running a local triplestore, we 

were able to run metaphor detection on a pre-

processed 500 million word subset of the English 

Gigaword corpus (Graff & Cieri 2003) in 6 hours. 

 

3.2 Evaluating metaphoricity 

The preceding phase of the metaphor extractor re-

turns pairs of words that are related to each other 

by a constructional pattern where one word may be 

the source domain of a metaphor, and the other 

word may be the target domain of that metaphor. 

While the constructional patterns represent a nec-

essary constraint on metaphoric expression, they 

are not sufficient to guarantee metaphoricity. 

Hence, the second phase of metaphor detection 

makes use of the network of frames and metaphors 

instantiated in the metaphor repository in order to 

disambiguate between metaphoric and non-

metaphoric expressions in the pool of candidates.  

The content of the wiki repository (as described 

in Section 2.1) is converted to an RDF representa-

tion, also in terms of an OWL-defined ontology, 

and loaded into a triplestore repository. Entries for 

candidate lexical items in the repository are associ-

ated with the frames that they evoke; if the lexical 

items for English are not already present in the sys-

tem, FrameNet (https://framenet.icsi.berkeley.edu), 

WordNet (https://wordnet.princeton.edu), and 

Wiktionary (https://www.wiktionary.org) data are 

used to expand the search for the most relevant 

frame present in the system. After these frames are 

identified, the system performs searches through 

the network to determine how the frames are relat-

ed to one another. If a repository search of the 

chain of relations that connect the frames includes 

codified metaphoric mappings, the extractor rec-

ognizes the candidate expression as metaphoric. 

The likelihood that an expression is metaphoric 

is determined by attempting to match the relational 

network between the two frames against a set of 

pre-defined patterns, which are expressed in 
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SPARQL and stored in the Semantic MediaWiki, 

along with the constructional patterns. These pat-

terns fall into two basic types. 

The first type are relational configurations that 

constitute negative evidence for metaphoricity—

i.e. they suggest that the expression is not meta-

phoric. For example, if the potential source and 

target lexical units evoke the same frame, the sys-

tem could conclude that the expression is not met-

aphoric. Similarly, the system can also disregard 

cases where the frames are too closely related at 

some point in the network, e.g., if the candidate 

target lemma evokes a frame that is inherited by 

the candidate source frame. For example, in the 

phrases to cure a disease and to cure polio, cure 

evokes the Treating a Physical Affliction frame, in 

which one of the roles is the physical affliction 

being treated. The potential target lemmas disease 

and polio evoke the Disease and Polio frames, 

which inherit from Physical Affliction as shown in 

Figure 2. The constructional pattern matching 

phase of the system would identify the expressions 

as candidates, with cure as the source word in both 

cases, and with disease and polio as the target 

words for each phrase. The system, however, is 

able to exclude these on the basis of a rule that de-

fines a known non-metaphoric network pattern, 

TargetIsRoleInSource, where the frame 

evoked by the potential target term either directly 

or recursively inherits from a frame that is incorpo-

rated as a role into the frame evoked by the poten-

tial source term. 

The second type of network relational patterns 

are a set of rules that constitute positive evidence 

for metaphoricity. For example, if the two lemmas 

evoke frames that are defined as target and source 

frames of a specific conceptual metaphor in the 

network, then that expression is positively evaluat-

ed as a metaphor.  

However, it is not necessary that the evoked 

frames are immediately related to a metaphor entry 

in the repository. It is not unusual for specific met-

aphoric mappings not to be present in the concep-

tual network. This can be due to practical 

limitations as is often the case with manually cre-

ated resources, or for principled reasons—for ex-

ample, in cases where specific metaphors can be 

predicted from general ones, or for novel exten-

sions that can be interpreted using general meta-

phors. In those cases, the system is often still able 

assess metaphoricity on the basis of general map-

pings defined at a higher level. For example, in the 

phrase to cure poverty, poverty evokes the Poverty 

frame and cure the Treating a Physical Affliction 

frame. In the conceptual network, Poverty is de-

fined as a subcase of Social Problem. Furthermore, 

Treating a Physical Affliction incorporates the 

Physical Affliction frame as a role within it. In this 

case, although the more specific metaphor 

ADDRESSING POVERTY IS TREATING A DISEASE is 

not present in the repository network, the system 

can still identify the candidate pair cure poverty as 

metaphoric on the basis of the higher-level meta-

phoric mapping SOCIAL PROBLEMS ARE PHYSICAL 

AFFLICTIONS, as illustrated in Figure 4. 

 

 
Figure 4. Structures accessed by phrase cure poverty. 

 

Consequently, the system is often able to be re-

silient in the case of specific level gaps in the con-

ceptual network as in the example above. 

In addition, the relational patterns are assigned 

scores that represent the level of confidence that a 

linguistic expression with a matching frame and 

metaphor network pattern would actually be meta-

phoric or non-metaphoric. These scores are used to 

produce a metaphoricity score for each candidate 

expression.  Although the scores presently as-

signed to the relational patterns are based on intui-

tion, plans are underway to determine them 

empirically. 

 

4 Analysis and Evaluation of Data 

The extraction process generates a set of annotated 

sentences that can be used to both evaluate and 

refine the system, and to perform various kinds of 

corpus-based analysis.  Annotation information 

includes the lemma, POS, frame, and frame family 

for both the source and the target terms, as well as 

45



the name of the conceptual metaphor identified 

during the metaphor evaluation process. The pur-

pose for which the extraction is being performed 

will affect which types of input are used (gold 

standard data vs. corpora). 

 

4.1 System evaluation and improvements us-

ing gold standard 

To evaluate the accuracy of the metaphor extractor, 

linguists collected attested sentences and annotated 

metaphoric expressions for the target domains 

Government, Bureaucracy, Democracy, Poverty, 

Taxation, and Wealth; they annotated all in-

domain metaphoric expressions in the sentences 

where both the target and source were explicitly 

realized. Sentences were manually annotated for 

source and target word forms, source and target 

frames, and the constructional pattern used to ex-

press the metaphor. The metaphor extractor was 

run on these collected gold standard sentences, and 

the output compared to the annotations entered by 

the linguists. Table 3 shows the number of annota-

tions in the gold standard, the recall (percentage of 

gold standard examples that were identified), and 

the precision (percentage of extracted examples 

that were correct) of the system for three lan-

guages. 

 

Lang. Anno. Recall Precision 

English 301 0.86 (258/301) 0.85 (258/305) 

Spanish 122 0.88 (107/122) 0.86 (107/125) 

Russian 148 0.41 (60/148) 0.90 (60/67) 
 

Table 3. Performance over gold standard data 

 

As shown in Table 3, the system exhibits signif-

icantly lower recall for Russian than for the other 

languages. One of the reasons for this is that our 

instantiation of the conceptual network of frames 

and metaphors is not as well developed for Russian 

as for English and Spanish, containing significant-

ly fewer metaphors and frames, as well as lexical 

units (LUs) which belong to them.
1
  For example, 

Table 4 below shows the number of metaphors, 

frames, LUs, and the total number of frame-frame 

relations of the types used for metaphoricity evalu-

                                                           
1
 As linguists continue to work on the repository, these 

numbers will grow. 

ation.  These relations include ‘incorporates as a 

role,’ ‘subcase of,’ and ‘makes use of.’  

 

 

 Metaphors Frames LUs Rels 

English 787 656 4308 838 

Spanish 547 467 3521 506 

Russian 127 303 1674 273 

  Table 4. Summary of repository content 

 

It should be noted, however, that all the sys-

tems, including Russian, identified metaphoric ex-

pressions with a high degree of precision. Since the 

functioning of the metaphor detector depends on 

the correctness of conceptual metaphor theory, of 

its formalization in our system, and of the meta-

phor, frame, constructional pattern, and metaphor 

relational pattern representations in the repository, 

this result provides positive indication as to the 

validity in general of these aspects of the system.  

The metaphor detector thus in some sense imple-

ments the predictions of the formalized theory. 

This has the added benefit that results contrary 

to expectation provide invaluable data for refining 

the system.  For example, it is widely accepted that 

the government is often conceptualized a kind of 

physical structure, e.g. foundation of government, 

the government collapsed overnight, etc. The met-

aphor detector, based on representations captured 

in the repository, searching through a large corpus, 

turned up volumes of expressions such as govern-

ment building and government house that are not 

metaphoric.  This becomes a starting point of in-

vestigation to correct some aspect of the content of 

the repository, of the theory, or of its formaliza-

tion. 

 

4.2 Corpus-based analysis of metaphor 

When corpora are used as input to the extraction 

system, the extraction results can be used to per-

form various kinds of corpus-based linguistic anal-

yses. Such analyses can help provide an empirical 

basis for, and suggest refinements and improve-

ments of, Conceptual Metaphor Theory. For in-

stance, instead of relying on intuitions about how a 

given target domain is metaphorically conceptual-

ized, it is possible to search a corpus and identify 

which source domain lemmas and frames are used, 

and with what relative frequency.  
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The richness of the extracted data and the struc-

tural relations identified via our repository enable 

us to analyze data at varying levels of specificity. 

For instance, a search of the English Gigaword 

corpus (Graff & Cieri 2003) for metaphor expres-

sions with the target domain ‘poverty’ revealed 

several interesting patterns. Firstly, at the very 

general level of frame families, we observe that the 

most frequently occurring source terms were either 

location/motion related (e.g. being at a location, 

translational motion, motion impediments) or in-

volved physical harm (e.g. disease, physical com-

bat, or other harmful encounters). Figure 5 shows 

the relative frequency of these frame families.  

 

 
Figure 5. Most frequently occurring source families 

within poverty data. 

 

At a somewhat more specific level, we can ex-

amine which specific frames within one of these 

families are being evoked. Figure 6 looks within 

the Translational Motion family, and shows the 

number of extracted metaphor expressions that 

evoke each of the frames within that family.   

 
Figure 6. Number of extracted metaphor expressions 

that evoke various translational motion frames 

 

Looking at a yet more specific level, we can ex-

amine which lexical items are used to evoke a giv-

en frame. Figure 7, below, shows this data for the 

Downward Motion frame. 

 

 
Figure 7. Number of different lexical units in extracted 

data that evoke the Downward Motion frame.  

 

It is also possible to search for the conceptual 

metaphor that was discovered during the meta-

phoricity evaluation phase of the extraction pro-

cess.  For instance, Downward Motion lexemes 

such as fall and slip are used in expressions of the 

conceptual metaphor BECOMING IMPOVERISHED IS 

MOTION DOWNWARDS (e.g. the young family 

fell/slipped into poverty).   
 

5 Conclusions  

Our system moves beyond detection of metaphor, 

and enables us to perform many kinds of semantic 

analyses of metaphors in text. This affords the lin-

guistic analyst additional insight into the conceptu-

al structures characteristic of naturally-occurring 

language. Importantly, the different elements of the 

system each form part of a cycle, enabling an itera-

tive development process, wherein extracted data 

informs linguistic analysis, improving the meta-

phor repository, or the theory, which in turn im-

proves the quality of the extractor output. The 

resultant MetaNet metaphor repository and the ex-

tracted data can serve as valuable resources both 

for metaphor analysts and for the computational 

community at large.  
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Abstract

Metaphor is a cognitive phenomenon exhibited
in language, where one conceptual domain (the
target) is thought of in terms of another (the
source). The first level of metaphor interpre-
tation is the mapping of linguistic metaphors
to pairs of source and target concepts. Based
on the abductive approach to metaphor inter-
pretation proposed by Hobbs (1992) and im-
plemented in the open-source Metaphor-ADP
system (Ovchinnikova et al., 2014), we present
work to automatically learn knowledge bases
to support high-precision conceptual metaphor
mapping in English, Spanish, Farsi, and Rus-
sian.

1 Introduction

In everyday speech and text, people talk about one
conceptual domain (the target) in terms of another
(the source). According to Lakoff and Johnson (1980)
and others, these linguistic metaphors (LMs) are
an observable manifestation of our mental, concep-
tual metaphors (CMs). Computational research on
metaphor is important: If natural-language systems
treat metaphors at face value, meaning can be missed,
resulting in absurd or trivial claims.1 Additionally,
understanding metaphors is a way to recognize the
attitudes of different individuals, groups, or cultures.
Metaphors express strongly felt emotions (e.g., “I’m
crushed by taxes”—taxation is a burden or threat)
and presupposed understandings of concepts (e.g.,

1 Lakoff and Johnson (1980) give the examples, “This theory
is made of cheap stucco”—blatantly false—and “Mussolini was
an animal”—blatantly true.

“She won the argument”—arguments are a form of
conflict).

The full interpretation of linguistic metaphors is a
difficult problem, but a first level of understanding is
the identification of the conceptual source and target
domains being invoked. For instance, we can map the
linguistic metaphor “fighting poverty” to the 〈source,
target〉 pair 〈War, Poverty〉.

In this paper, we present work that performs this
mapping within the abductive reasoning framework
proposed by Hobbs (1992) and implemented by
Ovchinnikova et al. (2014). By handling metaphor
mapping within a general framework for knowledge-
based discourse processing, it is possible to extend
conceptual mapping to give deeper analysis, as dis-
cussed in section 5. This paper’s main contribution
is the use of annotated collections of metaphors, de-
scribing seven target concepts in terms of 67 source
concepts in four languages, to learn the lexical ax-
ioms needed for high-precision abductive metaphor
mapping.

2 Related Work

Metaphor has been studied extensively in the fields
of linguistics, philosophy, and cognitive science (e.g.,
Lakoff and Johnson, 1980; Lakoff, 1992; Gentner
et al., 2002). Computational research on metaphor
has focused on the problems of (1) identifying lin-
guistic metaphors in text (e.g., Fass, 1991; Birke and
Sarkar, 2006; Shutova et al., 2010; Li and Sporleder,
2010; Tsvetkov et al., 2014) and (2) identifying the
source and target concepts invoked by each linguistic
metaphor.
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Knowledge-based approaches to identifying con-
ceptual metaphors include that of Hobbs (1992),
described in the following section, KARMA
(Narayanan, 1997, 1999), and ATT-Meta (Barnden
and Lee, 2002; Agerri et al., 2007). These have relied
on the use of manually coded knowledge, limiting
their ability to scale across domains and languages.

As an alternative to identifying source and target
concepts and, potentially, performing deeper analy-
sis, Shutova (2010) and Shutova et al. (2012) learned
literal paraphrases for linguistic metaphors based on
co-occurrence frequencies, focusing on LMs consist-
ing only of a verb and its subject or object. E.g., they
would rewrite “stir excitement” as “provoke excite-
ment”. One limitation of a basic paraphrasing ap-
proach to metaphor interpretation is that metaphors
do not have fixed interpretations; their meaning is
dependent on the discourse context in which they are
used.2

3 Framework for Metaphor Interpretation

Hobbs et al. (1993) describe an approach to discourse
processing based on abductive inference. Abduction
is a form of reasoning that, given an observation,
produces an explanatory hypothesis. For discourse
processing, each sentence is an observation, and the
interpretation of the sentence is the best explanation
of why the sentence is true given what is already
known: commonsense and linguistic knowledge and
the content of the discourse up to that point. Hobbs
(1992) described the applicability of this approach to
the problem of interpreting linguistic metaphors. In
this framework, metaphor interpretation is part of the
general problem of discourse processing.

Ovchinnikova et al. (2011) presented a semantic
discourse processing framework based on abduction,
which uses the Mini-Tacitus reasoner (Mulkar et al.,
2007) to interpret a sentence by proving its logical
form, merging redundancies wherever possible, and
making any necessary assumptions. This work was
extended by Ovchinnikova et al. (2014) to address the
interpretation of metaphor. They presented an end-to-
end metaphor interpretation system, going from the
recognition of linguistic metaphors in text through to

2 Hobbs (1992) gives an example: “John is an elephant”
should be interpreted as meaning that he is clumsy if it fol-
lows “Mary is graceful”. In other contexts it might mean that
John is large, that he has a good memory, etc.

Text (LMs)

Parser
Boxer/Malt

Parse Logical form 
converter

Abductive 
reasoner

Knowledge base

CM extractor 
& scorer

Conceptual 
metaphor 
domains

LF

Interpretation

Figure 1: Abduction-based metaphor processing pipeline.

basic natural language explanation of the conceptual
metaphor identified by abduction. The effectiveness
of this approach was validated by expert linguists for
English and Russian metaphors.

A diagram of the interpretation pipeline is shown
in Figure 1. To process a text fragment containing a
metaphor, this system generates logical forms (LFs)
in the style of Hobbs (1985) by postprocessing the
output of the Boxer (Bos et al., 2004) and Malt (Nivre
et al., 2006) dependency parsers. A logical form is
a conjunction of propositions, where argument links
show the relationships among the constituents. An
advantage of LFs over the direct use of dependency
structures is that they generalize over syntax and
they link arguments using long-distance dependen-
cies. While this process is generally reliable, it can
result in incorrect part-of-speech suffixes on predi-
cates or inaccurate linking of arguments.

Along with appropriate knowledge bases, the sen-
tential logical forms are input to an engine for
weighted abduction based on integer linear program-
ming (Inoue and Inui, 2012). The reasoner finds the
most likely (i.e., lowest cost) explanation of the ob-
servations (the LF of the text) using knowledge about
what conceptual domains explain the use of words
and phrases. A conceptual metaphor (CM) extractor
and scorer then selects the most likely source–target
mappings based on the length of the path linking the
source and target in the predicate-argument structure.
For this paper, our task consists of the identifica-
tion of seven target concepts (Government, Democ-
racy, Elections, Bureaucracy, Taxation, Poverty, and
Wealth) and 67 source concepts used to describe them.
A selection of source concepts are listed in Figure 2,
and the sizes of the development and test sets anno-
tated with these concepts are given in Table 1.

51



Abyss
Accident
Animal
Barrier
Blood Stream
Body of Water
Building
Business
Competition
Confinement

Container
Contamination
Crime
Disease
Emotion Experiencer
Enslavement
Fire
Food
Forward Movement
Game

High Location
Journey
Leader
Life Stage
Light
Medicine
Monster
Movement
Obesity
Physical Burden

Physical Harm
Plant
Portal
Protection
Resource
Science
Servant
Struggle
Theft
War

Figure 2: A selection of source concepts.

4 Knowledge Bases and Mapping
Performance

The metaphor mapping performance we have
achieved is due to two advances over the work of
Ovchinnikova et al. (2014): a focus on source and
target spans in each sentence and the creation of new
knowledge bases. A span is a minimal excerpt of
a sentence that is sufficient to mentally trigger the
source or target concept. We do not allows spans
to overlap or cross sentence boundaries, which may
limit our ability to deal with some metaphors. There
are one source span and one target span identified per
CM, even though a domain might also be supported
by words outside the spans. While the spans in our
data were annotated manually, they can also be found
automatically by LM identification tools like those
mentioned in section 2.

We modified the Metaphor-ADP mapping service
to filter the logical forms generated by the parser
so they only include literals directly related to these
spans. We evaluated the contribution of this filtering
and found that—for the cross-language average—this
improved the precision of source identification sig-
nificantly with only a small drop in recall:

Source Target
Prec. Rec. Prec. Rec.

Sentence 39% 22% 84% 49%
Spans 79% 21% 99% 26%

Concentrating on the identified spans particularly
helps with sentences containing multiple lexical
items that suggest sources or targets, such as those
with more than one distinct metaphor, e.g., “. . . move
forward in advancing gun rights . . . [so] gun rights
[will] be on a solid foundation.” The drop seen in

target recall is deceptive: The system only returns
a mapping when it identifies both a source and a
target concept. By no longer identifying erroneous
sources from outside the source span, the system now
returns no mapping for many sentences where the
target could nonetheless be identified correctly. As
source concept mapping is the harder problem, our
focus is on improving those scores.

Performance at metaphor mapping also depends on
the coverage of the knowledge bases (KBs) of lexical
axioms for each language. These encode information
about what words or phrases trigger which source
and target concepts. Ovchinnikova et al. (2014) used
collections of manually authored axioms for English
and Russian, bootstrapped by finding related words
and expressions in ConceptNet (Havasi et al., 2007).
Manually authoring a knowledge base exploits the
intuitions of the knowledge engineer, but these can
fail to match the data. In addition, manual enumera-
tion is not a scalable approach to ensure coverage for
a wide variety of input LMs.

As such, a further improvement to precision and re-
call came from work to learn KBs automatically from
annotated metaphors. This work sought to automati-
cally generate new axioms from example sentences
in our development set by identifying which source
and target span words or phrases are most predictive
of source and target concepts. We found that as the
development sets grow larger, inevitably even those
lexical items that seem unambiguous, e.g., “riqueza”
mapping to the Wealth target concept, are ambiguous
in our annotations. Sometimes this reflects a real am-
biguity (e.g., does “Democrats” relate to Democracy
or Elections?), but it can also be due to erroneous
annotations.
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English Spanish Farsi Russian

Dev. 7,963 8,151 7,349 4,851
Test 894 894 881 644

Table 1: The number of metaphoric sentences in the devel-
opment and test sets for each language.

However, for a goal of high-precision mapping,
sophisticated learning methods are not necessary. In-
stead, we require that a chosen percent of the in-
stances of a logical form fragment correspond to a
single source or target concept, in which case we out-
put a lexical axiom mapping the LF to the concept.
We found it helpful to enforce the mutual exclusivity
of the text fragments that map to source concepts and
those that map to target concepts. When a text frag-
ment is ambiguous between a source mapping and a
target mapping, we produce an axiom for whichever
correspondence was more frequent. This reduces the
likelihood of the axioms leading the system to iden-
tify, e.g., two source concepts in a sentence but no
target concept. The results are axioms like

Source:Abyss(e0)
⇒ bottomless-adj(e0, x0) ∧

pit-nn(e1, x0)

If something is described as bottomless
and as a pit, an explanation is that it is an
instance of the source concept ‘Abyss.’

The learned KBs contain approximately twice as
many axioms as the manually authored (and boot-
strapped) KBs:

English Spanish Farsi Russian
Manual 1,595 1,024 1,187 1,601
Learned 3,877 2,558 2,481 3,071

Hybrid KBs combining manual and learned ax-
ioms yielded the highest recall, at the expense of a
loss of precision compared with the automatically
learned axioms alone. We would expect manual ax-
ioms to perform with higher precision than automati-
cally learned ones. However, this was not so. Learned
and hybrid axioms generally outperformed manual
ones, as indicated in Table 2. These results could
suggest problems with the quality or generality of
our manually authored axioms. It is also possible

Source Target
Prec. Rec. Prec. Rec.

Manual, Spans 79% 22% 84% 49%
Learned, Spans 85% 56% 99% 65%
Hybrid, Spans 81% 57% 99% 70%

Table 2: Impact of various axiom sources on span-selected
Metaphor Mapping performance. Learned and Hybrid ap-
proaches generally outperform the Manual approach to
axiom collection.

that this demonstrates the consistency of the auto-
matically learned axioms with the annotation of the
testing set. E.g., the annotated metaphors used for
training and testing sometimes fail to include source
concepts that were added later. This can give an ad-
vantage in our testing to axioms learned from training
data that suffers from the same bias.

5 Future Work

There are two interesting lines of future work: The
first is to devise more refined techniques that are
able to take advantage of large dataset of annotated
metaphors despite the increase in errors and inconsis-
tencies that normally appear in large collections of
annotated data. To this end, we are exploring the use
of machine learning techniques to appropriately vary
the weights of the learned axioms. The other line of
work is to move beyond source and target concept
mapping toward a richer interpretation of metaphors.

A target can be viewed differently depending on
the role it occupies in a metaphor, which could be
handled by axioms such as

Source:Physical Harm(e0) ∧
Role:Threat(x0, e0) ∧
Role:Threatened(x1,e0)

⇒ crush-vb(e0, x0, x1)

If something crushes something else, an
explanation is that it is a threat causing
physical harm to something that is
threatened.

where predicates describing general roles related to
the source concept are abduced, in addition to the con-
cept itself. By identifying which roles in the source
domain are instantiated by target domain elements,
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we get a more complete picture of the metaphor’s
meaning. E.g., for the LM “Democracy crushes our
dreams”, democracy is seen as a threat, while in “Cor-
ruption has crushed democracy”, it is seen as threat-
ened. The axioms necessary for this interpretation
could be manually authored, learned from further
annotation of data, or sought by the adaptation of
existing work on semantic role labeling.

6 Summary

Understanding the meaning of linguistic metaphors
depends, as a first approximation, on the ability to rec-
ognize what target concept domain is being discussed
in terms of what source concept domain. Within a
principled framework for general discourse process-
ing, we have exploited a large body of annotated data
to learn knowledge bases for high-precision metaphor
mapping.
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Abstract

Metaphor is a central phenomenon of language,
and thus a central problem for natural language
understanding. Previous work on the analysis
of metaphors has identified which target con-
cepts are being thought of and described in
terms of which source concepts, but this is
not adequate to explain what motivates the use
of particular metaphors. This work proposes
the use of conceptual schemas to represent
the underspecified scenarios that motivate a
metaphoric mapping. To support the creation of
systems that can understand metaphors in this
way, we have created and are publicly releas-
ing a corpus of manually validated metaphor
annotations.

1 Introduction

Lakoff and Johnson (1980) wrote that “the essence of
metaphor is understanding and experiencing one kind
of thing in terms of another.” Our mental, conceptual
metaphors (CMs) relate the immediate subject matter
of a target conceptual domain such as Argument to a
(usually more concrete) source domain such as War.
These conceptual links are exhibited in speech or text
as linguistic metaphors (LMs), such as “Your claims
are indefensible”. Metaphors include both fixed-form
expressions, such as “won the argument”, and novel
expressions, such as “threw a fragmentation grenade
at her premise”. Natural language systems that are
not specially equipped to interpret metaphors will
behave poorly on metaphoric text. For instance, a
document classifier should distinguish between text
about a war and text using war as a metaphor to talk
about poverty.

The metaphors people use can also provide in-
sights into their attitudes and preconceptions. Exam-
ining metaphors allows us to empirically contrast
individual speakers, groups, or entire cultures. Even
when an expression is common and might not be
consciously metaphoric for the speaker, it can fit
a metaphoric structuring of the concept being dis-
cussed.

Metaphors are not produced at random. Rather, dif-
ferent metaphoric structurings highlight—and hide—
different aspects of the target concept. Furthermore,
based on theoretical frameworks developed as part
of our research, there seems to be a small set of sce-
narios, central to human existence, that are called
upon metaphorically to make sense of more complex
or abstract concepts. These include, e.g., threats to
a person’s health and safety and mitigators of such
such threats.

It is in light of this analysis that we approach the an-
notation of metaphors for interpretation, explanation,
and comparison. While previous work, e.g., Shaikh
et al. (2014), has produced collections of linguistic
metaphors annotated with source and target concepts,
such annotations do not capture the scenarios that
inform a metaphoric mapping. For instance, the sen-
tences

Democracy has crushed our dreams.
Extremists have crushed our democracy.

are both about the source–target pair 〈Physical Harm,
Democracy〉, but with contrasting views: In the first,
democracy is seen as a threat, while in the second
it is being threatened. In this paper, we present an
annotation scheme that draws such distinctions, and
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we use it to create a corpus of metaphor annotations,
which we are releasing to support the creation of
tools for the deeper automated analysis of metaphors.

2 Related Work

All corpora contain metaphors, however even those
general corpora that give semantic interpretations,
e.g., the AMR corpus (Knight et al., 2014), do not
address—or do not consistently address—metaphors.
Computational research on metaphor has focused on
the problems of (1) identifying linguistic metaphors
in text (e.g., Fass, 1991; Birke and Sarkar, 2006;
Steen et al., 2010; Shutova et al., 2010; Li and
Sporleder, 2010) and then (2) identifying the source
and target concepts invoked by each linguistic
metaphor (e.g., Narayanan, 1997; Barnden and Lee,
2002; Agerri et al., 2007; Shutova, 2010; Ovchin-
nikova et al., 2014; Gordon et al., 2015).

The corpora of (varyingly annotated) metaphors
that have been released to date are not sufficient to tell
the story of why a metaphor was invoked or to allow
the meaningful comparison of metaphors used by dif-
ferent individuals or even entire cultures. MetaBank
(Martin, 1994) provided sets of cross-domain map-
pings, organized by a small set of important abstract
metaphors, adapted from the Berkeley Metaphor List.
The latter was expanded into the Master Metaphor
List (Lakoff et al., 1991), which gives a hierarchi-
cally organized set of conceptual metaphors (i.e.,
source–target mappings) and supporting examples of
linguistic metaphors. The Italian Metaphor Database
(Alonge, 2006), the work of Shutova et al. (2013)
annotating the British National Corpus (BNC Consor-
tium, 2001), and the large-scale, multilingual work of
Shaikh et al. (2014) and Mohler et al. (2014) all focus
on the identification of source and target concepts.

Unlike other work manually or automatically an-
notating metaphors in text, the focus of this paper is
not on whether text is metaphorical or not, or which
concept domains the metaphors involve, but on the
meaning (or “story”) of each metaphor. For instance,
from the text

. . . changes over the last couple centuries
have increased how much democracy in-
fests our [political] system . . .

we can identify the verb “infests” as an instance of
the source concept Parasite and “democracy” as the

target Democracy. What is absent from this anno-
tation is why we consider this to be so, and what
underlying story gives the metaphorical expression
heft, e.g.,

Democracy is seen as a parasite because it
poses a threat to the health of the political
system that it “infests”.

In the following section we describe the annotation
we use to produce a corpus that meets this standard.

3 Metaphor Representation

We desire a rich structured markup to represent the
meaning of metaphors in terms of the speaker’s mo-
tivation. For this, we introduce a set of ontological
categories with associated schema representations.

This builds on previous work mapping linguistic
metaphors to their conceptual source and target do-
mains. The source domain of the metaphor is the
loose set of related concepts used to metaphorically
describe the target domain. There are no theoretical
or practical limitations on the set of target domains
that can be described by metaphors. The set of pos-
sible source domains is also unbounded, but people
commonly draw upon a small set of familiar sce-
narios in order to make sense of more abstract or
complex experiences.

For this work, we recognize 70 source domains.
This list is the result of a three-year bottom-up pro-
cess, where new metaphors were observed, clustered,
and assigned a label. Source domains were split or
consolidated to better fit the data. The list is neces-
sarily arbitrary, relying on human judgment of when
two source domains are distinct.

While 70 source domains abstract over individ-
ual linguistic metaphors, 14 ontological categories
abstract over the source domains. An ontological cat-
egory is a collection of one or more scenarios that
are conceptually related. The choice of ontological
categories was based on extensive data analysis, but,
as with the source domains, ultimately relies on hu-
man judgment. The category of Health and Safety,
for instance, includes metaphors from the source do-
mains Food, Medicine, Physical Harm, and Protec-
tion, among others. The ontological categories are:

1. Health and Safety
2. Journey
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3. Conflict
4. Power and Control
5. Engineering and Business
6. Morality and Justice
7. Systematic Explanations
8. Plants
9. Animals

10. Human Life Cycle and Relations
11. Darkness and Light
12. High and Low
13. Nature
14. Embodied Experience

A scenario in an ontological category is a coher-
ent set of roles. Each scenario can be represented by
a conceptual schema, the set of properties or com-
ponents that were deemed essential to represent the
roles that elements can play in metaphors about the
scenario. Each schema was designed based on the
analysis of a variety of metaphors for the scenario.
Most categories are sufficiently coherent that they can
be described by a single overarching über schema,
while a few, such as Nature, consist of diverse sce-
narios and thus require multiple schemas. A scenario
is added to a category when it is common and is
conceptually distinct from the other scenarios in the
category, reflected by a low overlap in schema ele-
ments.

Each schema is simplified as much as possi-
ble while retaining the ability to capture the basic
meaning of the scenario. Additional meaning of the
metaphor comes from the specific source and target
domains involved, and from the particulars of the
sentence and the discourse context. The schema anal-
ysis of metaphors cannot capture the full meaning
of each linguistic metaphor, but it is a step toward a
(notional) complete analysis.

We represent a schema as an unordered set of la-
beled slots, whose values can be

• null (i.e., the slot is not instantiated);
• a text excerpt from the linguistic metaphor (not

altered or rearranged); or
• one of a closed-class set of values defined for

that slot.

Then, for each linguistic metaphor in a text, a ba-
sic explanation of the metaphor is an instantiation
of the schema for an ontological source category. A

successful annotation should contain enough infor-
mation, including the choice of the schema, to allow
a natural language generator (human or otherwise) to
construct an explanatory sentence.

For a selection of the categories, we now provide
the corresponding annotation guidelines.1 These in-
clude a detailed description of the scenarios and the
elements that define their schemas. The scenario de-
scriptions also serve to explain the schema slots to
end-users, e.g., for comparing metaphors used by
different groups.

Each schema slot is accompanied by an illustra-
tive list of lexical triggers, which are text construc-
tions that may identify the slot’s value. For closed-
class slots, the legal values are given in uppercase.
Each schema is followed by example metaphor an-
notations, primarily drawn from the US gun control
debate. These analyses include the identification of
source and target conceptual domains.

Category: Health and Safety

People want to stay safe and healthy. Some things in
the world are threats to the health and safety of the
threatened. Other things are protection against these
threats or are beneficial.

— Threat, e.g., monsters, tsunamis, diseases, par-
asites, “overdose of x”, “evil x”.

— Threatened, e.g., “sick x”, “x overdoses”, “x is
threatened”, “x is infested”, “x is contaminated”.

— Protection or mitigation of threats, e.g.,
medicine, protection, shelter, “x alleviates”.

— Beneficial or necessary things, e.g., “x is the
beating heart of y”, doctors, “appetite for x”.

Examples:

“This is how irrationally fearful are [sic]
of guns some people are. Seems any expo-
sure to firearms is a horrific tragedy. Even
teaching gun safety is a travesty.”

— Source: Disease
— Target: Guns
— Threat: “firearms”
— Threatened: “some people”

1 The full set of annotation guidelines is included with the
released corpus.
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“Back in the 1760’s there was a far greater
amount of threat that a gun could poten-
tially alleviate than there is for a person at
a local starbucks [sic].”

— Source: Medicine/Physical Burden
— Target: Guns
— Protection: “gun”

Category: Journey
An agent on a journey wants to reach their goal.
Some things—vehicles—facilitate movement to-
wards a destination. Other things—barriers—hinder
movement towards a destination. Any movement for-
ward or back causes change to increase or decrease
(change type).

— Agent: the person on a journey, e.g., “x flies”,
“x travels”, “x marches”, “journey of x”, “pro-
gression of x”.

— Goal: the destination of the journey, e.g., des-
tination, escape, summit, “advance toward x”,
“road to x”, “steps toward x”, “door to x”.

— Vehicle: the facilitator of the journey, e.g.,
“straight pathway of x”, “engine of x”, “x pro-
vides access to”.

— Barrier: a thing that impedes the journey, e.g.,
“maze of x”, road block, “obstructive x”, obsta-
cle, “x restrains”, “x ensnares”, labyrinthine.

— Change, e.g., “x advances”, “x progresses”,
“retreat of x”, “x go backwards”, “x reversed
course”.

— Change Type:
– INCREASE, e.g., advances, increases, pro-

gresses.
– DECREASE, e.g., retreats, decreases, di-

minishes.

Examples:

“. . . we need to accept the historical ac-
count of the second amendment for what it
actually is, and move forward in advancing
gun rights with a full understanding of the
historical truth. Only then will gun rights
be on a solid foundation.”

— Source: Forward Movement
— Target: Gun Rights
— Agent: “we”

— Goal: “gun rights be on a solid foundation”
— Vehicle: “accept the historical account of the

second amendment for what is actually is”
— Change: “gun rights”
— Change Type: INCREASE

“The retreat of gun control is over.”

— Source: Backward Movement
— Target: Control of Guns
— Change: “gun control”
— Change Type: DECREASE

Category: Conflict
There are two opposing sides in a conflict, one of
which may be the enemy of the speaker. The conflict
has structure and plays out according to the rules of
engagement. A component of the conflict may be an
aid, which helps progress toward the goal of winning.
At the end, one side is a winner and the other side is
a loser. If your side wins, it is success; if it loses, it is
failure. The conflict may have different stakes, e.g.,
losing a war is more serious than losing a football
game.

— Conflict, e.g., “game of x”, “battle of x”, “x
competition”, “x debate”, “fight in x”, “the x
war”, “inning of x”, “struggle of x”.

— Side, e.g., “x team”, “x forces”, “compete with
x”, “challenge x”, “winning against x”, “rival to
x”, “x combats y”, “x scored”, “x is battling”.

— Enemy or competitor of the speaker, e.g., “x
are terrorists”, “x are evildoers”, “opposing x”,
“fighting x”, “x is our enemy”.

— Winner, e.g., “x wins”, “x victory”, “victorious
x”, “x conquered”, “victory of x over. . . ”

— Loser, e.g., “x loses”, “defeated x”, “surrender
of x”, “defeat of x”, “x capitulates”.

— Aid, a component of the conflict that helps to-
ward winning, e.g., a home run, “sword of x”,
“brandish x”, “wield x”, “x is a useful weapon”.

Examples:

“Whether George W. Bush or Al Gore ends
up winning the presidency, the Constitu-
tion charts a course for him . . . ”

— Source: Competition
— Target: Government
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— Conflict: presidency
— Side: “George W. Bush”
— Side: “Al Gore”

“We agree that gun control will win be-
cause Americans aren’t willing to kill over
it.”

— Source: Competition / Game
— Target: Control of Guns
— Side: “Americans”
— Winner: “gun control”

Category: Power and Control

A being may have power and control over another
being. Levels of control and the autonomy of the sub-
servient person vary. There is resentment and anger
when autonomy levels are perceived as too low.

There are two distinct—but related—scenarios in
Power and Control, which are annotated differently:

Scenario: Power and Control: God
A god is a sacred being that a worshipper considers
to rightly have power over humans due to its innate
superiority, including its holiness, wisdom, or might.
The legitimacy of a non-divine being that has been
elevated and worshipped as a god is false; otherwise,
it is true.

— God, e.g., “x cult”, “idolize x”, “sacred x”, “wor-
ship of x”, “temple of x”, “divine x”, “x idol”,
“holy x”.

— Worshipper, e.g., “x idolizes”, “x praises”, “x
worships”.

— Legitimacy:
– TRUE, e.g., divine, sacred.
– FALSE, e.g., cult, false god, idol.

Examples:

“On the other hand when guns become
idols we can document how their presence
transforms the personalities of individuals
and entire communities.”

— Source: A God
— Target: Guns
— God: “guns”
— Legit: FALSE

“Thus, independence of the Judiciary is
enshrined in the Constitution for the first
time, which is rightly considered a historic
landmark.”

— Source: A God
— Target: Government
— God: “independence of the Judiciary”
— Legit: TRUE

Scenario: Power and Control: Human
Sometimes there is a clearly marked hierarchy among
people, where a servant serves the will of a leader.
The degree of oppression or submission may be low,
in which case the servant is more thoroughly con-
trolled, like a slave. Higher degrees of oppression are
generally seen more negatively.

— Leader: who or what has power, e.g., “x or-
dered”, “assisted x”, “served x”, “x enslaves”,
“x oppression”, “x reigns”, “x is king”.

— Servant: who or what is assisting or being con-
trolled, e.g., “x assisted”, “x served”, “enslaves
x”, “x obeys”, “servile x”, “x works for”.

— Degree:
– HIGH: like a slave, e.g., slave, slave driver,

dominance.
– LOW: like a servant, e.g., served, assisted,

helped.

Examples:

“Instead we watch gun control command
the media filling every mind in the world
with its hatred and fear of guns.”

— Source: Leader
— Target: Control of Guns
— Leader: “gun control”
— Servant: “the media”
— Degree: HIGH

“Guns prevent crime, guns assist crime,
guns cause accidental deaths, guns turn mi-
nor disagreement into a [sic] deadly en-
counters.”

— Source: Servant
— Target: Guns
— Leader: “crime”
— Servant: “guns”
— Degree: LOW
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4 Metaphor Annotation

While annotated datasets are needed for computa-
tional work on metaphor, creating them is a difficult
problem. Generating any rich semantic annotation
from scratch is a daunting task, which calls for an
annotation standard with a potential for high inter-
annotator agreement (IAA). Even trained annotators
using specialized tools will frequently disagree on
the meaning of sentences—see, e.g., Banarescu et al.
(2013). Previous work has found it challenging even
to manually annotate metaphors with source and tar-
get domain labels (Shutova et al., 2013).

Part of the difficulty is a lack of consensus about
annotation schemes. The specification given above
is particular to the features that motivate metaphor
production and thus allow us to readily explain the
meanings of metaphors. It is worth considering the
relation of this metaphor-specific annotation to gen-
eral semantic representation. A significant amount of
work has gone into the creation of semantically anno-
tated corpora such as the 13,000-sentence AMR 1.0
(Knight et al., 2014) or the 170,000 sentences anno-
tated in FrameNet (Fillmore et al., 2003). This kind of
sentential semantic representation captures the literal
meaning of metaphoric sentences. Combined with
an LM identification system, such semantic analyses
could provide a basis for automatic metaphor inter-
pretation. However, this interpretation would still
need to be within a framework for metaphoric mean-
ing, like the one outlined above.

4.1 LM Discovery

This work does not begin with a standard corpus and
annotate it. Rather, we rely on the work of Mohler
et al. (2015) to manually and automatically gather
a diverse set of metaphors from varied text. These
metaphors pertain to target concepts in the areas of
governance (e.g., Democracy, Elections), economic
inequality (e.g., Taxation, Wealth), and the US debate
on gun control (e.g., Gun Rights, Control of Guns).
Some metaphors were identified manually, using web
searches targeted at finding examples or particular
source–target pairs. More potential metaphors were
found automatically in text by a variety of techniques,
described in that work, and were partly verified by
human annotators in an ad hoc active learning setting.

The sentences are intentionally varied in the view-
points of the authors as well as the genres of writing,
which include press releases, news articles, weblog
posts, online forum discussions, and social media.
There are trade-offs in the use of this data set versus
the annotation of metaphors in a general-purpose
corpus: We will necessarily miss some kinds of
metaphors that we would find if we annotated each
sentence in a corpus, but this also lets us find more
interesting and unique metaphors about a small set of
target concepts than we would in that approach. That
is, our choice of sentences exhibits the diversity of
ways that people can conceptualize the same set of
target concepts.

4.2 Manual Annotation and Active Expansion
The corpus of annotated metaphoric sentences are all
manually validated. Some of these were annotated
entirely manually: An initial set of 218 metaphors
were annotated by two of the authors, including three
to five examples instantiating each schema slot for
the most common schemas. Along with these annota-
tions, we identified potential lexical triggers for each
slot, like the examples given in section 3.

A prototype classifier was created and was trained
on these annotations. It suggested possible annota-
tions, which were then manually verified or corrected.
The use of an automatic classifier is important as it
(1) allowed for the more rapid creation of a human-
verified dataset and (2) suggests the suitability of
these annotations for the creation of future tools for
automated metaphor analysis.

The prototype classifier used an instance-based
classification approach. Each scenario and schema
slot were represented by one to three example lin-
guistic metaphors. The example metaphors were then
automatically expanded based on four key features:

1. The source concept used in the linguistic
metaphor. Each source concept is associated
with one or more schemas and their scenarios.
These were identified during the development
of the ontological categories and the annotation
guidelines. An example of an ambiguous source
concept is Body of Water. A linguistic metaphor
about “an ocean of wealth” would be classified
in the Nature category, while threatening water,
e.g., “a tsunami of guns”, would be classified in
Health and Safety.
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2. Grammatical and morphological information in
the linguistic metaphor’s context. The sentence
containing the linguistic metaphor was anno-
tated with the Malt parser (Nivre et al., 2006),
giving the dependency path between the LM’s
source and target. Custom code collapses the
dependency relations across prepositions, inte-
grating the preposition into the relation. The
dependency path is used in combination with
the lexical item, its voice (if applicable), part
of speech, and valence. Expansion is allowed
to linguistic metaphors with similar character-
istics. For instance, “we were attacked by gun
control” (attacked-VERB-passive PREP-BY tar-
get, transitive) indicates that the target concept
is agentive and should fill a slot that supports
agency of the target, such as Threat in Health
and Safety or Enemy in the Conflict schema.

3. The affective quality of the linguistic metaphor.
This feature further disambiguates between po-
tential schema slots, e.g., Threat vs Protection
in the Health and Safety schema. The affec-
tive quality of the target concept can be used
to disambiguate which slot a particular linguis-
tic metaphor should map to.

We determine the affective quality of the LM
by the interaction between the source and target
concepts similar to Strzalkowski et al. (2014).
This involves two questions: (1) Is the source
viewed positively, negatively, or neutrally? (2)
How do the target concept, and particularly the
features of the target concept that are made
salient by the LM, interact with the affective
quality of the source concept? This is deter-
mined by the use of a set of rules that define
the affective quality of the metaphor through
the target concept, its semantic relation with the
source concept, and the valence of the source
concept. E.g., in the linguistic metaphor “cure
gun control”, we can assign “gun control” to the
Threat slot in Health and Safety because “gun
control” is seen as negative here.

4. Semantic representation of the source lexeme.
This is used to identify semantically similar lex-
ical items. The semantic representation is com-
posed of three sub-components:

(a) Dependency-based distributional vector
space. Each word’s vector is derived from its
neighbors in a large corpus, with both the de-
pendency relation and the lexical neighbor used
to represent dimensions for each vector, e.g.,
NSUBJ Cure (Mohler et al., 2014). Prepositions
collapsed and added to the dependency relation,
e.g., PREP TO Moon. The distributional rep-
resentation space ensures that words are only
closely related to words that are semantically
and grammatically substitutable. (This is in con-
trast to document- or sentence-based representa-
tions, which do not strictly enforce grammatical
substitutability.) We do not apply dimensional-
ity reduction. While dimension reduction assists
the representation of low-occurrence words, it
also forces words to be represented by their most
frequent sense, e.g., “bank” would only be sim-
ilar to other financial institutions. By using an
unreduced space, rarer senses of words are main-
tained in the distributional space.

(b) Sense-disambiguation provides an en-
hancement of the distributional vector. For lexi-
cal seed terms that can map to multiple concepts,
we use vector subtraction to remove concep-
tual generalizations that are made to the wrong
“sense” of the lexical item. E.g., the distribu-
tional vector for “path” contains a component
associated with computational file systems; this
component is removed by subtracting the neigh-
bors of “filename” from the neighbors of “path”.
This type of adjustment is only possible because
the vectors exist in a space where the alterna-
tive senses have been preserved. This step is
currently done manually, using annotators to
identify expansions along inappropriate senses.

(c) Recognition of antonyms. Antonyms gen-
erally have identical selectional preferences
(e.g., direct objects of “increase” can also “de-
crease”) and almost identical distributional vec-
tors. While they generally support mapping into
the same ontological category, they often imply
mapping to opposite slots. E.g., the subjects of
both “attack” and “defend” map into the Health
and Safety schema, but the former is a Threat
and the latter is Protection. We use WordNet
(Fellbaum, 1998) to identify antonyms of the
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lexical seed terms to ensure that generalizations
do not occur to antonymous concepts.

Novel linguistic metaphors fitting these expansions
are classified into that particular scenario and slot.

Two issues arose related to coverage: The first
is with the lack of coverage for mapping linguis-
tic metaphors into schemas due to the low recall of
systems that link non-verbal predicates and their se-
mantic arguments. Metaphors occur across a variety
of parts of speech, so extending argument detection
to non-verbal predicates is an area for future work.
The second issue involves insufficient recall of slot
values. The schemas allow for a rich population of
role and property values. While some of these are
metaphorical, many also occur as literal arguments to
a predicate. They can also occur in the same sentence
or in neighboring sentences.

4.3 Validation

This system gave us a noisy stream of classifications
based on our initial seed set. For two iterations of
the system’s output, three of the authors were able to
quickly mark members of this data stream as correct
or not. For the second round of output validation,
three of the authors also identified the correct schema
slot for erroneous classifications. These iterations
could be repeated further for greater accuracy and
coverage, providing an ever better source of annota-
tions for rapid human validation. For the first round
of validation, we used a binary classification: correct
(1) or incorrect (0). For the second round of valida-
tion, system output was marked as completely right
(1), not perfect (0), or completely wrong (−1). The
counts for these validations are shown in Table 1.

Fewer of the annotations in the second round were
marked as correct, but this reflects the greater variety
of schema slots being distinguished in those anno-
tations than were included in the initial output. One
limitation on the accuracy of the classifier for both
rounds is that it was not designed to specially handle
closed-class slots. As such, the text-excerpt values
output for these slots were rejected or were manually
corrected.

To measure inter-annotator agreement, 200 of the
schema instantiations found by the system were dou-
bly verified. (The extra annotations are not included
in Table 1.) For those from Round 2, we collapse the

Rating Round 1 Round 2
1 515 67% 732 41%
0 253 33% 752 43%
−1 283 16%

Table 1: Ratings for two rounds of validation of automatic
annotations. Correct = 1, incorrect = 0. For round two, rat-
ings for incorrect annotations are split into 0 (not perfect)
and −1 (completely wrong).

trinary rating to the original binary classification. The
pairwise Cohen κ scores reflect good agreement in
spite of the difficulty of the task:

Annotators Cohen κ
1 and 2 0.65
1 and 3 0.42

4.4 Corpus Analysis

The resulting corpus is a combination of entirely
manual annotations, automatic annotations that have
been manually verified, and automatic annotations
that have been manually corrected. The annotation
and verification process is guided by the definitions
of the scenarios and their schemas, as given in sec-
tion 3. However, it also relies on the judgment of the
individual annotators, who are native English speak-
ers trained in linguistics or natural language process-
ing. The creation of the corpus relies on our intuitions
about what is a good metaphor and what are the likely
meaning and motivation of each metaphor.

The result of these initial annotations and the man-
ual validation and correction of the system output was
a corpus containing 1,771 instantiations of metaphor
schema slots, covering all 14 of the schemas, with
more examples for schemas such as Health and
Safety and Journey that occur more frequently in
text. Statistics on the extent and distribution of anno-
tations for the initial release of the corpus are given
in Table 2.

The corpus is being publicly released and is avail-
able at 〈http://purl.org/net/metaphor-corpus〉.

5 Summary

Metaphors play an important role in our cognition
and our communication, and the interpretation of
metaphor is essential for natural language processing.
The computational analysis of metaphors requires
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Category Scenarios Sentences Slots Slot–Value Pairs Sources Targets

1. Health & Safety 1 416 4 429 30 11
2. Journey 1 116 6 132 28 11
3. Conflict 1 407 6 482 18 12
4. Power & Control 2 102 6 125 11 12
5. Engineering & Business 3 206 10 219 24 12
6. Morality & Justice 1 129 8 146 9 11
7. Systematic Explanations 1 15 5 19 4 5
8. Plants 1 10 3 12 2 5
9. Animals 1 11 2 11 2 3
10. Human Life Cycle. . . 1 16 4 32 4 5
11. Darkness & Light 1 9 3 16 2 5
12. High & Low 1 45 5 68 9 10
13. Nature 3 25 8 37 7 6
14. Embodied Experience 3 21 11 42 4 8

Total 20 1450 81 1770 68 12

Table 2: Statistics for the corpus of annotations being released. Each category consists of one or more scenarios. For a
variety of sentences, the corpus gives instantiations (slot–value pairs) of the slots in the schema for each scenario. Each
linguistic metaphor is also tagged as being about one or more source and target concepts. All counts are for unique
entries, except for slot–value pairs, which includes duplicates when they occur in the data. Some sentences contain
more than one metaphor, so the number of unique sentences is less than the sum of unique sentences for each schema.

the availability of data annotated in such a way as to
support understanding. The ontological source cat-
egories described in this work provide a more in-
sightful view of metaphors than the identification of
source and target concepts alone. The instantiation
of the associated conceptual schemas can reveal how
a person or group conceives of a target concept—e.g,
is it a threat, a force of oppression, or a hindrance
to a journey? The schema analysis cannot capture
the full meaning of metaphors, but it distills their
essential viewpoints. While some types of metaphor
seem resistant to this kind of annotation, they seem
to be in the minority. We have annotated a diverse set
of metaphors, which we are releasing publicly. This
data is an important step toward the creation of auto-
matic tools for the large-scale analysis of metaphors
in a rich, meaningful way.
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Abstract 

In this article, we outline a novel approach to 
the automated analysis of cross-cultural con-
flicts through the discovery and classification 
of the metaphors used by the protagonist par-
ties involved in the conflict. We demonstrate 
the feasibility of this approach on a prototypi-
cal conflict surrounding the appropriate man-
agement and oversight of gun-ownership in 
the United States. In addition, we present a 
way of incorporating sociolinguistic measures 
of influence in discourse to draw further in-
sights from complex data. The results present-
ed in this article should be considered as 
illustrative of the types of analyses that can be 
obtained using our methodology; however, no 
attempt was made to rigorously validate the 
specific findings reported here. We address 
open issues such as how our approach could 
be generalized to analyze cross-cultural con-
flicts around the world. 

1 Introduction 

All discourse is a means to convey ideas, fulfill 
goals and possibly attempt to persuade the listener 
(Perloff, 2014). Metaphors, which are mapping 
systems that allow the semantics of a familiar 
Source domain to be applied to a Target domain so 
that new frameworks of reasoning can emerge in 
the Target domain, are pervasive in discourse. 
Metaphorically rich language is considered highly 
influential. Persuasion and influence literature 
(Soppory and Dillard, 2002) indicates messages 
containing metaphorical language produce some-
what greater attitude change than messages that do 
not. Metaphors embody a number of elements of 
persuasive language, including concreteness and 
imageability (Strzalkowski et al., 2013, Broadwell 

et al., 2013, Charteris-Black, 2005). Using this line 
of investigation, we aim to understand the motiva-
tions of a group or of a political faction through 
their discourse, as part of the answer to such ques-
tions as: What are the key differences in protago-
nists’ positions? How extensive is a protagonists’ 
influence? Who dominates the discourse? Where is 
the core of the groups’ support?  

Our goal is to provide a basis for the analysis of 
cross-cultural conflicts by viewing the conflict as 
an ongoing debate or a “dialogue” between protag-
onists or participants.  

In this interpretation, each major protagonist po-
sition becomes a “speaker” and the articles, post-
ings, and commentaries published by media outlets 
representing that position become “utterances” in a 
debate. The targets (i.e. main concepts) of the con-
flict are those concepts that align with the main 
topics (we shall call them meso-topics) of the de-
bate. Protagonists’ positions in the conflict are de-
rived from their language use when talking about 
these meso-topics, particularly the metaphorical 
language. The relationships between the protago-
nist positions are determined based on sociolin-
guistic features of their “utterances”, particularly 
topic control, disagreement, argument diversity, 
and topical positioning. These and other features 
allow us to isolate “subgroups” or factions of like-
minded individuals, including those that are more 
extreme (farther apart) and those that are moderate 
(closer to a “center”). In addition, we look for indi-
cators of influence these groups exert upon each 
other as well as upon their other audiences (broad-
er public, lawmakers, policy makers, etc.) We thus 
aim to bring together two emerging technologies to 
bear upon conflict case analysis: automated meta-
phor extraction, and automated analysis of the so-
ciocultural aspects of language. 
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Understanding conflicts in this manner may al-
low policy-makers facilitate negotiations and dis-
cussions across different communities and help 
bridge contrasting viewpoints and cultural values.  

2 Relevant Research  

The underlying core of our research is automated, 
large-scale metaphor extraction. Computational 
approaches to metaphor to date have yielded only 
limited scale, often hand-designed systems (Wilks, 
1975; Fass, 1991; Carbonell, 1980; Feldman & 
Narayan, 2004; Shutova & Teufel, 2010; inter 
alia). Baumer et al. (2010) used semantic role la-
bels and typed dependency parsing in an attempt 
towards computational metaphor identification. 
Shutova (2010) employ an unsupervised method of 
metaphor identification using nouns and verb clus-
tering to automatically impute metaphoricity in a 
large corpus using an annotated training corpus of 
metaphors as seeds. Several other similar ap-
proaches were reported at the Meta4NLP work-
shop, e.g., (Mohler et al., 2013; Wilks et al., 2013; 
Hovy et al., 2013). Strzalkowski et al. (2013) de-
veloped a data-driven approach towards the auto-
mated extraction of metaphors from text and our 
approach builds upon their work. The use of meta-
phor, along with sociocultural aspects of language 
to understand cross-cultural conflict is novel to our 
approach. Recent research in computational socio-
linguistic has developed methods for automatic 
assessment of leadership, influence and power in 
conversation (Broadwell et al., 2012; Shaikh et al., 
2012; Strzalkowski et al., 2010) and we draw 
largely upon this work. Other relevant work in-
cludes Nguyen et al. (2013), who look at non-
parametric topic modeling as a measure of influ-
ence; and Bracewell et al. (2012), who look at a 
category of social acts to determine measures of 
leadership; among others. Analysis of positions 
held by discourse participants has been studied in 
the realm of political science and computational 
sociolinguistics (Laver, Benoit & Garry, 2003; 
Slapin & Proksch, 2008; Lin et al., 2013; Pang & 
Lee, 2008) and our approach draws parallels from 
such prior work. Our topical positioning approach 
is a departure from existing approaches to senti-
ment analysis (Wiebe, Wilson and Cardie, 2005; 
Strapparava and Mihalcea, 2008) in looking at a 
larger context of discourse rather than individual 
utterances.  

3 The Conflict – U.S. Gun Debate 

The main hypothesis, and an open research ques-
tion, is then: can this new technology be effective-
ly applied to understanding of a broad cultural 
conflict such as may arise in any society where 
potentially divisive issues exist? To answer this 
question, we decided to conduct a feasibility study 
in order to scope out the problem. What we present 
below is the outcome of this study and possibilities 
it opened for future research. The actual results of 
conflict case analysis obtained here are for illustra-
tive purposes only. 

To start, we selected a conflict case that is both 
familiar and has abundance of data available that is 
easily accessible. The case can be considered as 
representative both in terms of its overall structure 
(opposing views, radical and moderate positions, 
ongoing tension) as well as the debate surrounding 
it (complexity of language, indirectness, talking 
about self and the others, etc.). At the same time, 
its familiarity provided means for immediate as-
sessment of feasibility of the proposed approach: if 
our subject matter experts could verify the out-
come as correct or at least reasonable, it would 
serve as a point of departure for more rigorous 
analysis and evaluation of other conflict cases 
elsewhere in the world. 

The cross-cultural conflict we use as an example 
can be summarized as: “People disagree about the 
oversight of guns in the U.S. Some believe that 
guns and gun safety are the responsibility of indi-
viduals; others believe that the Federal Govern-
ment should manage guns and gun ownership. This 
contrast in viewpoints has been a source of tension 
in the US since the colonial era. Although the de-
bate about guns is often thought to be political, its 
foundation is actually cultural – the proper bal-
ance between the rights of the individual citizen 
and the interests and needs of the majority.”1  

The protagonists involved in this conflict are 
those in favor of individual oversight of guns 
(INDO for short) and those in favor of Federal 
Government oversight (GOVTO for short). Given 
a conflict case such as the above, our goal is to 
develop methods that will understand and analyze 
the cultural differences that underlie the conflict 
and can be ascertained through the use of meta-
phors by protagonists on either side.  

                                                             
1 An excerpt from the Guns Practice Case description. 
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4 Our Approach 

4.1 Data Identification and Collection  

Our objective was to identify the metaphors that 
are used to characterize the Gun Case conflict in 
the U.S. For extracted metaphors to be useful to an 
analyst in this or any other conflict case, the meta-
phors must be assigned to a particular protagonist 
or viewpoint or “side” of whatever debate or con-
flict is being explored. Without linkage to a view-
point, discovered metaphors are not particularly 
illuminating. When dealing with an unfamiliar cul-
ture, an analyst may not be able make such a link. 
Consequently, the system must provide the link. It 
is the known position, taken by the spokesperson 
using the metaphor that provides the connection 
between metaphor and position or side. A spokes-
person can be a particular named person – such as 
the head of an organization espousing the position 
(i.e., head of the NRA) – but in fact is more com-
monly a website maintained by an organization for 
the purposes of promulgating its views. 

The first step is the identification of spokesper-
sons and spokesperson sites on all sides of the 
opinion spectrum. Websites are more helpful than 
named people, because they provide a large vol-
ume of text that is readily accessible in locations 
that contain high concentrations of material on the 
focus topic. This step typically requires input from 
a cultural/political expert; however, it may be ap-
proximated (or pre-structured) using the distance 
calculation based on the Topical Positioning meas-
ure (c.f. Section 6).  

In the second step, we roughly array these sites 
along an opinion spectrum, and particularly dis-
cover the extreme positions at each end of the 
spectrum, as well as those sites that represent more 
moderate positions, if still recognizably on each 
side. This step also requires input by the cultur-
al/political expert; but it may be approximated by 
the Topical Positioning computation as in first step 
above, in cases where cultural expertise cannot be 
obtained.  

Once the websites and their positions on opinion 
spectrum are determined, the third step is collec-
tion of data from sites taking a relatively pure and 
extreme position at each end of the spectrum, after 
sites have been checked for any access restrictions. 
Data collection here means downloading snippets 
of text – passages of up to five sentences – that 

contain certain terms of relevance to the conflict 
case under investigation. We start with a broad list 
of terms that may include potential metaphorical 
targets as well as other relevant terms. Table 1 
shows a subset of these terms in the first column 
for the Gun Case. Other terms (see Figure 1) are 
folded under these broad categories in Table 1. 

 The effect of this collection method is that all 
automatically extracted metaphors can be automat-
ically tagged as representing one extreme position 
or the other, based on the initial classification of 
the site by the cultural expert. These are considered 
to be core metaphors. This material should be rea-
sonably balanced as to numbers of sites on each 
side. We make an effort to compensate significant-
ly unbalanced dataset with additional collection on 
underrepresented side. 

Step four is data collection from the sites closer 
to the middle of the opinion spectrum identified in 
the second step. When this data is processed for 
metaphors, they are labeled accordingly as “mod-
erate”.  We note that “moderate” positions in mul-
ti-side conflicts may have different interpretations 
than in a largely binary conflict of Gun Case. In 
Table 1, the column Total Passages represents the 
sum total of passages processed from the extreme 
and moderate websites.  

Target	
   Total	
  Passages	
  

Gun	
  control	
   23596	
  
Gun	
  violence	
   8464	
  
Gun	
  right(s)	
   9472	
  
Gun	
  law	
   11150	
  
Gun	
  safety	
   129	
  
2nd	
  Amendment	
   516	
  
Gun	
  ownership	
   1147	
  
Gun	
  owners	
   2359	
  
Total	
  	
   57841	
  
Table 1. Distribution of collected data across targets in 

Gun Case debate 
 

For the Gun Case analysis, two rounds of data 
collection were conducted. The first round was 
focused on extreme sites on both sides: data were 
derived from 10 extreme INDO sites and 20 ex-
treme GOVTO. The greater number of sites in fa-
vor of more government oversight was necessary 
because of the lesser volume of text found in these 
sites on the average. In the second round of data 
collection, we added sites that represented moder-
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ate positions. Ultimately, we collected data from 
45 online sites and collected more than 57,000 text 
passages as seen in Table 1. 

4.2 Identifying Meso-Topics and Targets for 
Metaphor Extraction 

The downloaded data is then processed for meso-
topics (frequently mentioned and polarized topics) 
and metaphors. 

The process of identifying the key meso-topics 
(i.e., the main aspects of the conflict case) has been 
fully automated in the following 3 steps: 

1. Locating frequently occurring topics in 
text: The initial candidates are noun phrases, prop-
er names (of locations, organizations, positions, 
events, and other phenomena, but less so of specif-
ic individuals). These are augmented with co-
referential lexical items: pronouns, variants, and 
synonyms. The process of selection is quite robust 
but requires some rudimentary processing capabil-
ity in the target language: part-of-speech tagging, 
basic anaphor resolution, and a lexicon/thesaurus. 

2. Down selecting the frequent topics to a set 
of 20-30 meso-topics. The two key criteria for se-
lection are length and polarization. Topic “length” 
is measured by the number of references to it (ei-
ther direct or indirect) that form “chains” across 
the “utterances” that are part of the conflict debate. 
Topic polarization is measured by the proportion 
of polarized references to a meso-topic, either posi-
tive or negative. For example, the terms gun rights 
and gun safety are both frequently used and polar-
ized in the Gun Case. In order to keep the analysis 
manageable, we retain only top 20 to 30 meso-
topics, based on their chain lengths.  

3. Selecting metaphorical targets and assign-
ing them to case aspects. While all meso-topics are 
important to the case, only some of them will be 
targets of metaphors. We determine this by probing 
metaphor extraction for each of the meso-topics 
and then eliminating those meso-topics that bring 
back too few metaphors. In the Gun Case, we used 
2% cut-off threshold for productive targets (a typi-
cal metaphor to literal ratio is approx. 8%).  

Figure 1 shows the meso-topics selected for the 
Gun Case, and the metaphorical targets identified 
among them (bold face). Targets are grouped by 
semantic similarity and assigned to case “aspects”.  

 
Figure 1. Meso-topics and metaphorical targets identi-

fied for the Gun Case 

4.3 Extracting Linguistic Metaphors and 
Building Conceptual Metaphors 

Our metaphor extraction system was run over ap-
proximately 57 thousand passages collected from 
the Gun Case protagonists’ media outlets, resulting 
in more than 4000 distinct linguistic metaphors 
(LMs). These LMs yielded 45 conceptual meta-
phors (CMs), with 28 CMs on the individual over-
sight (INDO) side and 17 CMs at the government 
oversight (GOVTO) side. This uneven split repre-
sents the overall data distribution between INDO 
and GOVTO, reflecting their relative contributions 
to the Gun Case debate: approximately 70% of 
contributions (measured in published “utterances”) 
are attributed to the INDO side.  

We define the terms LM and CM here: a linguis-
tic metaphor (LM) is an instance of metaphor 
found in text, for example – “The roots of gun con-
trol are partially about racism”. Here the target is 
gun control and the metaphorical relation is “roots 
of”. A prototype source domain for this metaphor 
could be PLANT, where gun control is likened to 
having properties of a PLANT by the relation roots 
of. A set of linguistic metaphors all pointing to the 
same source domain, such as PLANT in the above 
example, would form a conceptual metaphor (CM). 
The focus of this article is on the use of metaphors 
towards analyzing a real world conflict scenario. 
Metaphor extraction is carried out in a data-driven, 
automated method by our system by using corpus 
statistics, imageablity and identification of source 
domains using word vectors to represent source 
domains. Our work is built upon existing ap-
proaches to automated metaphor extraction and 
source domain mapping (Strzalkowski et al., 2013; 
Broadwell et al., 2013; Shaikh et al., 2014). Our 
system extracts linguistic metaphors from text and  
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Table 2. Conceptual Metaphors used by protagonists on 
the INDO side 

Target GOVERNMENT OVERSIGHT; 
Selected CMs/Total CMs: 17 

GUN RIGHTS WAR (battle, attack, victory) 
BUILDING (restore, preserve) 

CONTROL 
 OF GUNS 

BARRIER (push) 
NATURAL_PHYSICAL_FORCE (strong) 
WAR (battle, attack, defend) 
HUMAN_BODY (strong, tough) 
CLOTHING (tighten, loosen) 
PROTECTION (violate, protection) 

GUN  
VIOLENCE 

DISEASE (epidemic, survivor) 
CRIME (victim, perpetrator, rampant)  
ACCIDENT (tragic, die, gruesome) 
WAR (fight, carnage, threat) 
NATURAL_PHYSICAL_FORCE (devastating, brunt of) 

Table 3. Conceptual Metaphors used by protagonists on 
the GOVTO side 

 
automatically groups them together to form con-
ceptual metaphors. The source domains that we 
refer to in this article are a set of 67 categories that 
are frequently encountered in metaphorical data. 

Tables 2 and 3 below show the overall distribu-
tion of CMs found on each side of the debate. Se-
lected representative lexical items associated with 
each CM are shown in parentheses. Similar tables 
can be drawn for extreme and moderate positions 
separately in the debate. 

We can now automatically label the metaphors 
across given positions, extreme or moderate, on 
each side of the debate. The process of labeling the 

metaphors then leads to analytic insights into the 
data, which we shall present in the next section.  

5 Preliminary Insights using Metaphorical 
Data 

We report three observations based on automated 
processing of relevant text sources for presence of 
metaphorical language used by each protagonist.  
We should stress here that these are only tentative 
results that serve as indication of the types of anal-
yses that may be achievable. Rigorous validation is 
required to confirm these findings; however, it was 
not our objective of this feasibility study. 

5.1 Contrasting Narratives: DISEASE vs. 
WAR 

Both sides of the debate use metaphorical language 
indicative of their stances on the Gun Case issue. 
These metaphors invoke a variety of source do-
mains from which we can infer their attitudes to-
ward the issue. Among all source domains invoked 
by each side, two are predominant: 
1. DISEASE is invoked in 21% of all metaphors 

used by GOVTO 
2. WAR is invoked in 20% of all metaphors used 

by INDO 
To determine predominant Conceptual Meta-

phors for each protagonist (21% and 20% referred 
above), we rank order the Source Domains (SDs) 
for each side by number of LMs that use each SD. 
In Table 4, we show the predominant conceptual 
metaphors used for key targets by each protagonist.  

 
Table 4. The most representative CMs on both sides of 

the Gun Debate, by key Targets. Font size indicates 
relative frequency for top CMs for each target. 

 
WAR and DISEASE/CRIME dominate; howev-

er, we note also that the majority of metaphors on 
GOVTO side come in fact from gun violence topic, 
while on the INDO side the majority comes from 
the gun rights topic. Further breakdown of top 

Target INDIVIDUAL OVERSIGHT; 
Selected CMs/ Total CMs: 28 

GUN 
RIGHTS 

ANIMAL (shoot, survive, endanger) 
BARRIER (push, circumvent, wedge) 
WAR (battle, victory, jihad) 
GAME (win, game, champion) 
A_RIGHT (preserve, lose, violate) 
CLOTHING (wear, strip, cling) 
BUILDING (restore, prospect, platform) 
BUSINESS (sell, expand) 

CONTROL 
 OF GUNS 

MACHINE (failure of, misfire, defuse) 
ANIMAL (kill, shoot, evolve) 
BARRIER (break, ram, hinder) 
NATURAL_PHYSICAL_FORCE (strong, defy, sweep) 
WAR (fight, attack, battle) 
HUMAN_BODY (weak, relax, thrust) 
BUSINESS (launch, promote) 
GAME (champion, bandwagon, loser) 
CLOTHING (tighten, loosen) 

GUN  
VIOLENCE 

DISEASE (epidemic, scourge, plague) 
CRIME (victim, rampant) 
ACCIDENT (die from, horrific, injury) 
WAR (battle, fight, escalate) 
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source domains for the gun debate targets is elabo-
rated as follows: NATURAL PHYSICAL FORCE, 
DISEASE and CRIME all seem to contribute to-
wards a cohesive narrative on the GOVTO side, 
which views the gun issue as an uncontrollable, 
external, negative force. BARRIER and WAR on 
INDO side may suggest an overarching narrative 
of active struggle and overcoming of obstacles.  

This resolution of narratives for each side in a 
conflict is a significant key insight that can be de-
rived from gathered data. Recognizing the underly-
ing narrative in a conflict for any given side can 
provide ways of resolving conflict by facilitating 
dialogue that can bridge such differences. 

5.2 Sociolinguistic indicators: INDO domi-
nates debate  

The INDO side contributes approximately 70% of 
all content in the Gun Case debate. This proportion 
does not change substantially even after a deliber-
ate oversampling of data from GOVTO websites. 
The absolute number of metaphors supplied by 
INDO is substantially greater than the number pro-
duced by GOVTO sites. In addition to contributing 
the most content and the largest number of meta-
phors (Figure 4), the INDO side dominates the 
Gun Case debate according to two key sociolin-
guistic measures (Broadwell et al., 2012): 
1. Showing greater Argument Diversity, which 

correlates with greater influence. Argument 
diversity is a sociolinguistic measure manifest-
ed in metaphor use by: (a) employment of a 
larger number of source domains in their met-
aphors; and (b) Employment of more varied 
metaphors using distinct relations 

2. Using action-oriented language, i.e., the rela-
tions in metaphors evoke action for change ra-
ther than describing the status quo. 

To gather evidence for this insight, we explored 
the sociocultural indicators of influence exhibited 
by the INDO side. Figure 4 shows the INDO using 
significantly more metaphors in most domains, 
except for DISEASE, CRIME, and NAT-PHYS-
FORCE, which are parts of the GOVTO core nar-
rative. Figure 5 further shows that INDO uses 
more varied relations to evoke these domains, even 
those SDs used predominantly by GOVTO.  

Figure 6 illustrates INDO using more action-
oriented language in their metaphors. The two pie 
charts represent the proportion of lexical items 

used in LMs that are of the “taking action” type 
(primarily verbs describing events, such as “at-
tack”) vs. the “passively observe” (primarily nouns 
and adjectives, such as “devastating”).  

 
Figure 4. The INDO side (red bars) dominates debate 
with use of more LMs overall. Here we show those 
source domains that are used at least 2% of the time 
overall by both sides and the count of LMs for those 

Source Domains. Y-axis represents count of metaphors. 

 
Figure 5. The INDO side dominates debate with richer 
vocabulary suggesting greater influence. Here we show 

those source domains that are used at least 2% of the 
time overall by both sides and the count of distinct rela-
tions in the LMs by each protagonist. Y-axis represents 

count of metaphors. 

 
Figure 6. The INDO side dominates debate with use of 
more action-oriented language. Size of pie chart repre-
sents the proportion of metaphors in the source role cat-

egories. The “Taking Action” type of metaphors is 
greater in proportion than “Passively Observe” type of 

metaphors. 
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5.3 Topical positioning: INDO occupies the 
center ground in debate  

We wish to calculate the relative positions of pro-
tagonists in a debate and to estimate a distance be-
tween these positions. We have created a 
sociolinguistic method of computing those distanc-
es using a method called Topical Positioning (Lin 
et al., 2013). In this section, we shall explain how 
we arrive at those distances using metaphorical 
data and give details about the Topical Positioning 
Method in Section 6.  

In order to calculate the positions of extreme 
and moderate protagonists on each side of the de-
bate, we create a heat-map matrix of metaphor us-
age for each position. Each matrix represents the 
numbers of metaphors and Source Domains ap-
plied to each key target concept in the debate. Dis-
tances between matrices are calculated using 
cosine measure in multidimensional spaces. Figure 
7 shows fragments of heat maps for the extreme 
GOVTO and INDO positions.  

 
Each N× M matrix provides the representation of 

a protagonist position in a debate through their use 
of metaphors where N represents the number of 
metaphorical Targets (TCs) in a debate, while M 
represents the number of source domains (SDs) 
used in the analysis. Values in each cell represent 
an average strength score for TC → SD mappings 
found in the data collected from this protagonist 
media outlets (Shaikh et al., 2014). Empty cells are 
values below a preset threshold, replaced by 0s. To 
calculate distances we use a cosine metric; howev-
er, other distance measures may also be applicable. 

 
Figure 8. INDO side occupies center ground in the 

gun debate. We represent each protagonist position 
on a relative distance “scale” 

 
 Using this method, we find that the extreme 

proponents of the INDO and GOVTO sides are far 
apart, approximately 0.55 of the maximum theoret-
ical distance of 1.0.  Using the same measures, the 
distance between the INDO moderate position and 
both INDO and GOVTO extremes is approximate-
ly half of the above, or 0.27. This places the INDO 
moderate position in the center of the spectrum of 
positions between the two extremes. On the other 
hand, the language used by the GOVTO moderate 
position places them closer to the GOVTO ex-
treme. This finding is illustrated in Figure 8.  
  In this section we presented three observations 

that emerged, from the snapshot of data we col-
lected on this prototypical case and by running au-
tomated tools of metaphor and sociolinguistic 
analyses on the data.  These results were confirmed 
by subject matter experts, who were intimately 
familiar with the issue. We note that such verifica-
tion does not constitute a rigorous validation of our 
findings, the goal of this paper is to present a pos-
sible solution and path towards generalizability, 
validation is a separate issue that we may explore 
as future work.  The selection of a familiar cross-
cultural conflict allowed us to propose and test vi-
able solutions that can be adapted to work on pre-
viously unknown conflicts.  

Figure 7. Protagonist matrices shown as heat maps. The intensity of color shows greater proportion of LMs for particu-
lar Target-Source mappings. We compute cosine distances between these matrices to determine relative positions of 

protagonists. 
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6 Topical Positioning  

While the two sides of the debate use different 
metaphors to convey their views of the gun issue, it 
is not immediately clear just how far apart these 
positions are, and thus how strong or intractable 
the conflict really is. One possible way to compute 
the distance between protagonists is to use the 
method of Topical Positioning (Lin et al., 2013) 

In discourse analysis, Topical Positioning is de-
fined as the attitude a speaker (our protagonist) has 
on main topics (meso-topics) of discussion. Speak-
ers in a dialogue, when discussing issues, especial-
ly ones with some controversy, will establish their 
attitude on a topic, classified as for, against, or 
neutral/undecided. 

To establish topical positioning, we first identify 
meso-topics that are present in a debate, as dis-
cussed in Section 4.1. We then distinguish multiple 
forms in which polarization or valuation is applied 
to meso-topics in protagonists’ utterances such as 
through express advocacy or disadvocacy or via 
supporting or dissenting information, and express 
agreement or disagreement with a polarized state-
ment made in a statement by the same or another 
protagonist. We create Topical Positioning Vectors 
representing each protagonist. Table 5 shows a 
fragment of positional vectors for extreme 
GOVTO and INDO positions for five meso-topics. 
In these vectors, value in each cell represents a 
prevailing combined polarity and intensity towards 
a meso-topic. We note that meso-topics form a su-
perset of metaphorical targets as explained earlier. 

M-topics Hand  
guns firearms gun 

owners 
gun 

control 
gun 

rights 

INDO 4 5 5 0 5 

GOVTO 0 -1 0 5 -1 

Table 5. Topical Positioning vectors for extreme 
GOVTO and INDO positions in the gun debate 

 
Topical Positioning vectors can now be used to 

calculate distance between protagonists, using 
standard cosine measure. We used this method to 
compute 4-ways distances in the Gun Case: be-
tween the extreme positions on each side; between 
the moderate and extreme positions within each 
side; as well as between moderates and extremes 
across the sides and compared the distances so ob-
tained to those obtained from metaphorical matri-
ces (Section 5.3). We note that both methods 

yielded essentially identical results. The distance 
between extreme positions on INDO and GOVTO 
side appears to be very large, varying between 0.55 
and 0.58. The distances between moderates and 
between moderates and extremes are appropriately 
smaller (~0.27). The distance between moderate 
and extreme INDO places the former in the center 
between the two extremes. This result is confirmed 
by the smaller than expected distance between 
moderate and extreme GOVTO. This may suggest 
that moderate INDO (thus, the INDO side) domi-
nates the debate by effectively occupying its cen-
ter. 

7 Discussion and Open Issues 

In this paper, we presented a preliminary yet inno-
vative approach towards the understanding of cul-
tural conflict through the use of metaphors and 
sociolinguistic measures of influence. Our ap-
proach was illustrated on the analysis on a proto-
typical case centered on the U.S Gun debate. By 
casting the problem as an analysis of discourse, or 
debate between protagonists, we gain significant 
benefits – we can use established social science 
methods to draw potentially illuminating and non-
trivial insights from otherwise very complex and 
often conflicted data. We believe that the approach 
presented here can be generalized to other types of 
conflict by following the steps detailed in Section 
4. It is possible that issues with multiple, clearly 
distinct sides all aimed at clearly distinguishable 
solutions to a general issue may need to be dealt 
with as clusters or will need to be broken down 
into multiple two- or three-sided conflicts, depend-
ing upon the precise goals to be achieved. 
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Abstract 

Metaphor processing has been a heated topic 
in NLP. Cognitive properties of a word are 
important in metaphor understanding and gen-
eration. But data collected automatically tend 
to be reduced in both quantity and quality. 
This paper introduces CogBank a database of 
Chinese concepts and their associated cogni-
tive properties. The database was constructed 
using simile templates to extract millions of 
“word-property” pairs via search engine over 
the World Wide Web. A method of manual 
check and correction was then implemented, 
resulting in the current CogBank database 
which contains 232,590 “word-property” pairs. 
CogBank also provides various search and 
visualization services for observing and com-
paring associations between concepts and 
properties.  

1 Introduction 

Metaphor studies in cognitive linguistics focus on 
the mechanisms of how metaphor works. Concep-
tual Metaphor Theory summarizes the types of 
mappings from source domain to target domain 
like “Time is Money” (Lakoff & Johnson, 1980). 
Blending Theory examines how the input spaces of 
two concepts blend new spaces (Fauconnier & 
Turner, 2003). Both theories emphasize the proper-
ties of a concept, which could be profiled in meta-
phor use. For example, money has properties of 
important, valuable and soulless that will help peo-

ple to comprehend time in the metaphor. Many of 
these properties reflect common cognitive 
knowledge rather than scientific knowledge. If 
such cognitive properties can be collected and or-
ganized, it will benefit metaphor generation and 
understanding in NLP. However, manual construc-
tion of such databases could be time-consuming. In 
addition, the properties of concepts may vary from 
person to person. Money may have more than three 
properties and each property could be interpreted 
in different ways. This translates into three key 
issues to be solved: (1) How to collect as many 
concepts and properties as possible; (2) How to 
assure the properties are acceptable to native 
speakers; and, (3) How to evaluate the importance 
of the properties for a given concept. 

Chinese CogBank is a database of cognitive 
properties of Chinese words. It has 232,590 “word-
property” pairs, which consist of 82,937 words and 
100,271 properties. The data were collected via 
Baidu.com, and adjudicated manually. Conse-
quently, each “word-property” type has an associ-
ated frequency which can stand as a functional 
measure of the importance of a property. 

The rest of the paper is organized as follows. 
Section 2 briefly reviews related work on collect-
ing cognitive features. Section 3 introduces the 
construction of the Chinese CogBank. Descriptive 
statistics, search visualization tools of the database 
are presented in Sections 4 and 5. Section 6 dis-
cusses the potential applications of CogBank and 
the difficulties with respect to metaphor processing. 
Conclusions and future work are outlined in Sec-
tion 7. 
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2 Related Work 

Collecting the cognitive properties by hand can be 
tedious, time-consuming and problematic in terms 
of guaranteeing agreement between different anno-
tators. Therefore corpus and web data have been 
taken as important resources. Kintsch (2000) col-
lects noun-adjective pairs like “money-valuable” 
using Latent Semantic Analysis (LSA) from large 
corpora. Roncero et al. (2006) extracts noun-
adjective pairs using the simile template “as adjec-
tive as noun”. Using the same template, Veale & 
Hao (2007) collects English similes by querying 
Google using the nouns and adjectives in WordNet. 
Then the data contribute to a lexical metaphor 
knowledge base “sardonicus”, which contains 
about 10,000 items of “noun-adjective” pairs. 
Veale et al. (2008) collects 25,000 items consisting 
of Chinese “noun-adjective” pairs from Google 
using words in HowNet. In a similar way, Jia & Yu 
(2009) collects Chinese similes from Baidu, yield-
ing about 20,000 “noun-property” pairs.  

At this stage, collection of “concept-property” 
pairs seems to reach a bottleneck in that it becomes 
difficult to substantially increase the number of 
valid items. The store of raw data collected is mas-
sive, ordinarily amounting to millions of items. 
Obviously, stores of data this massive contain 
much noise. Consulting each word in a normal dic-
tionary would be a simple and efficient way to fil-
ter out noisy data. However the cost of such an 
approach would be that many good candidates are 
eliminated as they are not in the dictionary. Using 
a larger dictionary offers only limited improvement 
because many good candidates consist of multi-
word expressions like “as sly as jungle cat”, or 
even appear as embedded clauses such as “(Some-
one who is) as sly as a fox is cunning and experi-
enced”. Due to such difficulties, a large cognitive 
database is currently not available. 

In addition, previous implementations have giv-
en little importance to word-property frequencies. 
It is important for a metaphor processing system to 
know how strong the relationship between the con-
cept and the property. If the system must generate 
a metaphor expressing something that is white, it 
could find the most relevant concepts like snow 
and paper using collocation frequencies.  
 
 

3 Construction of the Chinese CogBank 

Like Roncero et al. (2006), Veale et al. (2008) and 
Jia & Yu (2009), we use simile templates to collect 
Chinese “word-property” items by querying the 
search engine Baidu. The lexicon items in HowNet 
are used to fill the simile templates.  

3.1 Lexical Resources 

HowNet is a structured Chinese-English bilingual 
lexical resource (Dong & Dong, 2006). Different 
from the synsets in WordNet (Miller, 1990), it de-
scribes a word by a set of structured semantic fea-
tures named “sememe”. About 2200 sememes are 
used to define 95,000 Chinese words and 85,000 
English words in HowNet (ver. 2007). For exam-
ple, the Chinese noun 猪(zhu) is translated to hog, 

pig and swine in English. The definition of 猪(zhu) 

is the sememe livestock|牲畜 . A sememe is an 
English-Chinese combined label and is organized 
in a hierarchy. livestock|牲畜  has its hypernym 

sememe animal|兽 and higher hypernym sememes 

AnimalHuman|动物, animate|生物, etc. 

3.2 Data Collection 

In Chinese, there are three simile templates which 
can be used to obtain the “word-property” pairs: 
“像 (as) + NOUN + 一样 (same)”, “像 (as) + 

VERB + 一样 (same)” and “像 (as) + 一样 (same) 
+ ADJ”. We populated these with 51,020 nouns, 
27,901 verbs and 12,252 adjectives from HowNet 
to query Baidu (www.baidu.com). Different from 
Veale et al. (2008), we included verbs because 
verbs as well as nouns have concept properties. For 
example, “抽筋(cramp)” is a verb in Chinese. It 

has the property “疼 (painful)”, which refers to 
people’s experience in a cramp.  

We submit 91,173 queries to Baidu, allowing up 
to 100 returned results for each query. Then 
1,258,430 types (5,637,500 tokens) of “word-
adjective” pairs are collected. Within such a large 
data set there will be many incoherent pairs. We 
filter out such pairs automatically via the nouns, 
verbs and adjectives in HowNet, resulting in a re-
maining 24,240 pairs. The words cover 6,022 
words in HowNet, and the properties cover 3,539 
words in HowNet. The high quality of these re-
maining pairs provides the potential for interesting 
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results. With the frequency information, we can 
see the top 10 most frequent pairs that fit the intui-
tion of Chinese native speakers (see Table 1).  

 
ID Word Property Freq 

1 苹果 apple 时尚 fashionable 1445 

2 呼吸 breath 自然 natural 758 

3 晨曦 sun rise 朝气蓬勃 spirited 750 

4 纸 paper 薄 thin 660 

5 雨点 rain drop 密集 dense 557 

6 自由 freedom 美丽 beautiful 543 

7 雪 snow 白 white 521 

8 花儿 flower 美丽 beautiful 497 

9 妖精 spirit 温柔 gentle 466 

10 大海 sea 深 deep 402 

Table 1. Top10 Most Frequent Word-Property Pairs 
 
It might be surprising to see that “苹果 apple-时

尚 fashionable” ranks top of all pairs. However, it 
makes sense because Apple (the brand) products 
are popular in China. “妖精 spirit” often refers to a 
young female demon/spirit who seduces people in 
Chinese fairy tales. The remaining 8 words repre-
sent ordinary things people experience in everyday 
life.  

3.3 Manual Data Check 

It is painful that in 5 million raw data only 24,240 
pairs are left when filtered by HowNet. As stated 
in Section 2, we find a more productive way to 
increase the quantity of the database is to manually 
check the original data item by item. 
To that end, we develop a set of guidelines for ad-

judication. We obtain four types of pairs from the 
sentences in the raw data. First, phrases like “as 
lazy as pig” contain good pairs, which we tagged 
as NORMAL. Second, pairs from phrases like “as 
valuable as ash” are tagged as IRONY. Third, pairs 
from sentences like “as soon as possible”, “as fast 
as I can” are tagged as ELSE. The last type is 
ERROR in sentences like “as lazy as…”. 

After the manual correction, 843,086 pairs are 
left. As shown in Table 2, 232,590 are NORMAL 
items, 1,351 are IRONY. The rate of IRONY is 
much lower than the English data collected by 
Veale & Hao (2007). The reason is not clear yet. It 
may due to the different simile templates used in 
two languages. The other two categories ELSE and 
ERROR are uninformative for present purposes. 

But we find some important phenomena in the re-
sults that will be introduced in section 4.2. 

 
Type Num Example 

NORMAL 232,590 as lazy as pig 
IRONY 1351 as valuable as ash 
ELSE 389639 as soon as possible 

ERROR 219506 as lazy as… 
SUM 843,086  

Table 2. Four Kinds of Word-Property Pairs 

4 Statistics 

We find the results after adjudication to be better 
in both quality and quantity, generating 232,590 
NORMAL pairs as the basis of the Chinese Cog-
Bank. In this section, we discuss the differences 
between the method of adjudication and automatic 
filtering of the data. We also present the descrip-
tive statistics of CogBank. 

4.1 Statistics of CogBank 

Chinese CogBank has 232,590 “word-property” 
pairs, which consists of 82,937 words and 100,271 
properties. The words cover 7,910 HowNet words, 
and the properties cover 4,376 HowNet words. 
This indicates that many more words and proper-
ties are gathered. Here we examine how much the 
results change compared to the filtered data in Sec-
tion 3.2. Table 3 shows the top10 most frequent 
word-property pairs in CogBank. The result is not 
substantially different. The first item has changed 
to “freedom-beautiful”, but “apple-fashionable” 
still ranks high in the database. Notably, the most 
frequent pairs are quite similar across automatic 
filtering and manual data check. In other words, if 
one only cares about the most frequent items from 
the web, automatic filtering is a fast and accurate 
method.  

ID Word Property Freq 

1 自由 freedom 美丽 beautiful 3285 

2 铁轨 rail track 长 long 2333 

3 纸 paper 薄 thin 1828 

4 天使 angel 美丽 beautiful 1766 

5 苹果 apple 时尚 fashionable 1764 

6 妖精 spirit 温柔 gentle 1565 

7 阳光 sunlight 温暖 warm 1389 

8 梦 dream 自由 free 1384 

9 水晶 crystal 透明 clear 1336 

10 雪 snow 白 white 1210 

Table 3. Top10 Most Frequent Word-Property Pairs 
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Next we explore what the most frequent words 
and properties are in Chinese CogBank. This is 
important as we could learn what the most com-
mon entities are that people tend to use as vehicles 
in similes, and the most common properties people 
prefer to express in everyday life. As shown in Ta-
ble 4, nouns like flower, man, water, child, human, 
cat, angel, wolf and sunshine rank the highest in 
the database. These words are quite common in 
everyday life and they have hundreds of properties. 
But the top 10 properties of each word dominate 
more than half the occurrences of these words 
when employed in a simile. This indicates that 
people always rely more heavily on a word’s sali-
ent properties to form a simile expression. 

 

Word 
# of 
Pros 

Freq Top 10 Properties 

花儿 
flower 

254 16991 

绽放 bloom_7809,开放 bloom_1729,美

丽 beautiful_1202, 红 red_965, 盛 开

bloom_681,美 beautiful/pretty_591,灿

烂 effulgent_561, 开 bloom_436, 香

sweet_278,简单 simple_220 

花 
flower 

268 16602 

绽放 bloom_6419,盛开 bloom_5375,美

丽 beautiful_864, 美 beautiful/pretty 

_509, 开 bloom_435, 灿 烂

effulgent_391, 开 放 bloom_353, 多

numerous_148, 飘 舞 dance in 

wind_125,漂亮 beautiful_92 

男人 
man 

758 14708 

战斗 fight_8771,奋斗 strive_975,拼命

desperate_234,坚强 strong_213,踢球

play football_130, 挑 pick_115, 活着

live_110,打球 play ball_105,裸上身

half naked_102,恋爱 in love_95 

水 
water 

884 11837 

流 flow_1786,流淌 flowing_697,流动

flow_524, 稀 dilute_380, 流 过

flowing_323, 透 明 limpid_245, 温 柔

gentle_183, 清 澈 limpid_176, 清 淡

mild_170,泼 splash_168 

孩子
child 

1642 10866 

快 乐 happy_420, 哭 cry_352, 天 真

childlike/innocent_332, 无 助

helpless_233,说真话 tell the truth_229,

哭泣 cry/weep_216,好奇 curious_197,

兴奋 excited_172,笑 smile_167,开心
happy_166 

人 
human 

1482 9468 

活着 live_609,穿衣服 wear clothe_430,

生活 live_336,思考 think_316,直立行

走 bipedalism/walk upright_315, 活

live_310, 说 话 speak/talk_284, 走 路

walk_222, 站 立 stand_188, 站
stand_135 

猫 
cat 

828 6989 

蜷缩 curl_256,可爱 cute/lovely147,蹭

rub_137, 慵 懒 lazy_136, 温 顺

meek_133,无声无息 silent/quiet_126,

贴 心 intimate_116, 优 雅

elegant/graceful_113, 懒 lazy_112, 蜷
curl_109  

天使 
angel 

291 6461 堕落 fall_1902,美丽 beautiful_1766,守

护 guard_302, 飞 翔 fly_301, 可 爱

lovely_296,飞 fly_241,纯洁 pure_188,

坠落 fall_72,美好 beautiful_67,漂亮
beautiful_59 

狼 
wolf 

493 6062 

嚎叫 howl_792,凶狠 fierce_699,战斗

fight_450, 思 考 think_310, 嚎

howl_262, 扑 rush/attack_143, 阴 狠

baleful_142,牢牢守住目标 hold the 

target_136,叫 howl_102,恶 fierce_99 

阳光 
sun-
shine 

286 4987 

温 暖 warm_1389, 灿 烂

bright/shining_986,包围 surround_562,

照耀 shine_296, 普照 shine_148, 洒

shine_136,明媚 sunny/shining_127,耀

眼 radiant/glare_106,透明 clear_101,照

亮 shine_63 

Table 4. Top 10 Most Frequent Words in CogBank 
 
Table 5 shows the most frequent properties in 

CogBank: beautiful, bloom, fight, fly, convenient, warm, 
and painful. Each property is associated with hundreds 
of words. But the frequency of the top 10 concept words 
occupies more than half the occurrences. This indicates 
that people is tend to use the same kinds of vehicles to 
form a simile expression. 

 

Prop 
# of 

Words 
Freq Top 10 Words 

美丽 
beauti-

ful 
816 17383 

自由 free_3285,天使 angel_1766,花

儿 flower_1202,花 flower_864,美玉

jade_843,嫦娥 Chang E_795,天神

god_342,凤凰羽毛 phoenix feath-

er_283,彩虹 rainbow_260,首都金边
Phnom Penh_242  

绽放 
bloom 

152 16150 

花儿 flower_7809,花 flower_6419,花

朵 bloom_269,鲜花 flower_235,莲花

lotus_149, 玫 瑰 rose_108, 昙 花

epiphyllum_106, 蓝 玫 瑰 blue 

rose_85,烟花 fireworks_76,玫瑰花
rose_57 

战斗 
fight 

217 13536 

男人 man_8771,英雄 hero_547,艾薇

儿 Avril_473, 狼 wolf_450, 战 士

soldier_295, 熊 bear_229, 爷 们

menfolk_145,保尔 Pual_118,斯巴达

克 Spartacus_108,勇士 warrior_99 

飞 
fly 

375 12409 

鸡 毛 chicken feather_2298, 子 弹

bullet_1427, 蝴 蝶 butterfly_890, 鸟

bird_769,小鸟 birdie/dickey_657,箭

arrow_522, 鸟 儿 bird_453, 风 筝

kite_380,叶子 leaf/foliage_372,雪片
snowflake_322 

简单 
simple 

916 8133 

涂 指 甲 油 nail polish_757, 火 焰

flame_328,呼吸 breathing_231,花儿

flower_220, 打 开 冰 箱 open the 

fridge_200, 吃 饭 eat_188, 拉 屎

shit_138,骑单车 cycling_131,遛狗

walk the dog_118,孩子 child/kid_115 

盛开 
bloom 

68 6970 

花 flower_5375,花儿 flower_681,鲜

花 flower_259,蔷薇 rose_105,花朵

bloom_96,烟花 fireworks_72,向日葵

sunflower_32, 桃 花 peach blos-
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som_30, 樱 花 sakura_26, 恶 之 花
flowers of evil_24 

方便 
con-

venien
t 

625 5988 

存款 deposit_388,电脑登录 login by 

computer_331, 控 制 电 灯 control 

lamps_188,地铁 metro_143,取存款

withdraw_136,加油 refuel_131,取款

withdraw_129, 公 交 bus_122, 家

home_118,公交车 bus_96 

温暖 
warm 

289 5374 

阳 光 sunshine/sunlight_1389, 家

home_1207, 太 阳 sun_535, 春 天

spring_492,春风 spring breeze_132,

火炕 heated kang_109,爱情 love_98,

火 fire_77, 家 庭 family_65, 拥 抱
embrace/hug_61 

痛 
painful 

479 5142 

针 扎 needle hit_1294, 抽 筋

cramp_453,针刺 acupuncture_414,痛

经 dysmenorrhea_314,刀割 cut with 

knife_284,散了架 fall apart_140,来

月经 menstruate_102,死 die_98,火烧

burned_80,抽经 cramp_63 

飞翔 
fly 

129 5014 

鸟 bird_1290,鸟儿 bird_883,落叶

defoliation_505, 鹰 eagle_410, 小鸟

birdie/dickey_315,天使 angel_301,蝴

蝶 butterfly_97,飞鸟 bird_89,雄鹰

eagle_70,风筝 kite_70 

Table 5. Top 10 Most Frequent Properties in CogBank 

4.2 Valuable Information from Uninforma-
tive Data 

The manual data check drops many uninformative 
data which on the surface seem to possess no value, 
for example, “as stupid as you”, “as cheap as be-
fore”. The pronouns and time expressions have to 
be removed from CogBank. But through observing 
all the pronouns and time expressions through 
manual data check, we find something useful in 
Chinese sentences “X 像 (as) Y 一样 (same) A” (X 
is as A as Y) where Y is the reference object. As 
Indicated in Table 6, people prefer to use 我(I) as 
the reference object rather than other pronouns.  

Pronoun # of Props Freq 

我 I 21962 54353 

你 you 8422 20056 

他 he 5678 12908 

他们 they 3829 10315 

她 she 2915 6576 

我们 we 2583 5845 

自己 self 1268 2537 

别人 somebody else 1128 2291 

其他人 others 1117 2437 

你们 you pl. 1044 2124 

它 it 519 1234 

它们 they[-animate] 184 381 

Table 6. Most Frequent Pronouns in Raw Data 

People also prefer to reference recurring and concur-
rent time frames over past or future ones. As shown in 
Table 7, usual (往常,平时) occurs more than past and 

before, while future(未来) occurs with even lower fre-
quencies. 

 
Rank Time # of Props Freq 

1 往常 usual 18077 42895 
2 现在 now 2320 5837 
3 以往 before 2264 4563 
4 从前 before 2263 4881 
5 平时 usual 1705 3776 
6 上次 last time 1584 3837 
7 过去 past 1434 3431 
8 今天 today 1124 2175 
9 往年 years before 973 2179 
10 往日 days before 775 1767 
32 未来 future 19 557 
37 明天 tomorrow 13 364 

Table 7. Most Frequent Time Words in Raw Data 
 
The usage patterns showing much higher fre-

quencies for the pronoun我(I) and time expression 

往常, 平时(usual) suggest that people prefer to use 
their experienced everyday life knowledge to make 
simile or contrast sentences. This finding supports 
the Embodied Cognition Philosophy (Lakoff & 
Johnson 1980; Lakoff 2008), which hypothesizes 
that much of our conceptual structure is based on 
knowledge formed through physical and emotional 
experience.  

Work on this kind of knowledge is still in its 
preliminary stage, and presents the potential to ad-
vance smarter automatic metaphor generation and 
QA systems. 

5 Online Search and Visualization 

The web version1 of Chinese CogBank provides 
basic and visualized searches. Users can search for 
the properties of a particular concept or the con-
cepts associated with a specific property. We also 
developed a search service for English users. An 
English word like snow will be translated into Chi-
nese first with HowNet, and then the system will 
show its properties with English translations.  

The above search services are provided in ordi-
nary table form. We also use the Visualization 

                                                           
1 http://cognitivebase.com/ 
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Toolkit D3 2  (Bostock, 2011) to draw dynamic 
graphs for the search results. The functions are 
listed as follows. 
(1) Generate the graph of properties for a given 

word. Or generate the graph of words for a 
given property. 

(2) Generate a graph comparing properties for 
given words. Or generate a graph comparing 
words for given properties. 

(3) Generate the extended graph of properties for 
a given word. The graph is extended by the 
words for the properties. Or generate the ex-
tended graph of words for a given property. 
The graph is extended by the properties for 
the words. 

(4) Generate the graph of properties for a given 
word with sememes in HowNet. 

(5) Generate the graph of properties for a given 
English word with translation by HowNet and 
extended by the sememes in HowNet. 

Appendixes A-E illustrate the visualization 
graphs. Due to the copyright of HowNet, functions 
(4) and (5) have not been made available online. 
Many more visualization functions are currently 
under development. We hope these online services 
will help linguistic researchers and second lan-
guage learners with their studies. 

6 Discussion 

Veale (2014) argues that such knowledge is useful 
for metaphor, irony, humor processing and senti-
ment extraction. The cognitive database with a 
large store of properties will be useful for both lin-
guistics and NLP. Nevertheless, we still face many 
challenges in developing a metaphor processing 
system. We now discuss some of the problems in 
using such a resource in NLP. 

(1) Cognitive properties cannot be used directly 
in simile and irony generation. It seems straight 
forwards but there are many complicated aspects 
of simile sentence generation. For example, if we 
want to generate a simile sentence to express that 
someone is very tall, we could simply query Cog-
Bank for the words having tall properties. Then we 
find words like mountain, hill, tree, giraffe, etc. 
We may say “Tom is as tall as a giraffe”. But it’s 
odd to say “Tom is as tall as a mountain” or “Tom 
is taller than a mountain” unless in fairy tales. 

                                                           
2 http://d3js.org/ 

However, when we want to express some building 
is very tall, we would choose mountain and hill but 
not giraffe. If we say “the building is as high as a 
giraffe”, it is more likely to be an ironic statement. 
So it’s obvious that the tenor in the sentence will 
influence or restrict the choice of vehicle. In simile 
generation, scientific world knowledge seems in-
dispensable. 

(2) Cognitive properties alone are not sufficient 
in metaphor understanding. If one says “Tom is a 
pig”, we have to indicate whether it is a metaphor 
or not. If it is, the cognitive properties will supply 
the candidate ground of the metaphor. The problem 
is that there are so many properties that the ground 
may vary in different contexts. Sometimes it is 
“greedy”, and sometimes it is “fat”. Reconciling 
such ambiguity and contextual dependency re-
quires a dynamic model for the context. 

To sum up, there is still much work to be done 
before we are able to completely integrate cogni-
tive word knowledge in language processing sys-
tems. 

7 Conclusion and Future Work  

In this paper, we introduced the construction of 
Chinese CogBank which contains 232,590 items of 
“word-property” pairs. Querying search engines 
with simile templates is a fast and efficient way to 
obtain a large number of candidate pairs. But to 
increase the quantity and quality of the database, 
manual check and adjudication are necessary. Us-
ing CogBank we identified interesting preferences 
people exhibit during production of similes in nat-
ural language. We also established multiple online 
search and visualization services for public use.  

In the future, we will make further investigate of 
the CogBank’s raw and labelled data. Second, we 
will compare the cognitive features across lan-
guages. Third, we will try to adapt CogBank for 
deployment in Chinese metaphor processing sys-
tems. 
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Appendix 

A. The graph of properties of 猪(pig). 
 

 
The word 猪(pig) is in the center surrounded by its properties.  

The width of the line indicates the frenqucies of the “word-property” pairs. 
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B. The comparison graph of 猪(pig), 猫(cat) and 狗(dog). 
 

 
 

The 猪(pig), 猫(cat) and 狗(dog) share some properties. 

84



C. The visualized graph of 猪(pig) with extensions by the propeties of 猪(pig). 
 

 
 

The 猪(pig) has many properties(yellow nodes), and these yellow nodes have their words(orange 

nodes). So the extendted orange nodes share more properites with 猪(pig) appear closer to the center.  
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D. The visualized graph of 猪(pig) with bilingual sememe labels from HowNet. 

 
The word 猪(pig) is in the center surrounded by its properties. Each property is linked to a bilingual 

sememe in HowNet (blue nodes). 
 
E. The comparison graph of “sheep” with translation “羊” extended by HowNet’s sememes. 
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Abstract 

Metaphor is a fundamentally antagonistic 

way of viewing and describing the world. 

Metaphors ask us to see what is not there, 

so as to remake the world to our own lik-

ing and to suit our own lexicons. But if 

metaphors clash with the world as it is, 

they can also clash with each other. Each 

metaphor represents a stance from which 

to view a topic, and though some stances 

are mutually compatible, many more are 

naturally opposed to each other. So while 

we cringe at a clumsily mixed metaphor, 

there is real value to be had from a deliber-

ate opposition of conceptual metaphors. 

Such contrasts reveal the limits of a partic-

ular worldview, and allow us to extract 

humorous insight from each opposition. 

We present here an automatic approach to 

the framing of antagonistic metaphors, 

embodied in a metaphor-generating Twit-

terbot named @MetaphorMagnet. 

1 Two-Fisted Metaphors 

The imagination often takes flight on the wings of 

metaphor. For metaphor allows us to make the fan-

tastical seem real and the banal seem fresh and 

newly interesting. For example, consider this im-

aginary scenario, as packaged in a pithy tweet: 

What if ‪#TheXMen were real? ‪#NoamChomsky 

could be its ‪#ProfessorCharlesXavier: smart yet 

condescending, and scowling too 

This counterfactual injects some much-needed 

pizzazz into the banalities of modern politics and 

intellectual posturing, by reimagining a famously 

dour academic activist as the real-world equivalent 

of a much-loved comic-book character. This coun-

terfactual is, at its heart, a metaphor: we can con-

struct a bridge from Chomsky to Xavier only be-

cause we believe them to share deep similarities. If 

the metaphor implies much more than this set of 

properties actually conveys, this is because it also 

sparks the imagination of its audience. We are lead 

to imagine Chomsky as the cerebral hero of a bat-

tle between good and evil, in which he leads his 

own academic version of the X-Men, loyal stu-

dents with a zealous sense of mission. 

Now consider this follow-up tweet, which is de-

signed to further stoke a reader’s imagination: 

If #NoamChomsky is just like #Professor-

CharlesXavier, smart yet condescending, then who 

in #TheXMen is #GeorgeLakoff most like? 

Metaphors are systematic, and lead us to project 

coherent systems of relational structure from one 

domain to another (see Lakoff & Johnson, 1980; 

Gentner et al., 1989). In this way we invent hybrid 

worlds that combine elements of reality and fanta-

sy, in which each mapping, such as Chomsky to 

Xavier, can prompt others, such as Lakoff to his 

mutant counterpart (Magneto, perhaps?). 

The real world is not a comic book, and there is 

something mischievously silly about describing a 

serious scholar and activist as a fictional creation 

with super-powers. Yet metaphors work well as 

jokes when they make a virtue of the differences 

that separate ideas. As Pollio (1996) put it, “split 

reference yields humour if the joined items (or the 

act joining them) emphasize the boundary or line 

separating them; split reference yields metaphor if 

the boundary between the joined items (or the act 

joining them) is obliterated and the two items fuse 

to form a single entity. So by dialing up the antag-

onism – between domains, between reality and 
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fantasy, or between people and ideas – a metaphor 

can yield a witty, eye-catching and thought-

provoking text that is worth sharing on a platform 

such as Twitter. This point is worth stressing, as 

the above tweets were generated by an automated 

Twitterbot, named @MetaphorMagnet, whose an-

tagonism-stoking generative processes are the sub-

ject of this paper. 

 If metaphor can give you wings, it can also 

give you fists with which to pummel a contrary 

point of view. Every conceptual metaphor offers a 

potted world-view that encourages us to reason in 

certain ways, and thus speak in related ways, about 

our experiences. But like proverbs, or indeed ideo-

logies, we can often pick and choose the ones that 

suit us best. Reasonable people can disagree about 

how best to categorize a situation, as no metaphor 

is ever objectively right or true, just potentially apt 

in a particular context. Thus, thinkers on different 

ends of the political spectrum offer antagonistic 

metaphors to frame the same goals, needs or prob-

lems, and by advancing their own conceptual 

frames they actively seek to undermine those of 

their opponents. Just as every proverb has a con-

verse that is equally compelling (e.g., many hands 

make light work vs. too many cooks spoil the 

broth), there is conceptual sport to be had in find-

ing the most apt anti-metaphor for a given figura-

tive viewpoint. The following tweet thus frames 

two antagonistic views of love:   

To some beatniks, love is a sparkling rainbow. To 

others, it is a flat bed. 

  ‪#Love=‪#Rainbow  ‪#Love=‪#Bed 

This tweet nicely captures the antagonism that ex-

ists between competing perspectives on #Love. 

The first is expansive, and views love as a many-

splendored thing; the second is more reductive, 

and views love as just a means to an end: sex. By 

attributing these views to different members of the 

same category of person – beatniks – the tweet 

suggests that this conflict of ideas is also a conflict 

between otherwise similar people. 

 This paper explores the automated generation 

of antagonistic metaphors. By elevating simple 

contrasts into a contest of ideas, @Metaphor Mag-

net creates metaphors that also work as witty 

provocations to think differently, or at least to ap-

preciate the limits of received wisdom. This auto-

mated system seeks its inspiration in attested usage 

data and uses a variety of knowledge-rich services 

to produce elaborate, well-reasoned metaphors that 

hinge upon meaningful contrasts. In the sections 

that follow, we describe how this harmonious mar-

riage of explicit knowledge and raw usage data is 

used to sow disharmony at the level of ideas and 

package the results as tweets. 

2 Competing Points of View 

A divergent problem is one that admits many po-

tential solutions, each of them valid in its own way 

(Guilford, 1967). Though one may be privileged 

over others by its conventionality – e.g. the use of 

a brick as a building block, or of a paper clip to 

bind papers – there is no single, objectively cor-

rect answer. Conversely, a convergent problem is 

one that admits just one objectively-acceptable 

correct answer, relative to which all others are 

seen as deficient or just plain wrong. By this 

standard, metaphor is a divergent approach to the 

conveyance of meaning, while literal language – to 

the extent that any text can be truly literal – is con-

siderably more convergent. 

 A cornerstone of divergent thinking is diver-

gent categorization: this allows us to categorize a 

familiar object or idea in atypical ways that permit 

new and unusual uses for it (Torrance, 1980). Such 

categorization is, in turn, central to the act of fig-

urative description. Consider the metaphor divorce 

is war, whose interpretation requires us to find a 

non-trivial category – one a good deal more specif-

ic than event – to embrace these very different-

seeming concepts (Glucksberg, 1998). To see how 

people categorize, we need only see how they 

speak. On the Web, we see descriptions of both 

war and of divorce, in separate texts, as traumatic 

events, serious conflicts, immoral acts, and as bad 

things in general. Such descriptions often come in 

standardized linguistic containers, such as the 

“A_Bs such as Cs” pattern of Hearst (1992), in-

stances of which are easily harvested from the 

Web. The Thesaurus Rex Web service of Veale & 

Li (2013) offers up its resulting system of Web-

harvested categorizations as a public service that 

can be exploited by 3
rd

-party metaphor systems. 

Thesaurus Rex can be used for the interpretation of 

metaphors by permitting another system to explore 

specific unifying categories for distant ideas, such 

as divorce & war, but it can also be used in the 

generation of metaphors. So if looking for a meta-
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phor for creativity, Thesaurus Rex suggests the 

category special ability, leading a metaphor gener-

ator to consider other members of this category as 

possible vehicles, such as x-ray vision, superior 

strength, magic or prophecy. @MetaphorMagnet 

thus uses Thesaurus Rex to package diverse ideas 

into a single tweet, as in: 

 ‪#Take5 of the ‪#Shallowest things:  

1. Toilet Bowls 

2. Rock Stars 

3. Cookie Sheets 

4. Soup Bowls 

5. Rush Limbaugh 

#TheRepublicans  

Divergent thinking typically arises when we go 

off-script to imagine unconventional possibilities 

for a familiar object or idea. Raskin (1985) puts 

the concept of a script at the centre of his computa-

tional theory of jokes, the Semantic Script Theory 

of Humour (SSTH), arguing that most joke narra-

tives are compatible with two competing scripts at 

once. The primary script, which listeners are lulled 

into applying based on a normative reading of a 

narrative, is activated as the result of convergent 

thinking; the secondary script, which the joker 

downplays at first and which listeners only per-

ceive when a big “reveal” is delivered at the end, 

is a result of divergent thinking and an ability to 

find novel uses for familiar situations. Metaphors 

rely on categories the way jokes rely on scripts. 

Thus, while the category immoral act will embrace 

acts that are clearly immoral, such as murder, tor-

ture, bribery and fraud, in the right circumstances 

it can also be used to embrace the outlier ideas 

divorce, drug use and even dancing.  

 Nonetheless, the closest equivalent to a script 

in metaphor is the Conceptual Metaphor (CM). 

Conceptual Metaphors, as described in Lakoff & 

Johnson (1980), are the cognitive deep structures 

that underpin whole families of related linguistic 

metaphors. The Life is a Journey CM, for exam-

ple, is the fountainhead of figures of speech such 

as “go off the rails”, “hit the skids”, “crash and 

burn”, “smooth sailing” and “on the rocks.” So 

just as trips to many kinds of restaurant can all be 

understood using a generic Restaurant script (i.e. 

enter-sit-order-eat-pay-leave), a CM such as Life 

is a Journey facilitates a generic level of reasoning 

about life’s events. And just as a script has slots 

for various roles, props and locations, a CM has its 

own schematic structure with slots to fill, such as 

Source, Path, Goal and Vehicle. A CM such as 

Life is a Journey thus allows us to impose the 

schematic structure of a Journey onto our mental 

structure of a Life, to understand Life as something 

with a starting point, a destination, a path to follow 

and a means of conveyance. 

Carbonell (1981), Martin (1990) and Barnden 

(2008) each build and exploit an explicit represen-

tation of conceptual metaphors, while Mason 

(2004) uses statistical methods to extract conven-

tional metaphors – CMs that are so entrenched in 

the way we speak that their uses in language can 

often seem literal – from text corpora. Shutova 

(2010) uses statistical clustering to identify possi-

ble target ideas – such as Democracy and Mar-

riage – for a given source idea such as Mechanism. 

This allows her system to recognize “fix a mar-

riage” and “the functioning of democracy” (or vice 

versa) as figurative uses of a Mechanism schema 

because they each use verbs that typically take 

mechanisms as their objects. But whether one 

views CMs as real cognitive structures or as useful 

statistical generalizations, CMs serve as script-like 

bundles of norms and roles that shape the genera-

tion and interpretation of metaphors.  

In any case, CMs are so often paraphrased in the 

metaphor literature using copula statements of the 

form X is a Y that candidate CMs are easily har-

vested from a source of Web n-grams, not just be-

cause the metaphor literature is itself part of the 

Web, but because lay speakers have over-used 

many of these forms to the point of cliché. So the 

Google n-grams (Brants & Franz, 2006) is not just 

a source of CM paraphrases such as “Life is a 

Journey” (freq=12,688) but of colorful variations 

on these themes as well, such as “Life is a High-

way” (freq=2,443), “Life is a Rollercoaster” 

(freq=3,803), “Life is a Train” (freq=188), “Life is 

a Maze” (freq = 180), “Life is a Pilgrimage” 

(freq=178) and “Life is a River” (freq=119). If one 

doubts that metaphor is a divergent phenomenon, 

one need only look at the Google n-grams, which 

attests that people also speak as though “Life is a 

Game” (freq=8,763), “Life is a Circus” 

(freq=598), “Life is a Banquet” (freq=102), and 

even that “Life is a Sitcom” (freq=180). 

These short linguistic expressions typically sit 

on the figurative continuum somewhere between 

proverbs and clichés, as such phrases must have a 

minimum Web frequency of 40 to ever find their 
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way into the Google n-grams. Like clichés, these 

phrases crystalize a wealth of received wisdom, 

but just like proverbs they offer just one potted 

view on a topic, one that is easily countered by an 

apt choice of counter-proverb or anti-metaphor, as 

we shall show in coming sections. 

3 Grudge Matches 

Google 4-grams are a rich source of copula meta-

phors such as “Life is an Adventure” (freq= 1,317) 

and “Life is an Illusion” (freq=95), while the 3-

grams also offer up gems such as “Life is Rubbish” 

(freq=8,489), “Life is Love” (freq=889) and “Life 

is War” (freq=44,490). Many of these n-grams 

give linguistic form to established CMs, but many 

more occupy a questionable area between resonant 

metaphor and random, overheard phrase. So a 

computational system must exercise  careful selec-

tivity in deciding which n-grams are worthy of 

elaboration into a novel linguistic form and which 

are best discarded as unreliable noise.   

A good starting point is affect, as those copula 

n-grams that assert the identity of polarized ideas 

with antagonistic sentiments, such as faith and ag-

gression, make for provocative metaphors. So con-

sider the 4-gram “faith is an aggression” 

(freq=44), whose frequency is high enough to sug-

gest it is well-formed, but low enough to suggest it 

resides in the long-tail of public opinion. Most 

sentiment lexica will view faith as a strong posi-

tive idea and aggression as a strong negative, so 

these ideas make for a bold juxtaposition, as pack-

aged in this tweet from @MetaphorMagnet: 

Remember when faiths were practiced by kind 

priests? Now, faith is an aggression that only un-

kind aggressors exhibit. 

Notice that the original motivating 4-gram “faith is 

an aggression” sits at the centre of the tweet. 

@MetaphorMagnet seeks its inspiration from the 

Google n-grams, to find some interesting snippet 

of text that may, with reasoned elaboration, blos-

som into a fuller form that is worthy of tweeting. 

Viewed in this way, an n-grams database is like a 

crowded railway station, buzzing with fleeting 

morsels of overheard conversations. When one’s 

interest is finally piqued by a particular fragment, 

one has no choice but to complete it oneself. 

 Yet reasoned elaboration demands knowledge 

over which a system can reason, and the tweet 

above showcases several pieces of stereotypical 

knowledge: that priests are often kind and practice 

faiths, while aggressors are often unkind and ex-

hibit aggression. Knowledge of stereotypical prop-

erties is sourced as needed from Thesaurus Rex 

and from a database of typical associations mined 

on the Web by Veale & Hao (2007), while rela-

tional knowledge – linking e.g. priests to their 

faiths via specific actions – is sourced from yet 

another public Web service, Metaphor Eyes, as 

presented in Veale & Li (2011). The relational tri-

ples provided by Metaphor Eyes, mined from WH-

questions commonly found in Web query logs 

(e.g. “why do priests wear white collars?”), can 

also be used to generate simple analogies, though 

the most provocative analogies are often antago-

nistic disanalogies. Consider an analogical tweet 

that @MetaphorMagnet tags as an #irony: 

‪#Irony: When some anglers use "pointed" hooks 

the way salespersons use pointless gimmicks. 

 ‪#Angler=‪#Salesperson ‪#Hook=‪#Gimmick 

Each of @MetaphorMagnet’s tweets strives for a 

balance of similarity and dissimilarity. The analog-

ical similarity here derives from a parallelism in 

the action of two agents – each use something – 

while the dissimilarity derives from a specific con-

trast between the objects so used. Though the con-

trast of pointed and pointless is mere wordplay, it 

is may be enough to spark more profound process-

es of meaning construction in the reader. To spur 

the reader into engaging these processes, the sys-

tem explicitly hashtags the tweet as ironic, and 

puts the positive side of the contrast, pointed, in 

scare quotes. The reader is thus prompted to view 

the dissimilarity as merely superficial, and to read 

a deeper meaning into what is essentially a super-

ficial similarity. The reader, if not the system, is 

left with the image of a bad fisherman, for whom 

pointed hooks are just pointless gimmicks. The use 

of ironic scare quotes to signal fakeness or insin-

cerity is made more explicit in this tweet: 

#Irony: When some jewelers sell "valuable" di-

amonds the way tinkers sell valueless junk. #Jew-

eler=#Tinker #Diamond=#Junk 

So @MetaphorMagnet strives to sow antagonism 

even in the presence of unifying similarity, by for 

example, choosing to mold this similarity into the 

most negative comparisons. Consider another of 

the system’s rendering strategies in this tweet: 
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Tourist. noun. A creep who would rather enjoy 

bizarre excursions than bizarre perversions. 

 #Tourist= #Creep 

Once again the similarity here hinges on a rather 

generic shared relationship: tourists enjoy excur-

sions and creeps enjoy perversions. The contrast is 

primarily one of affect: tourist has mildly positive 

sentiment as a lexical concept, while creep has an 

especially strong negative sentiment. And though 

bizarre is a stereotypical property of the concept 

perversion, the Google 2-gram “bizarre perver-

sion” (freq=111) attests that speakers often apply 

the property bizarre to excursions too.  

 A system may go further and use hashtags to 

imply a similarity that borders on identity, as in: 

 Would you rather be: 

 1. A guardian supervising an innocent child? 

 2. A jailer supervising a culpable offender? 

 ‪#Guardian=‪#Jailer 

So while antagonistic views on the world stress the 

conflict between two opposing situations, we can 

provoke deeper antagonism still by asserting these 

situations to be almost identical beneath the sur-

face. Yet the screenwriter’s maxim of show,‪don’t 

tell applies as much to tweets as it does to films, so 

it helps if we can do more than just tell of identity 

and actually show near-identicality in action. This 

requires some imagination, and perhaps more 

space than a single tweet will permit. Fortunately, 

bots are not limited to single tweets, and can issue 

two in quick succession if need be: 

When it comes to the devotees they lead, some 

swamis can be far from mellow and can even  

seem authoritarian. 

‪#Swami=‪#Warlord    ‪#Devotee=‪#Rebel 

Authoritarian swamis lead hardened devotees the 

way warlords lead rebels.  

‪#Swami=‪#Warlord ‪    #Devotee=‪#Rebel 

So tweets, like movies, can have sequels too. 

4 Counter-Punches and Anti-Metaphors 

Metaphors are underspecified and often highly 

context-dependent, and so many of the potential 

CMs that are harvested from the Google n-grams 

are not amenable to computational interpretation. 

Indeed, many – though suggestive – are not truly 

CMs in any accepted sense, and the 4-gram “love 

is a bed” is more Conceptual Metonymy than 

Conceptual Metaphor, a conflation of bed with sex 

that underpins euphemisms such as “in the sack”, 

“between the sheets” and “sleep together”. A CM-

like paraphrase will always mean more to humans 

who experience the world first-hand than to ma-

chines with basic symbolic representations. So a 

possible CM in isolation, such as the 4-gram “idea 

is a gift” (freq=94) or “idea is a contradiction” 

(freq=72), may present few computational oppor-

tunities to provoke deep thoughts, but opportuni-

ties for meaning construction abound if candidate 

CMs are placed into antagonistic juxtapositions, as 

in this @MetaphorMagnet tweet: 

To some thinkers, every idea is a comforting gift. 

To others, every idea is a disturbing contradiction. 

#Idea=#Gift #Idea=#Contradiction 

The ubiquity of most CMs makes them bland and 

uninteresting as linguistic statements to anyone but 

a metaphor theorist, and so they can resemble plat-

itudes more than true insights. But computational 

systems like @MetaphorMagnet can make generic 

CMs seem interesting again, by undermining their 

generality and revealing their limits. The key is 

antagonistic contrast, either between rival CMs or 

between a CM and literal language.  Consider the 

conceptual metaphor that underpins the expression 

“pack of girls.” The word “pack” is literally used 

to denote a group of animals, yet its figurative ex-

tension to people is so ubiquitous in speech that 

we often overlook the hidden slur. This tweet re-

minds us that it is, indeed, an insult: 

To join and travel in a pack: This can turn pretty 

girls into ugly coyotes. ‪#Girl=‪#Coyote 

The Google n-grams furnish the 3-grams “pack of 

coyotes” (freq=2120) and “pack of girls” (freq 

=745”). This is as close as the system comes to the 

underlying CM, but it is enough to establish a par-

allel that facilitates a provocative contrast. Ulti-

mately, the only pragmatics that @Metaphor 

Magnet needs is the pragmatics of provocation. 

5 And In The Red Corner … 

The notion that one CM can have an antagonistic 

relationship to another is itself just a metaphor, for 

antagonism is a state of affairs that can only hold 

between people. So to dial up the figurative antag-

onism to 11 and turn it into something approaching 
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the real thing, we might imagine the kinds of peo-

ple that espouse the views inherent to conflicting 

CMs, and thereby turn a contest of ideas into an 

intellectual rivalry between people.  

 On Twitter, the handles we choose can be as 

revealing as the texts we write and re-tweet, and so 

the creation of an online persona often begins with 

the invention of an apt new name. For instance, we 

might expect a beatnik (to recall our earlier figura-

tive tweet from @MetaphorMagnet) with the han-

dle @rainbow_lover to agree with the general 

thrust of the CM Love is a Rainbow. Conversely, 

what better handle for an imaginary champion of 

the metaphor Love is a Rainbow than 

@rainbow_lover? To condense a CM into a repre-

sentative Twitter handle such as this, we can look 

to the Google 2-grams for suggestions. Consider 

the CM Alcohol is a Drug; while many may see 

this as literal truth, it is mined as a likely CM by 

@MetaphorMagnet from the Google 4-gram “Al-

cohol is a Drug” (freq=337). The system learns 

from the Metaphor Eyes service that addicts abuse 

drugs, and finds the Google 2-gram “alcohol ad-

dict” (freq=1250) to attest to the well-formedness 

of the name @alcohol_addict. It now has an imag-

inary champion for this CM, which it elaborates 

into the following tweet: 

I always thought alcohol was drunk by bloated  

alcoholics. But .‪@alcohol_addict says alcohol 

is a drug that only focused addicts abuse. 

The same strategy – in which a CM is condensed 

into an attested 2-gram that integrates aspects of 

the source and target ideas of the metaphor – is 

used twice in the following tweet to name rival 

champions for two antagonistic views on life: 

.‪@life_lover says life is a relaxing pleasure 

.@abortion_patient says it is a traumatic suffering 

  ‪  #Life=‪#Pleasure ‪#Life=‪#Suffering 

Notice that in the examples above, ‪@life_lover 

and @alcohol_addict turn out to be the names of 

real Twitter users, while no Twitter user has yet 

adopted the handle @abortion_patient. When the 

system invents a plausible handle for the imagi-

nary champion of a metaphorical viewpoint, we 

should not be surprised if a human has already 

taken that name. However, as the names fit the 

viewpoints, we do not expect an existing Twitter 

user such as @alcohol_addict to take umbrage at 

what is a reasonable inference about their views. 

Indeed, names such as @alcohol_addict already 

incorporate a good deal of caricature and social 

pretense, and it is in this spirit of make-believe that 

@MetaphorMagnet re-uses them as actors. 

6 The Judges’ Decision 

Mark Twain offered this advice to other (human) 

writers: “Get your facts first, then you can distort 

them as you please.” It is advice that is just as ap-

plicable to metaphor-generating computational 

systems such as @MetaphorMagnet that seek to 

use their uncontentious knowledge of stereotypical 

ideas to generate provocative comparisons. Many 

of @MetaphorMagnet’s facts come from its vari-

ous knowledge sources, such as the Web services 

Thesaurus Rex and Metaphor Eyes, as well as a 

large body of stereotypical associations. But many 

more are not “facts” about the world but observa-

tions of what people say on the Web. One might 

wonder then if a random sampling of 

@MetaphorMagnet’s outputs would yield tweets 

that are as comprehensible and interesting as the 

examples we have presented in this paper. 

  A notable benefit of implementing any meta-

phor-generating system as a Twitterbot is that all 

of the system’s outputs – its hits and its misses – 

are available for anyone to scrutinize on Twitter. 

Nonetheless, it is worth quantifying the degree to 

which typical users find a system’s outputs to be 

meaningful, novel and worth sharing with others. 

We thus sampled 60 of @MetaphorMagnet’s past 

tweets and gave these to paid volunteers on 

CrowdFlower.com to rate along the dimensions of 

comprehensibility, novelty and retweetability. 

Judges were paid a small fee per judgment but 

were not informed of the mechanical origin of any 

tweet; rather, they were simply told that each was 

taken from Twitter for its figurative content. 

 We solicited 10 ratings per tweet, though this 

number of ratings was eventually reduced once the 

likely scammers – unengaged judges that offer 

random or unvarying answers or which fail the 

simple tests interspersed throughout the evaluation 

– were filtered from the raw results set. For each 

dimension, judges offered a rating for a given 

tweet on the following scale: 1=very low; 

2=medium low; 3=medium high; 4=very high. The 

aggregate rating for each dimension of each tweet 
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is then calculated as the mean rating from all judg-

es for that dimension of that tweet. 

 For the dimension of comprehensibility, over 

half (51.5%) of tweets are deemed to have very-

high aggregate comprehensibility, while 23.7% are 

deemed to have medium-high comprehensibility. 

Only 11.6% of the system’s tweets are judged to 

have very low comprehensibility, and just 13.2% 

have medium low comprehensibility. 

For the dimension of novelty, almost half of 

@MetaphorMagnet’s tweets (49.8%) are judged to 

exhibit very high aggregate novelty, while only 

11.9% are judged to exhibit very low novelty. 

For the dimension of retweetability, for which 

judges were asked to speculate about the likeli-

hood of sharing a given tweet with one’s followers 

on Twitter, 15.3% of tweets are deemed to have 

very high retweet value on aggregate, while 15.5% 

are deemed to have very low retweet value. Most 

tweets fall into the two intermediate categories: 

49.9% are deemed to have medium low retweet 

value, while 27.4% are deemed to have medium 

high retweet value. Though based on speculative 

evaluation rather than actual retweet rates, these 

numbers accord with our own informal experience 

of the bot on Twitter, as thus far its own designers 

have favorited approx. 27% of the bot’s ~7500 

tweets to date. It should also be noted that a 15.3% 

retweet rate would be considered rather ambitious 

for most Twitter users, and is thus perhaps an 

overstatement in the case of @MetaphorMagnet 

too. We thus see this as a speculative but nonethe-

less encouraging result. 

@MetaphorMagnet currently has approx. 250 

human followers (as of March 1
st
, 2015), though it 

has not yet attracted enough followers to facilitate 

a robust empirical analysis of their rates of favorit-

ing or retweeting. If and when it attracts sufficient 

followers to permit such an analysis, we may no 

longer need to look to crowdsourcing platforms to 

evaluate the system’s outputs, and may actually 

obtain a finer granularity of insight into the kinds 

of metaphors, oppositions and rendering strategies 

that humans most appreciate.  

7 Lucky Punches 

@MetaphorMagnet uses a variety of knowledge 

sources to formulate its observations and an even 

wider range of linguistic forms to package them 

into pithy tweets. Yet in every case it employs the 

same core strategy: identify a semantic contrast in 

a knowledge-base; employ semantic reasoning to 

elaborate a plausible but antagonistic scenario 

around this central contrast; and use attested Web 

n-grams to render this scenario in a provocative 

linguistic form. Though each stage is distinct from 

an abstract design view, they are all conflated in 

practice, so that e.g. Web n-grams are also used to 

inspire the system by suggesting the contrasts, jux-

tapositions and conceptual metaphors that appear 

most worthy of elaboration. 

 The use of raw n-grams that a system can only 

superficially understand constitutes a leap of faith 

that often pays off but sometimes does not. Con-

sider how the 4-gram “design is the heart” 

(freq=151) provides half of the following tweet:  

.@design_scientist says design is a united collaboration 

.@design_lover says it is a divided heart 
 #Design=#Collaboration #Design=#Heart 

While a human reader might understand divided 

heart as a poetic allusion to divided loyalties – 

which is nicely antagonistic to the notion of a unit-

ed collaboration – @MetaphorMagnet has an alto-

gether more literal understanding of the stereotypi-

cal heart, which it knows to be divided into various 

chambers. That the above juxtaposition works well 

is thus as much a matter of raw luck as deliberate 

effort, though as the old saying puts it, “the harder 

I work the luckier I get.” @MetaphorMagnet 

works hard to earn its frequent good fortune, and 

so any risk that raw n-grams bring to the genera-

tion process is more than compensated for by the 

unforeseeable resonance that they so often bring 

with them. 

For more detail on the internal workings of 

@MetaphorMagnet, readers are directed to the on-

line resource to RobotComix.com. 
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