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Abstract 

Background: Verbal fluency tasks, which re-

quire producing as many words in response to 

a cue in a fixed time, are widely used within 

clinical neuropsychology and in neuropsycho-

logical research. Although semantic word lists 

can be elicited, typically only the number of 

words related to the cue is interpreted thus ig-

noring any structure in the word sequences. 

Automated language techniques can provide a 

much needed framework for extracting and 

charting useful semantic relations in healthy 

individuals and understanding how cortical 

disorders disrupt these knowledge structures 

and the retrieval of information from them. 

Methods: One minute, animal category verbal 

fluency tests from 150 participants consisting 

of healthy individuals, patients with schizo-

phrenia, and patients with bipolar disorder 

were transcribed. We discuss the issues in-

volved in building and evaluating semantic 

frameworks and developing robust features to 

analyze this data. Specifically we investigate a 

Latent Semantic Analysis (LSA) semantic 

space to obtain semantic features, such as 

pairwise semantic similarity and clusters. 

Results and Discussion: An in-depth analysis 

of the framework is presented, and then re-

sults from two measures based on LSA se-

mantic similarity illustrate how these 

automated techniques provide additional, clin-

ically useful information beyond word list 

cardinality. 

1 Introduction 

Language disturbances, especially semantic defi-

cits, constitute one of the hallmark features of se-

vere mental illness such as schizophrenia. Reliably 

and robustly quantifying these deficits in ways that 

can support diagnosis, gauge illness severity, de-

termine treatment effectiveness and provide inter-

mediate phenotypes to help further unravel the 

underlying genetic components of the disease has 

until recently proven elusive. With the advent of 

large, corpus-based statistical models of language, 

it has become possible to investigate techniques 

that can automatically elucidate and operationalize 

the semantic structure of elicited language in ways 

that can further these clinical goals. 

Underlying these automated language tech-

niques is an attempt to quantitatively define 

measures of semantic similarity based on the anal-

ysis of large sets of documents. Examples of these 

techniques include Latent Semantic Analysis (Fur-

nas et al., 1988), Neural Networks and specifically 

Deep Learning (Hinton, 2006), Topic Models 

(Blei, Ng, & Jordan, 2003) and Independent Com-

ponent Analysis (Hyvärinen, Karhunen, & Oja, 

2004). Claims for these techniques include pro-

gress toward text understanding (Zhang & LeCun, 

2015), as a theory of meaning (Landauer, 2007), 

characterizing the temporal flow of topics in a 

large set of technical articles (Griffiths & Styvers, 

124



2004), and a computational model of vocabulary 

acquisition (Biemiller et al., 2014).  

In this paper, we focus on one of these tech-

niques, Latent Semantic Analysis (LSA; Deerwest-

er et al., 1990) and carefully examine the process 

of building an LSA semantic space and the result-

ing issues that arise in applying that space to gen-

erate quantitative results for Norwegian verbal 

fluency test data. The paper provides an in-depth 

methodological analysis of the approach of apply-

ing LSA in order to document the considerations 

for its effective use in semantic verbal fluency 

analysis. We provide a rationale for the use of two 

measures based on semantic similarity that indicate 

the potential of these automated techniques to pro-

vide additional clinically useful information be-

yond word list cardinality. 

1.1 Latent Semantic Analysis 

LSA generates semantic representations of words 

based on an analysis of a large corpus of domain 

relevant texts. Applying LSA begins when the cor-

pus of texts is reduced to a term by document ma-

trix. The columns of the matrix represent 

“documents”,  semantically coherent segments of 

text (for example a paragraph, or a short encyclo-

pedia article), across all the text in the corpus and 

the rows represent the union of the words that are 

present in the corpus. The cell at the jth column, ith 

row contains a count of the number of times the ith 

word appears in the jth document. Various en-

hancements to this basic scheme, such as eliding 

common words (stop words) or applying weighting 

schemes for cells (see for instance Dumais, 1990) 

can be used to modify these counts, but for sim-

plicity we will just call the contents of the cells 

counts. In Norwegian, compound words are con-

catenated, so for instance water (“vann”) buffalo 

(“bøffel”) is written vannbøffel, which simplifies 

word tokenization for the Norwegian animal 

words. 

A lower dimensional approximation to the term 

by document matrix is computed using Singular 

Value Decomposition (SVD) (for details see for 

instance Berry, Dumais, & O'Brien, 1995). This 

lower dimensional matrix, or semantic space, dis-

tills the semantic relationships of words and con-

texts, such that the vector representing a document 

is the sum of its constituent word vectors. The la-

tent semantic structure emerges from the dimen-

sion reduction, where semantic similarity between 

words or documents is computed by taking the co-

sine between vectors representing the words or the 

documents. This similarity has been exploited in 

numerous practical applications, such as infor-

mation retrieval (Berry & Browne, 2005), essay 

scoring (Foltz, Laham, & Landauer, 1999) and bio-

informatics (for example Homayouni et al., 2005). 

LSA has been employed to chart how core cog-

nitive processes are affected by illnesses that dis-

turb cortical function. These include categorizing 

incoherence in speech during a fairy tale retelling 

task to distinguish patients with schizophrenia 

from controls (Elvevåg et al., 2007), as a more in-

formative scoring mechanism for the Wechsler 

Logical Memory test (a story retelling task) (Dunn 

et al., 2002; Rosenstein et al., 2014), to distinguish 

language differences between healthy individuals 

and individuals with risk of psychosis  (Elvevåg et 

al., 2010; Rosenstein et al., in press) and its use 

was suggested as an early indicator of Alzheimer’s 

disease derived from analysis of a writer’s oeuvre 

(Garrard et al., 2005). In all of these examples, a 

substantial amount (a paragraph or larger) of se-

mantically related text was elicited and used in the 

analysis. Though it is more difficult to obtain se-

mantic measures with shorter quantities of text, in 

his dissertation Koehn (2003) used LSA to study 

the degradation of semantic memory in Alz-

heimer’s patients using word lists from verbal flu-

ency tests.  

1.2 Verbal Fluency Tests 

Verbal Fluency tests, which are also referred to as 

Word List Generation tests, are one of the more 

commonly performed neuropsychological tests. 

They require the participants to produce, in re-

sponse to a cue, a series of words in a set period of 

time. In the phonemic or letter fluency test, the cue 

is unique words that are not proper nouns begin-

ning with a given letter, such as “l” or “s”. In the 

semantic or category fluency task, the cue is 

unique words related to a category, for instance 

“animals” or “furniture”. In a test to cue affect, the 

cue is unique words related to an emotional state, 

such as “happy”. The number of correct words 

generated in these tasks has been shown to be a 

useful indicator in a number of severe mental ill-

nesses. The verbal fluency test is easy to adminis-

ter and is relatively easy to score since the scoring 
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rubric typically only requires a count of the correct 

words produced.  

As our concern is with underlying changes in 

semantics, we limit our investigation to the seman-

tic fluency task. Given that participants are not in-

structed in any way on the manner in which they 

should retrieve the words, a priori it may be sur-

prising that a tantalizing structure runs through the 

thread of words from the semantic task. Bousfield 

and Sedgewick (1944) were the first to report on 

temporal patterns in participant recall, where recall 

occurred in fits and starts with the rate of new 

words decreasing over time, and Bousfield (1953) 

noted that participants tended to recall groups of 

semantically similar words. Wixted and Rohrer 

(1994) provide a review of the research into the 

structure derived from the timing literature. Based 

on earlier work in memory search and clustering, 

such as Pollio (1964), Troyer et al. (1997) posited 

semantic clustering and switching as two important 

additional features that could be extracted from 

word lists produced in the semantic verbal fluency 

tests.  

An obvious difficulty of attempting to reach 

deeper into the structure of word lists is maintain-

ing objectivity and reliability in detecting these 

clusters. Beyond the deep philosophical issues of 

whether to include a dog used in hunting birds 

(“fuglehund”, variously in English a bird dog, 

pointing dog, or hunting dog) in a cluster contain-

ing birds, there is a strong reliability issue in defin-

ing cluster boundaries. The appendix of Troyer et 

al. (1997) defines a set of semantic categories for 

animals. The difficulty for any fixed list is that the 

distribution of word frequencies is such that there 

are many infrequent words (Zipf, 1935) ensuring 

that it is difficult to obtain comprehensive lists, and 

even if a partial list is produced the potential com-

binations that could constitute clusters grows com-

binatorially.  

Pakhomov, Hemmy and Lim (2012), attempted 

to overcome these concerns by using a lexical da-

tabase, WordNet (Miller, 1995), a curated word 

collection that captures hierarchical relations 

among words for automated analysis of verbal flu-

ency tasks in cognitive decline.  Pakhomov and 

Hemmy (2014) applied LSA to measure cognitive 

decline in data from the Nun Study, where they 

proposed using LSA to provide an automated, con-

sistent, generalized measure of cluster boundaries 

and switching. This contrasts somewhat with 

Koehn (2003), where the LSA measure was de-

rived from the overall semantic similarity of the 

word list, and with Nicodemus et al. (2014), where 

a number of LSA measures were proposed to de-

rive quantitative measures over semantic fluency 

data in a candidate gene study for schizophrenia. 

Instead of attempting to define and detect clusters, 

the measures discussed in Nicodemus et al. (2014) 

examined the overall coherence (the semantic simi-

larity of all pairs of words in each word list), and 

coherence in moving windows of fixed word 

length (sets of 1-3 words). We build on these ap-

plications of LSA to verbal fluency data and report 

on constructing a semantic space for an animal 

semantic fluency test in Norwegian. We visualize 

the resulting semantic relations and temporal paths 

in an effort to understand how better to detect se-

mantic coherence and clusters, and derive useful 

semantic features. 

2 Methods  

2.1 Oslo Verbal Fluency Study 

Verbal fluency data from 150 participants (50 

healthy participants, 75 diagnosed with bipolar 

disorder and 25 diagnosed with schizophrenia; na-

tive Norwegian speakers recruited in the Oslo area) 

who gave informed consent was analyzed. The 

participants were asked to generate as many animal 

words in one minute as possible. The audio data 

was transcribed. Figure 1 shows a histogram of the 

list lengths. 

 
Figure 1: Distribution of word list lengths. 

Since one semantic structure of interest is the 

path of retrieval, we did not remove perservations 

(repeated words), and 57 participants had at least 
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one repeated word, though no word was repeated 

more than once by any participant. Nonadjacent 

perseverations (repeated words) were retained, 

though non-animal words were discarded, resulting 

in a total of 3148 words distributed over 269 

unique animal words. The mean number of words 

per participant was 20.97 (5.83), with range from 4 

to 38. Table 1 shows the distribution of repeated 

words by number of participants. 

Number of repeated words   1   2 3 4 

Number of participants 41 13  2 1 

Table 1. Occurrences of perservations in word lists. 

Keeping perservations was one aspect of our 

overall goal to preserve the original intent of the 

participants as much as practically possible. Over-

all, we would prefer the semantic space automati-

cally normalize meanings. Participants used 

different word forms such as “koala” and “koa-

labjørn” to refer to the same animal. We did not 

perform lemmatization, and specifically kept both 

singular and plural forms. The only occasion where 

we did intervene was when the transcription pro-

cess added variability due to spelling variants, 

where we selected the most frequent form. In other 

cases we preserved the variability except where a 

form was poorly represented in the corpus, and 

then the more frequent form was used. All tran-

scripts were checked and corrected for typograph-

ical errors. By retaining these differences, the 

spread of nearly similar meanings can be exploited 

in the process of determining thresholds for cluster 

boundaries. Specific modifications of the word 

lists are discussed as part of developing the seman-

tic space.  

2.2 Building the Semantic Space 

A semantic space is most effective when it is built 

from a corpus that captures a wide range of natu-

rally occurring contexts, which produces a space 

with a robust exposure to the category (e.g. Lan-

dauer et al., 1998). Pakhomov and Hemmy (2014) 

built a space based on Wikipedia articles. We 

chose a different route due to both the limited ani-

mal articles in the Norwegian language version of 

Wikipedia and also the assumption that a more 

general source would provide more contexts to 

build semantic relationships than the encyclopedia 

model of Wikipedia. 

We selected articles from the Norwegian News-

paper Corpus (Norsk aviskorpus), version 0.9 

http://www.nb.no/sbfil/tekst/norsk_aviskorpus.zip, 

which is a component of text resources made 

available by the National Library of Norway, 

http://www.nb.no/English/Collection-and-

Services/Spraakbanken/Available-resources/Text-

Resources. 

The newspaper corpus consists of approximately 

3.7 million articles, of which we used a subset of 

3.6 million articles, excluding approximately 

100,000 that were explicitly tagged as “Nynorsk”
1
. 

There were 269 unique animal words generated 

in the verbal fluency study. Of these words, two: 

“gråmeis” and “svintoks” were not contained in 

any articles and were removed from the word lists. 

Two additional words “gjerv” and “papegøje” did 

not appear in the corpus, but alternative spellings 

“jerv” and “papegøye” were substituted in the 

word lists. Two other words “måse” and “panda-

bjørn” had very few representations in the articles, 

but alternative spellings “måke" and “panda” were 

well represented, so these substitutions were made. 

These substitutions resulted in 263 unique animal 

words for the study. Approximately 620,000 news-

paper articles contained one or more occurrences 

of those 263 animals.  Figure 2 shows the frequen-

cy of articles containing the words, with the y-axis 

on a log10 scale. The most frequent word is “ørn” 

(eagle), due to a popular football team of that 

name, the next most frequent is “and” (duck), due 

to contamination from the English connective
2
, and 

the next three are “fisk” (fish), “menneske” (hu-

man) and “laks” (salmon). Excluding the tails, the 

plot is quite linear throughout its range. 

For animals appearing in 200 or more articles, a 

random sample of 200 articles for each animal was 

added to the space, while for the 114 animals with 

200 or fewer articles all the relevant articles were 

used. Duplicate articles were removed and each 

article constituted a document for the LSA analy-

                                                           
1 There are two versions of the Norwegian language – “Bok-

mål” and “Nynorsk”. Although “Bokmål” is used by the ma-

jority in both written and spoken language, they are of equal 

standing. “Bokmål” is used in the Oslo area where our data 

was collected, hence our exclusion of the “Nynorsk” articles. 
2 We have experimented using the text categorization tech-

nique of Cavnar and Trenkle (1994) on small windows around 

“and” to separate English “rock and roll” article occurrences 

from Norwegian “Sprø and med appelsin og koriander” 

(Crispy duck with orange and coriander), though not imple-

mented for the analysis reported here. 
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sis. The final space has 286,371 terms and 36,516 

articles.  

 
Figure 2. Number of articles per animal word. 

We selected 300 dimensions for the reduced 

dimension space based on experience with other 

semantic spaces and the observation that usually 

there is a range of dimensions with approximately 

similar performance. Often the number of dimen-

sions is chosen to optimize some external perfor-

mance measure (e.g. Turney & Littman, 2003) and 

in future work our intention is to explore the 

choice of dimension. All cosine similarity compar-

isons were derived from vectors in this 300 dimen-

sion space. About half the terms are dates and 

times, not of much semantic value, but we tend to 

be conservative in tokenization, so preserve terms 

such as “Øst-Afrika” (East Africa) and “øko-

maten” (eco-food), which increases the term count. 

With the semantic space in place, we performed 

a set of validations of the semantic relationships. 

Table 2 shows the cosine similarity for singular vs. 

plural forms and for variant spellings (the last four 

rows) that were produced by the participants and 

transcribers. The columns include the counts in the 

newspaper articles (news cnt) and among the par-

ticipants (part cnt). Table S1 in the Supplemental 

Materials contains an English/Norwegian transla-

tion for the 263 animals. Notice that plural forms 

are relatively uncommon among participants rela-

tive to the frequencies found in the newspaper arti-

cles. Most of the plurals have relatively high 

cosine to their singular form. The variant spellings 

of the participants follow the newspaper frequen-

cies, except in the case of “tarantella”. Of the vari-

ant spellings, only the “ponni/ponny” pair has high 

cosine similarity, so the other variants were con-

verted to the most frequent newspaper form. From 

the cosine similarities between the singular and 

plural forms, we expect that a cluster threshold will 

likely be at or below 0.3, if we want to keep those 

forms clustered.  
 

sing. plural 

sing 

news 

cnt 

plur 

news 

cnt 

sing 

part 

cnt 

plur

part 

cnt 

cos( 

sing. 

plur.) 

fisk fisker 32321 7239 36 3 0.582 

fugl fugler 7546 6738 48 1 0.815 

geit geiter 1107 1224 53 2 0.522 

gris griser 4630 3122 54 1 0.351 

høne høner 746 1209 32 2 0.649 

insekt insekter 396 1627 2 1 0.614 

katt katter 5510 4075 132 1 0.740 

ku kyr 3351 3088 87 1 0.571 

reke reker 395 2942 3 1 0.332 

rotte rotter 686 5088 53 1 0.395 

var. 1 var. 2           

giraff sjiraff 118 303 1 111 0.246 

lemen lemmen 371 150 5 1 0.003 

ponni ponny 194 28 2 1 0.742 

taran-

tell 

tarantel-

la 341 77 1 3 -0.012 

Table 2. Singular and plural forms (top) and spelling 

variants (bottom 4 rows). 

There are a number of additional ways to vali-

date the overall semantic relationships in the space. 

Figure 3 shows the distribution of cosines taken 

between all pairs of animal words. The median of 

this distribution is essentially zero, though due to 

the long right tail the mean is 0.022 (.117). Of the 

34,453 word pairs, only 1098 have a cosine greater 

than 0.3 and 2174 have a cosine greater than 0.2, 

so most animals have low similarity.  

Another approach is to use hierarchical cluster-

ing on the cosine distance matrix among the ani-

mals to see one representation of the imposed 

relationships. We used hierarchical clustering from 

the statistical programming environment R (R Core 

Team, 2014).  

Figure S1 in the Supplemental Materials (a high 

resolution version to allow magnified viewing to 

facilitate examining details), shows the hierarchical 

clustering. In addition we have labeled a few sub-
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trees with categories, and smaller scale effects can 

be seen within categories, for instance in barnyard 

animals, subtrees of horses, hens and livestock 

naturally arise. Like any projection, hierarchical 

clustering reveals some relationships, while others 

require a different projection to be revealed. Using 

LSA to measure semantic similarity is equivalent 

to allowing the relationships that emerge from the 

corpus to constrain semantic similarity. The only 

free parameter is the cosine similarity threshold to 

define a cluster
3
.  

 
Figure 3. Distribution of animal pair cosines. 

2.3 Analysis of Fluency Data 

While it is informative to examine the relation-

ships across all the animals, our particular interest 

is in the sets of animals generated by each partici-

pant both in terms of the choices of animals, and 

the structure of the order of those choices. Figure 4 

shows the distribution of cosines for all the word 

pairs (reiterating Figure 3 but as a density plot), as 

well as just the sequential pairs in the word lists of 

participants. While there are still a majority of un-

related pairs, the participants clearly have more 

structure and higher cosines with a median 0.08 

and 25% of the pairs having a cosine exceeding 

0.24. So, as expected, there is substantial structure 

here.  

Figures 5 and 6 show the cosine time paths from 

two participants. The x-axis is the word sequence, 

and the y-axis is the cosine similarity between each 

sequential pair of words. The word pair is plotted 

vertically next to the cosine point. Table S1 in the 

                                                           
3 The selection of number of dimensions for the space is also a 

free parameter, but much less directly related to cluster size 

than this threshold. 

supplemental materials contains both English and 

Norwegian forms of the 263 animal words. Both 

figures indicate that as the threshold for defining a 

cluster is lowered the size of clusters will increase, 

while increasing will cause an increase in number 

of clusters (in the limit each word will be its own 

cluster). 

Figure 4. Distribution of all animal pair cosines vs. pairs 

limited to participants. 

In Figure 5, we see potentially 4 clusters. The 

first peak might be called Africa, the second dogs, 

the third fish and the last pets. Where the bounda-

ries are located and cluster membership depends 

on the cosine threshold. We note that the “fugle-

hund” (bird dog) does cluster with dogs, but not 

with the bird “papegøye” (parrot), and the overall 

bird similarity is quite low in this sequence. 

 
Figure 5. Time path of cosine similarities with word 

pairs (example 1). 

In Figure 6, the sequence begins with four fish, 

but the cluster likely ends with “hai” (shark) then 
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“hval” (whale) and a return to fish in the next peak. 

In addition there is a long low peak of barnyard 

animals, followed by a pet peak and a small bear 

peak. How the threshold is set in conjunction with 

the semantic similarity of the space will greatly 

influence the shape of clusters. 

 
Figure 6. Time path of cosine similarities with word 

pairs (example 2). 

These examples illustrate that clusters may have 

a good deal of variability, since they can be de-

pendent on single words to delimit the cluster. This 

implies that distortions of the words “and” and 

“ørn” due to non-animal meanings and words ab-

sent from the corpus such as “gråmeis” and 

“svintoks” may have disproportionate effects. In-

vestigating measures that are more robust to small 

changes in single words seems a profitable direc-

tion. A measure less affected by single word varia-

bility is the area under the temporal curve, which if 

divided by the number of words is just the mean of 

the cosine pairs. 

Figures 5 and 6 indicate that it would be useful 

to better understand the relationship between 

threshold and number of clusters over the partici-

pants’ data. Figure 7 shows the tradeoff in terms of 

number of clusters as the threshold for cluster 

boundary is increased. We see a rapid growth and 

then a leveling off toward the asymptote. The 

curve drawn in the figure is a locally weighted re-

gression (Loader, 2013) to help visualize the rela-

tionship. Following Pollio (1964) the vertical line 

is at the 75th percentile of the cosine distribution, 

and is our first pass at a threshold, though further 

experimentation is necessary to better understand 

how to set this value. 

Figure 7. Change in number of clusters as cosine 

threshold increases. 

2.4 Continuous Space Word Representa-

tion 

To validate this approach, we built a semantic 

space based on a second automated technique, con-

tinuous space word representations (Mikolov, Yih, 

& Zweig, 2013) with the exact same corpus as the 

LSA space, utilizing bag-of-words and 300 dimen-

sions, using the word2vec
4
 software. We chose this 

representation since it belongs to the family of sta-

tistical vector space representations which use co-

sine similarity to measure semantic closeness. The 

mean cosine and cosines using word pairs from the 

participants were both higher than for the LSA 

space and well above the mean for 1000 randomly 

chosen word pairs (mean all animal pairs=0.114 

(0.100), for participants=0.275 (0.137), random 

pairs=0.040 (0.078)).  

Figure 8 reprises the first example word list 

shown for LSA-based semantics in Figure 5, but 

now using cosine similarity from the new space. 

The main feature of four peaks remains, but there 

are differences such as now instead of increasing 

similarity with on the right (pets), the plot levels 

off. 

To further compare the semantic spaces, we 

took the correlation between all 263 animal pairs in 

the two spaces and the subset of pairs generated by 

the participants. For all pairs the correlation was 

0.505 and for the participant pairs the correlation 

was 0.727, with 95% confidence interval (0.709, 

                                                           
4 http://code.google.com/p/word2vec/ 
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0.743). This is a quite interesting result in that 

pairs humans generate have higher similarity, but 

also that both models capture more similar seman-

tic patterns over the human generated pairs. This 

result increases our confidence that these models 

are capturing critical aspects of human semantic 

organization. 

 
Figure 8. Time path of cosine similarities using contin-

uous space model with word pairs (example 1). 

2.5 Differences in Diagnostic Groups 

The primary purpose of developing this seman-

tic framework is to provide the basis for much 

needed tools to measure how semantic structures 

are affected by cortical disorders. Utilizing the 

LSA space and threshold from Section 2.3, we can 

now begin that process. We compute three 

measures on the data, the mean number of words 

per diagnostic group, the mean cosine, and a clus-

ter measure, the cluster fraction which is the num-

ber of clusters divided by the number of words. 

Since the number of clusters is limited by the 

number of words, we need a measure that factors 

out the number of words, and dividing by the num-

ber of words is a way to achieve that aim. Table 3 

shows the three measures and their standard devia-

tions, as well as the number of participants for the 

three groups, control (CNTL), bipolar disorder 

(BD) and schizophrenia (SZ). 

All three measures are significantly different 

among the groups: number of words (F[2,147] = 

13.117, p = 5.73e-6), mean cosine (F[2,147] = 

3.398, p = .036), and cluster fraction (F[2,147] = 

3.190, p = 0.044). The two new semantic features 

are only moderately correlated to number of words, 

mean cos, cor = 0.301 and cluster fraction, cor = 

-0.254, indicating both provide additional infor-

mation beyond the number of words. The control 

group results are consistent with normative word 

count results reported by Egeland et al. (2006), 

where in their Table 5 they report a mean animal 

word list length of 23.5 (5.7) for 201 participants. 

Unfortunately, they did not separately report ani-

mal counts for their groups with schizophrenia or 

depression. 
 

Group n num words mean cos cluster frac 

CNTL 50 23.92(4.750) 0.172(0.0597) 0.736(0.0994) 

BD 75 20.12(5.273) 0.151(0.0589) 0.778(0.103) 

SZ 25 17.64(6.867) 0.137(0.0572) 0.794(0.131) 

Table 3. Mean(sd) semantic features by group. 

The direction of change is consistent among the 

three measures, number of words decreases from 

control to bipolar disease to schizophrenia, seman-

tic coherence between pairs of words also drops in 

that order, and cluster fraction, which increases as 

pairwise semantic coherence decreases moves in 

the expected opposite direction to the other two 

measures. 

3 Discussion  

The aim of this paper is to illustrate a semantic 

framework that can provide tools for measuring 

how semantic structure is affected by cortical dis-

orders. The approach illustrates that effective se-

mantic representations can be developed through 

automated language models such as LSA. While it 

is possible to treat automated language models as 

black boxes, we have attempted to show that there 

are many ways these spaces can be probed to en-

sure that they provide useful semantic relations 

that correspond to human results and provide po-

tentially clinically useful applications.  

From comparing the semantic similarity of sin-

gular to plural forms or visualizing the semantic 

path of verbal fluency word lists, we gain confi-

dence that the mathematical models behind the 

scenes matches our understanding. When we com-

pared LSA to a continuous space model, we ob-

served strong overlap in the semantic relations 

increasing our confidence in this enterprise. Dele-

gating the responsibility to determine semantic 

similarity to an automated method, captures a con-

sensus view of semantics based on the corpus used 

in building the semantic relationships. This ap-
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proach can help reduce variability due to human 

judgements, making it easier to detect important 

patterns in the data. Individual differences will 

continue to make it difficult to detect diagnostic 

group differences, but by having multiple classes 

of semantic features we improve the chances of 

capturing those group differences. Our next steps 

are to use this knowledge to continue to build ro-

bust semantic features and attempt to operational-

ize those features with fluency data as well as with 

other tasks.  The overall framework provides a 

means to continue work to better understand how 

to use semantics to build robust features, and apply 

it to data.  
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