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Abstract

Morphological segmentation is an effective
strategy for addressing difficulties caused by
morphological complexity. In this study, we
use an English-to-Arabic test bed to determine
what steps and components of a phrase-based
statistical machine translation pipeline benefit
the most from segmenting the target language.
We test several scenarios that differ primar-
ily in when desegmentation is applied, show-
ing that the most important criterion for suc-
cess in segmentation is to allow the system to
build target words from morphemes that span
phrase boundaries. We also investigate the
impact of segmented and unsegmented target
language models (LMs) on translation quality.
We show that an unsegmented LM is help-
ful according to BLEU score, but also leads
to a drop in the overall usage of composi-
tional morphology, bringing it to well below
the amount observed in human references.

1 Introduction

It is well known that morphological segmentation
can improve statistical machine translation (SMT).
By splitting relevant morphological affixes into in-
dependent tokens, segmentation has repeatedly been
shown to improve translation into or out of morpho-
logically complex languages. Segmentation as a pre-
processing step brings several benefits to translation:

e Correspondence with morphologically simple
languages, such as English is improved. In Fig-
ure 1, segmenting bsyArth allows one-to-one
links for “with”, “his” and “car”.
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arrived with new car

[ SX

A" b+ syArp  +h  Aljdydp

jA"  bsyArth  Aljdydp

Figure 1: An illustration of one-to-one correspondence
between Arabic morphemes and English words. Arabic
text is segmented using the PATB tokenization scheme,
and shown in Buckwalter transliteration.

e By building models over morphemes, rather
than words, data sparsity is reduced.

e By allowing morphemes with clear syntactic
roles to be translated independently, we in-
crease our expressive power by creating new
lexical translations. For example, using the
two phrase-pairs in Figure 1 results in a new
word after desegmentation (b+ syArp +h =
bsyArth), which might not have existed in the
training data.

However, there is also a price to be paid. While
morpheme-level models are more resistant to data
sparsity, they account for less context than word-
level models, make stronger independence assump-
tions, and they are less efficient statistically, in that
they devote probability mass to sequences contain-
ing illegal words. Furthermore, when segmentation
is applied to the target language, the process must be
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reversed at the end of the pipeline to present the out-
put in a readable format. This desegmentation step
complicates our pipeline, and can introduce errors.

Our work is inspired by two recent contributions
that attempt to combine the advantages of word- and
morpheme-based models. Luong et al. (2010) com-
bine word and morpheme views in a desegmented
phrase table, allowing morphemes to reduce spar-
sity while words expand context, and eliminating
the need for a separate desegmentation step. Their
word-boundary-aware morpheme-level phrase ex-
traction technique restricts phrase boundaries so that
no target phrase can begin with a suffix or end with
a prefix. This allows them to desegment each tar-
get phrase independently, enabling the use of both
word- and morpheme-level language models during
decoding. However, this phrase-table desegmenta-
tion approach lacks the expressive power that comes
from translating morphemes independently.

More recently, Salameh et al. (2014) propose
a lattice desegmentation approach, which comes
close to combining all the advantages of word and
morpheme views. By desegmenting a lattice that
compactly represents many translation options, and
rescoring it with a word-level language model, they
avoid restricting the phrase table. However, by de-
laying desegmentation until rescoring, the approach
loses Luong et al. (2010)’s advantage of full decoder
integration.

In this paper, we present an experimental study of
English-to-Arabic translation that is designed to bet-
ter understand the impact of various trade-offs when
translating into a morphologically segmented target
language, and to identify what aspects of segmenta-
tion are most beneficial to translation. The benefits
of segmentation can impact several components in
the SMT pipeline: the alignment model, the trans-
lation table, and the various language and transla-
tion models. Throughout this study, we investigate
the effect of varying the point in the SMT pipeline
where the segmentation is reversed. In addition,
we attempt to combine word- and morpheme-level
models within the decoder as much as possible.

Our experimental study provides three novel in-
sights. First, we present strong evidence indicating
that the ability to build target words across phrase
boundaries is the most important property of target
language segmentation. This implies that phrase ta-
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ble desegmentation, the only published desegmenta-
tion technique that has been fully integrated into de-
coding, gives up segmentation’s primary advantage.
Second, we draw a previously unobserved connec-
tion between the use of an unsegmented LM and the
decoder’s overall use of compositional morphology;
we show that although unsegmented LMs tend to in-
crease BLEU score, they also reduce the system’s
use of morphological affixes to well below that of a
human. Finally, we present the first direct compari-
son between phrase table desegmentation (Luong et
al., 2010) and lattice desegmentation (Salameh et al.,
2014).

2 Background

Our work builds on earlier studies of automatic mor-
phological segmentation and its impact on SMT.
There are many ways to segment syntactically rele-
vant affixes from stems. Supervised techniques may
either pass through an intermediate morphological
analysis (Habash et al., 2009), or directly segment
the character stream (Green and DeNero, 2012); re-
cent work on supervised Arabic segmentation fo-
cuses primarily on adaptation to dialects (Habash
et al., 2013; Monroe et al., 2014). There are also
a host of unsupervised techniques (Creutz and La-
gus, 2005; Lee et al., 2011; Sirts and Goldwater,
2013), which provide valuable language portability,
but which generally fall behind supervised methods
when labeled data is available.

There is a large body of work studying the best
form of segmentation when translating from a mor-
phologically complex source language (Sadat and
Habash, 2006; Stallard et al., 2012), where the seg-
mentation can be used as a simple preprocessing
step, or to create an input lattice (Dyer et al., 2008).
Recently, there has been a growing interest in seg-
mentation on the target side (Oflazer and Durgar
El-Kahlout, 2007), which introduces a question of
how to perform proper desegmentation (Badr et al.,
2008). El Kholy and Habash (2012) have conducted
a thorough exploration of the various segmentation
and desegmentation options for English to Arabic
translation, and we follow their work when design-
ing our test bed.



Method Unsegmented Alignment Phrase Table Omne-best  Lattice

Deseg. Deseg. Deseg. Deseg.
Desegment before: Never segment  Phrase extraction Decoding Evaluation Evaluation
Alignment model Word Morph Morph Morph Morph
Lexical weights Word Word Morph Morph Morph
Language model Word Word Word Morph Morph + Word
Tuning Word Word Word Morph Morph then Word
Flexible boundaries? | No No No Yes Yes

Table 1: Desegmentation scenarios and their effect on the components of a typical SMT system.

3 Methods

When translating into a segmented target language,
such as Arabic, the segmentation will need to even-
tually be reversed for the output to be readable. The
key insight driving our experiments is that by vary-
ing the point in the SMT pipeline where this reversal
occurs, we can alter which models are based on mor-
phemes and which are based on words, and thereby
determine which components most benefit from seg-
mentation. We assume a phrase-based SMT archi-
tecture similar to that of Moses (Koehn et al., 2007),
but most of our observations hold for hierarchical
and tree-based models. In all of our approaches,
we desegment using a mapping table that counts
the segmentations performed on the target side of
our training data. The table uses counts of word-
segmentation pairs to map each morpheme sequence
back to its most likely unsegmented word form. We
back off to manually crafted rules in cases where the
segmented form does not exist in the mapping ta-
ble (El Kholy and Habash, 2012).

Table 1 summarizes the effect of the desegmen-
tation point on the components of a typical SMT
system, indicating which components are built using
morphemes and which are built using words. Most
components should be familiar, but the last row in-
troduces flexible boundaries, a concept that will be
central to our study. This property of the phrase table
indicates whether phrases can have unattached af-
fixes at their left or right boundaries. Systems with-
out flexible boundaries cannot combine morphemes
across phrases to create translations that were not al-
ready seen in the parallel text; as such, this property
has a large impact on a system’s expressive power.

We describe our comparison systems in turn, each
corresponding to a column in Table 1. We also de-
scribe a segmented language model feature, which
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can be added to any system that uses a word-level
phrase table.

3.1 Baselines

We rely on two main baselines to evaluate what mat-
ters most in segmented models. An unsegmented
system leaves the Arabic target unsegmented and
uses an unsegmented language model. This model
suffers from data sparsity and poor English-Arabic
word correspondence. The decoder always outputs
morphologically correct Arabic words, as it does not
require a desegmentation step.

Meanwhile, one-best desegmentation segments
the Arabic target language before training begins,
and the decoder’s output is generated in segmented
form. As a post-processing step, the one-best out-
putis desegmented using a mapping table and deseg-
mentation rules. All of the component models used
during decoding are based on morphemes instead of
words. The segmented models are intended to help
alleviate data sparsity and improve token correspon-
dence. Unlike the unsegmented system, this system
requires a desegmentation step, which can produce
morphologically incorrect words.

3.2 Alignment Desegmentation

Our unsupervised alignment models (Brown et al.,
1993; Och and Ney, 2003) are sensitive both to poor
word-to-word correspondence and to data sparsity
issues. They are also at the very start of the SMT
pipeline; they impact nearly all other downstream
models. Therefore, it would be reasonable to sus-
pect that the primary benefit of segmentation could
come from improved word alignment. Alignment
desegmentation allows us to test this theory by de-
segmenting immediately after alignment.

More specifically, we segment the target side as
pre-processing. After word alignment, we replace



the segmented Arabic training data with its unseg-
mented form. Note that this desegmentation is per-
fect, as we can always refer to the original sen-
tence to resolve any ambiguities. This is accom-
panied by desegmenting alignment links by replac-
ing each morpheme index with the index of the un-
segmented word that now contains the morpheme.
As one would expect, this leads to an increase in
the number of one-to-many alignments. Training is
then resumed with these links and the unsegmented
target. Other than having its alignment model ben-
efit from segmentation, this system has the same
properties of an unsegmented system: all remain-
ing component models are based on words. Since
all morphemes are desegmented well before decod-
ing begins, it clearly cannot use flexible boundaries
to build new words.

3.3 Phrase Table Desegmentation

Our next desegmentation point is after phrase ex-
traction, resulting in a system where we segment the
text, align the morphemes, perform phrase extrac-
tion over morphemes, and then desegment the re-
sulting tables. Following Luong et al. (2010), we
first remove all phrases that have target sides with
flexible boundaries, which allows us to desegment
each remaining target phrase independently. The re-
sult is a desegmented phase table. Note that we leave
the various scores associated with each phrase-pair
unchanged.

This model is similar to alignment desegmenta-
tion described in the previous section in that all re-
maining components and operations are based on
words. However, there are two key differences.
First, the lexical weights of each phrase are calcu-
lated over morphemes rather than words. Second,
the phrase-length limit is applied at the morpheme
level rather than at the word level. We use this sce-
nario to test the utility of morpheme-level lexical
weights.

This system is related to, but not identical to the
work of Luong et al. (2010). Their system actu-
ally merges tables from an unsegmented model with
those from phrase table desegmentation; they inves-
tigate a number of methods to combine the scores
across tables. In addition, they incorporate both seg-
mented and unsegmented language models, which is
a difference that we address in the next section.
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3.4 Segmented LM Scoring in Desegmented
Models

Both alignment desegmentation and phrase table
desegmentation rely on an unsegmented language
model, as they naturally decode directly into a de-
segmented target language. We experiment with
augmenting both of these systems with an extra fea-
ture: a segmented language model. For each Arabic
target word, we add its segmented form to the phrase
table as an extra factor (Koehn and Hoang, 2007).
We insert this factor after phrase extraction, so it has
no impact on alignment or the calculation of transla-
tion model scores. The factor merely gives us access
to the segmented morphemes during decoding. The
decoder uses this factor to apply a segmented lan-
guage model during each hypothesis extension.

Although the segmented language model spans
a shorter context, its scores benefit from the re-
duced data sparsity that comes from modeling mor-
phemes. In particular, it can unveil whether at-
taching two hypotheses is grammatical. For ex-
ample, the unsegmented language model score for
the consecutive target phrases [kl m$AkInA] “all
our problems” [wxIAfAtnA] “and conflicts” is rel-
atively low. Scoring their segmented representation
[kl m$AKkl +nA] [w+ xIAfAt +nA] leads to a more
optimistic score, as the segmented language model
assesses the morpheme sequence using 4-grams and
trigrams, while the unsegmented model scores the
word sequence with unigrams and bigrams.

3.5 Lattice Desegmentation

We re-implement the Lattice Desegmentation tech-
nique proposed by Salameh et al. (2014), and place
it in Table 1 for reference. A system built entirely
over morphemes outputs a pruned lattice that com-
pactly represents its hypothesis space. This lattice
is then desegmented by composing it with a finite
state transducer that maps morpheme sequences into
words. By rescoring the desegmented lattice with
new features, the system benefits from having both
a segmented and desegmented view of the search
space. The added features include discontiguity fea-
tures, as well as an unsegmented language model.
The discontiguity features indicate whether a deseg-
mented word came from one contiguous morpheme
sequence, two discontiguous sequences, or more.



4 Experimental Setup

We train our English-to-Arabic system using 1.49
million sentence pairs drawn from the NIST 2012
training set, excluding the UN data. This train-
ing set contains about 40 million Arabic tokens be-
fore segmentation, and 47 million after segmenta-
tion. We tune on the NIST 2004 evaluation set
(1353 sentences) and evaluate on NIST 2005 (1056
sentences). We also report a second test, which
tunes on the NIST 2006 evaluation set (1664 sen-
tences) and evaluates on NIST 2008 (1360 sen-
tences) and 2009 (1313 sentences). NIST 2004 and
2005 datasets have sentences from newswire, while
NIST 2006/2008/2009 have sentences drawn from
newswire and the web. These evaluation sets are in-
tended for Arabic-to-English translation, and there-
fore have multiple English references. As we are
translating into Arabic, we select the first English
reference to use as our source text, and use the Ara-
bic source as our single reference translation.

4.1 Segmentation

For Arabic, morphological segmentation is per-
formed by MADA 3.2 (Habash et al., 2009), us-
ing the Penn Arabic Treebank (PATB) segmentation
scheme as recommended by El Kholy and Habash
(2012). For both segmented and unsegmented Ara-
bic, we further normalize the script by converting
different forms of Alif and Ya to bare Alif and dot-
less Ya. In order to generate the desegmentation
table, we analyze the MADA segmentations from
the Arabic side of the parallel training data to col-
lect mappings from morpheme sequences to surface
forms.

4.2 Systems

We align the parallel data with GIZA++ (Och et
al., 2003) and decode using Moses (Koehn et al.,
2007). The decoder’s log-linear model includes a
standard feature set. Four translation model features
encode phrase translation probabilities and lexical
weights in both directions. Seven distortion features
encode a standard distortion penalty as well as a
bidirectional lexicalized reordering model. A KN-
smoothed 5-gram language model is trained on the
target side of the parallel data with SRILM (Stol-
cke, 2002). Finally, we include word and phrase
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penalties. The decoder uses Moses’ default search
parameters, except that the maximum phrase length
is set to 8. The decoder’s log-linear model is tuned
with MERT (Och, 2003). Following Salameh et al.
(2014), the tuning of the re-ranking models for lat-
tice desegmentation is performed using a lattice vari-
ant of hope-fear MIRA (Cherry and Foster, 2012);
lattices are pruned to a density of 50 edges per word
before re-ranking. We evaluate our system using
BLEU (Papineni et al., 2002).

5 Results

Table 2 shows the results of our translation quality
experiments. In previous sections, we mentioned
several factors that might contribute to the quality
improvements found with segmented models. Be-
yond the raw ranking of systems, we can use the
commonalities and differences between these sys-
tems to draw some broad conclusions of what as-
pects of a segmented system are most important.

5.1 Decoder Integration

Lattice Desegmentation performs best overall,
which is not entirely surprising, as it has access to
all of the information present in the other systems.
Notably, it outperforms Phrase Table Desegmenta-
tion; this is the first time to our knowledge that the
two have been compared directly.

The main disadvantage of Lattice Deseg, which
is not present in Alignment and Phrase Table De-
seg, is the lack of decoder integration of its unseg-
mented view of the target; instead, it is handled by
re-ranking a lattice in post-processing. In fact, the
top two systems, Lattice Deseg and 1-Best Deseg,
are also the only two systems without access to un-
segmented information in the decoder. This suggests
that the benefits of decoder integration are not suffi-
cient to overcome the trade-offs currently demanded
by integration.

5.2 Flexible Boundaries

What is perhaps more surprising is that neither
Alignment Deseg nor Phrase Table Deseg are able
to match the 1-best Deseg scenario. With the ben-
efit of added segmented language models, both of
these systems have access to almost all 1-best De-
seg’s information and more, yet they fail to match



Model mt05 | mt08§ mt09
Unsegmented 328 | 150 19.0
Alignment Deseg. 334 | 154 191
with Segmented LM 337 | 154 194
Phrase Table Deseg. 334 | 155 193
with Segmented LM 336 | 156 197
1-best Deseg. 337 | 157 202
without flexible boundaries 329 | 154 194
Lattice Deseg. 343 | 164 205

Table 2: BLEU scores on on each of the methods described in section 3 . MTOS5 results are tuned using NIST MT04.
Results on NIST MT08 and MT09 datasets are tuned on MT06 dataset.

its translation quality in every test. What both sys-
tems lack with respect to 1-best Deseg is flexible
phrase boundaries, which allow the creation of new
translations across phrases. To confirm the impor-
tance of flexible boundaries, we created a new ver-
sion of 1-best Deseg by pruning all phrases with
flexible boundaries from the phrase table, and then
re-tuning. The resulting system loses 0.6 BLEU on
average, which is more than half of the 0.9 differ-
ence between Unsegmented and 1-best Deseg. We
conclude that flexible boundaries are one of the most
important aspects of a segmentation scenario.

5.3 Language Models

Both Align Deseg and Phrase Table Deseg show
consistent, albeit small, improvements from the
addition of a segmented LM. In order to assess
the importance of the unsegmented LM, we con-
sider 1-best Deseg without flexible boundaries, and
Phrase Table Deseg with Segmented LM. These
two systems have exactly the same output space, as
their respective phrase tables are constructed from
morpheme-level phrase extraction followed by prun-
ing flexible boundaries. Furthermore, both systems
use a segmented LM and lexical weights built over
morphemes. Their only differences are that Phrase
Table Deseg uses an unsegmented LM and unseg-
mented tuning, resulting in BLEU scores that are
higher by 0.4 on average. Similarly, a unsegmented
LM is one of the main differences between Lattice
Deseg and 1-best Deseg, with the others being un-
segmented tuning and discontiguity features. Al-
though we have not isolated the unsegmented LM
perfectly, these results indicate that it is valuable.
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5.4 Lexical Weights

The primary difference between Alignment De-
seg and Phrase Table Deseg is that the latter uses
morpheme-level lexical weights.! Without a seg-
mented LM, we see a 0.1 average BLEU advan-
tage for Phrase Table Deseg, increasing to 0.2 when
a segmented LM is included. Unfortunately, these
improvements are not consistent across test sets.
This suggests that there may be an advantage from
morpheme-based lexical weights, but it is certainly
not large.

6 Analysis

Our translation quality comparison indicates that
flexible boundaries are the most important property
of a target segmentation scenario, so we examined
them in greater detail. Phrase pairs with flexible
boundaries account for roughly 12% of phrases used
in the final output of our 1-Best Deseg system.

We performed a detailed analysis to see if the flex-
ible boundaries were used to produce novel words;
that is, words that were not seen in the target side of
the training data. Roughly 3% of the desegmented
types generated by the 1-best-desegmentation sys-
tem are novel. We randomly selected 40 novel words
from each test set to analyze manually. First, none
of these desegmented words appear in the refer-
ence, and therefore, they have no positive impact on
BLEU. Furthermore, 64 of the 120 selected words
violate the morphological rules of Arabic. Looking
instead at the novel words in the reference, only 115

IThe other difference is the calculation of the phrase length
limit, which favors Alignment Deseg, as its word-based limit
allows more phrases overall.



Model mt05 mt08 mt09
Reference 159% 18.1% 18.9%
Unsegmented 120% 12.2% 12.6%
Alignment Deseg. 11.6% 11.0% 11.8%

with Segmented LM 11.7% 11.2% 12.0%
Phrase Table Deseg. 11.3% 10.1% 11.2%

with Segmented LM 11.6% 10.5% 11.4%
1-best Deseg. 16.1% 182% 19.2%

without flexible boundaries 14.2% 14.7% 15.4%
Lattice Deseg. 10.0% 11.5% 12.2%

Table 3: Percentage of words in the SMT output that have non-identity morphological segmentations.

reference words could not be found in the Arabic
side of our training data. Of these, only 37 could be
could be constructed from morphemes found in our
training set. This means that there is only a small
number of opportunities to better match the refer-
ence by producing a novel word. Together, these
two pieces of analysis strongly suggest that the ad-
vantage of flexible boundaries comes from creating
new translation options for a given source sequence,
rather than from creating novel words.

We were able to compute statistics on flexible
boundaries for only two of our systems, because
the other three disallow them entirely. In order
to characterize all five systems, along with the hu-
man references, we measured overall affix usage
by counting decomposable words. Table 3 shows
the percentage of words in the Arabic translations
that have non-identity morphological segmentations
when processed by MADA. In terms of affix usage,
the 1-best Deseg method tracks the Reference very
closely, while all remaining scenarios show a sub-
stantial drop in usage of decomposable words. Most
surprisingly, Lattice Deseg is included in this group,
even though its BLEU scores are higher than 1-best
Deseg. Since 1-Best Deseg’s most prominent char-
acteristic is its lack of an unsegmented LM, this sug-
gests that unsegmented LMs may dramatically im-
pact affix usage. Note that flexible boundaries do
not (fully) account for the gap in affix usage, as the
1-best Deseg still has noticeably higher usage of de-
composable words, even with flexible boundaries re-
moved. This implies that Lattice Deseg and the var-
ious fully integrated desegmentations could be im-
proved by attempting to directly manipulate their us-

71

age of decomposable words, perhaps through a spe-
cialized feature.

As a final piece of analysis, we also investigated
the impact of different n-gram orders for segmented
LMs. Most of the scenarios proposed here add an
unsegmented LM to a segmented system, and the
most obvious advantage of an unsegmented LM is
that it accounts for more context than a segmented
LM. However, this only holds if we force both LMs
to have the same n-gram order. To see if higher or-
der segmented LMs would improve translation, we
experimented with different n-gram orders for our 1-
best Deseg system. As we increased the segmented
n-gram order from 5 to §, we saw no improvement
over the 5-gram LM used throughout this paper.
In fact, BLEU score began to drop after n = 6.
This suggests that the advantage of adding an un-
segmented LM cannot be emulated by increasing the
order of the segmented LM.

7 Conclusion

We have presented an experimental study on trans-
lation into segmented target languages by creating
models that apply desegmentation at different points
in the translation pipeline. We have provided ev-
idence that access to phrases with flexible bound-
aries is a crucial property for a successful segmenta-
tion approach. We have also examined the impact
of unsegmented LMs, showing that although they
are helpful according to BLEU, they also hinder the
generation of morphologically-complex words. This
suggests that current methods could be improved by
attempting to increase their use of morphological af-
fixes.
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